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Site-bond —correlated D-vector model on the Bethe lattice
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The site-bond —correlated D-vector spin model for randomly diluted magnetic systems is studied
on the Bethe lattice with general coordination number. The ferromagnetic critical lines in the
temperature-concentration (T„p) space are obtained exactly for the Ising (D =1), Heisenberg
(D =3), and D = oo cases, and for both directed and nondirected correlation models. For the anti-
ferromagnetic correlation regime, the ( T„p) diagram shows the appearance of several zero-
temperature critical concentrations and the presence of reentrant phases. The uncorrelated criti-
cal line and the percolation concentration are recovered.

I. INTRODUCTION

The critical temperature dependence of the concentra-
tion at which the magnetic order vanishes is of great in-
terest for the study of randomly diluted magnetic sys-
tems. This dependence is associated with the topological
properties of the lattice and also with the symmetry of
the interaction Hamiltonian or the spin variables. For
instance for randomly diluted Heisenberg magnets like
KNi Mg& F3 the decreasing of the critical temperature
with the reduction of the concentration is faster than for
the isostructural KMn Mg& F3. Further the critical
temperature curve for the latter has a downward curva-
ture while the former has an upward one. ' A new dilu-
tion model namely the site-bond —correlated diluted
model has been proposed by de Aguiar et a1. in order
to explain these differences. For example in the pure
(p= 1) related materials mentioned above the Ni + ions
can form only o. bonds, while the Mn + ions can form
both o. and ~ bonds. Therefore the symmetry of the o.

bonds suggests that the substitution of a Ni + ion in
KNi Mg& F3 by a nonmagnetic one has a stronger
effect on the exchange interaction of a nearest-neighbor
magnetic pair situated along the line joining the three
atoms than the same effect induced by the substitution of
a Mn + ion in KMn Mg

&
F3. The randomly site-

bond —correlated diluted Ising model on the square lat-
tice has been studied by de Aguiar et al. within the
mean-field approximation. They have considered both
the standard mean-field approximation as well as the
effective-field theory developed by Honmura and
Kaneyoshi.

In this paper we study the randomly site-
bond —correlated diluted D-vector spin model within the
Bethe-Peierls approximation by solving the model Ham-
iltonian in the Bethe lattice with general coordination
number. We investigate the exact concentration depen-
dence of the ferromagnetic critical temperature of the lo-
cal magnetization of the Bethe lattice for Ising (D= 1),
Heisenberg (D = 3) and D = 0o cases. In the present
model Hamiltonian the site-bond correlation means that
the strength and the sign of the exchange interaction be-
tween a given pair of nearest-neighbor magnetic atoms

are also dependent upon the presence of magnetic atoms
on their neighboring sites. We consider two types of to-
pological site-bond correlation, namely, the directed and
the nondirected correlation. Furthermore, we assume
both ferromagnetic and antiferromagnetic correlation,
and we distinguish two particular cases, that is, the
strongest correlation situation and the uncorrelated one.
The latter case recovers previous results for the stan-
dard bond diluted Ising model on the Bethe-Peierls ap-
proximation. We expect that the present site-
bond —correlated model can exhibit a spin-glass-like
phase for the case of antiferromagnetic correlation, since
we can have a randomly diluted distribution of fer-
romagnetic and antiferromagnetic bonds. The stability
of this spin-glass-like phase is now being studied.

This paper is organized in the following way. In Sec.
II we present the model Hamiltonian and discuss the
directed (model A) and the nondirected (model 8) site-
bond —correlated models. Section III is devoted to the
evaluation of the ferromagnetic transition temperatures
and to the discussion of the phase diagrams for both
models and for the D=1, 3, and oo cases. Finally the
conclusions are summarized in Sec. IV.

II. THE MODEL HAMILTONIAN: DIRECTED AND
NONDIRECTED CORRELATION MODELS

We consider a site diluted spin system on the Bethe
lattice with general coordination number z =q +1 (q is
the connectivity). The Bethe lattice can be constructed
by connecting z sites to a central site to form the first
generation and by connecting successively q sites to form
the next generations. The result is an infinite lattice in
which every site has z nearest neighbors and there are no
closed paths (loops). The sites are randomly occupied by
magnetic atoms following a given probability distribu-
tion. The magnetic atoms are represented by D-vector
spin variables coupled by a nearest-neighbor exchange
interaction.

The directed site-bond correlation on the Bethe lattice
means that the exchange interaction between two
nearest-neighbor magnetic atoms is correlated only with
their nearest-neighbor spins belonging to the neighboring
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The general Hamiltonian can be written as

H= —g'J, ,S; S, B—gS
(ij ) i

where J, is the coupling constant of the exchange in-
teraction between the pair of nearest-neighbor spins
(i,j ), B is the external magnetic field, and S is the vth
component of the D-vector spin variables S which are
subjected to the normalizing condition

(+v)2 g2

In what follows we will assume that k =D, in order to
renormalize the exchange interaction coupling constant
relative to the spin dimensionality.

A. Model A: Site-bond directed correlation

FICs. 1. Model A: Directed correlation. A portion of a
Bethe lattice (q=4) is shown, where ~ are the actual present
spins and are the active correlated sites for a given bond
(J

& 2 ) between the %th and the ( X + 1 )th generations.

generations. In Fig. 1 the active sites for a given bond
are shown for the directed correlation model (model 3,
hereafter). In this model the correlation is restricted
along the radial direction from the central site. On the
other hand, in the nondirected correlated model (model
B, hereafter) all neighboring sites of a given pair of
nearest-neighbor spins are active sites. Therefore, all
sites of the lattice are equivalent and there is no hierar-
chy between the generations. The active sites for a given
bond for the model B are shown in Fig. 2. The former
model takes into account the directionality effects point-
ed out by de Aguiar et al. , while the latter can be re-
garded as the appropriated isotropic version of this mod-
el.

In this model the correlated sites acting on a given
bond (active sites) are those belonging to the inner and
the outer nearest-neighbor generations as shown in Fig.
1. Furthermore the nearest-neighbor spin belonging to
the inner generation has a much stronger effect than the
other active sites, that is, if this site is occupied by a
nonmagnetic atom the strength of the exchange interac-
tion is changed by a factor a independently of the occu-
pation number of the other active sites. We note that
there is no correlation between the bond exchange and
the nearest-neighbor sites belonging to the same genera-
tions. Therefore the site-bond correlation is assumed to
be active only along the radial direction of the Bethe lat-
tice. The coupling constant for this model for the bond
specified in Fig. 1 can be given by

A
q

J1,2 Jele2 ~+( ~)e0 X e2, I (3)

where e,- and e, &
are independent randomly disordered

variables, J (J& 0) is the ferromagnetic exchange-
coupling constant, and a is a parameter governing the
correlation. From Eq. (3) we can see that the q outer ac-
tive neighboring sites contribute to the correlation only
if the inner active neighboring site is occupied by a mag-
netic atom (eo= 1). Therefore in model 3 the hierarchy
between the generations of the Bethe lattice is preserved,
and the correlation is directed along the radial direction
from the root of the tree.

B. Model B: Site bond nondirected correlation

In this model we do not distinguish the generation
structure of the Bethe lat tice by assuming that all
nearest-neighbor sites of a given bond are equivalent ac-
tive sites. The coupling constant for the bond specified
in Fig. 2 can be given by

1J, 2=JE]E~ u+(I —a) y (e, I+E2 I)
2q (

FICx. 2. Model B: Nondirected correlation. A portion of a
Bethe lattice (q=3) is shown, where ~ are the actual present
spins and are the active sites for a given bond J, 2.

We note that there are 2q active sites per bond in this
model while there are only (q +1) active sites per bond
in the model A.
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III. THE TRANSITION TEMPERATURES:
( T, ,p) —PHASE DIAGRAMS

straightforward generalization of Eq. (5), that is,

1 —q (tD(DKJ ) )„=0, (7)
The ferromagnetic transition temperature T, for the

pure classical D-vector spins in the Bethe lattice is given
by the following equation:

1 qtD—(DK) =0, (5)

where E '=k~T, /J is the normalized critical tempera-
ture, kz is the Boltzmann constant and tD(x) is the gen-
eralized hyperbolic tangent defined by

IDy2(x )
tD(x) =

I(D/2) 1(x)

where I„(x) is the modified Bessel function of the first
kind of order n Fo.r D= 1 (Ising), D=2 (XY), and D=3
(Heisenberg) spins we have, respectively, t, (x)=tanhx,
t2(x) =I, (x)/Io(x), and t3(x) =L (x), L (x) being the
Langevin function.

For quenched random disordered systems in the Bethe
lattice the exact critical temperature is given by a

where ( )„means the conditional configurational
(cc) average over a given distribution of the occupational
variables e and K'j J'j /kp T Jj being defined in the
present work by Eqs. (3) and (4).

To perform the cc average in Eq. (7) we assume in-
dependent random variables according to a discrete
probability distribution given by

where p (0 &p & 1) is the concentration of magnetic
atoms. Note that for the cc average considered here the
concentration of connected bonds for a&0 must be in-
terpreted as the concentration of magnetic atoms. By
substituting Eqs. (3) and (4) in Eq. (7) we get the polyno-
mial equation in the concentration. The solution of this
equation gives the phase diagram in the temperature-
concentration (T„p) space. For models A and B we ob-
tain, respectively,

q

1 qp (1—p)tD—(aDK)+p g q p i "(1—p)"tD[DK(q —n (1—a))/q] =0
n=0

(9)

and

2q

1 qp g q p—~ (1—p) tD[DK(2q —m (1—a))/2q]=0,
m=0 ™ (10)

1 —qp [1—(1 —p)~]=0 (model A),
1 —qp [1—(1 —p) ~)=0 (model B) . (12)

where (i, )=a!/(a —b)!b!. In both models two kinds of
correlation can be distinguished: the ferromagnetic
correlation for a) 0 and the antiferromagnetic one for
n & 0. Moreover, we point out two particular cases:
0.=0 which corresponds to the strongest correlation sit-
uation and +=1 which describes the standard uncorre-
lated bond diluted spin system.

For 0 & 0; & 1 the system can be regarded as a distribu-
tion of ferromagnetic bonds with several strengths weak-
ened by the correlation. Furthermore at T~O limit
both Eqs. (9) and (10) recover the exact usual (uncorre-
lated) bond percolation concentration of the Bethe lat-
tice p, =1/q. This is an expected result since in this
range of values of o. the site-bond correlation acts only
in order to weaken the strength of the exchange interac-
tion and therefore does not change the ground-state
long-range order.

In the case of strong correlation (a =0) the strength of
the exchange can vanish due to the action of the site-
bond correlation. In this case for both models the fer-
romagnetic ordered phase at T&0 occurs for concentra-
tions higher than the percolation threshold p, = 1/q.
These concentrations are given by the following equa-
tions:

TABLE I. Percolation concentration p, =1/q and the po
values (see text) for the directed ( A) and nondirected (B) mod-
els, and for several values of the coordination number z.

Model A
po

Model B
pc

Both models

0.7336
0.5971
0.5144
0.4580
0 as 1/+z

0.5264
0.3583
0.2715
0.2185
0 as 1/z

0.5000
0.3333
0.2500
0.2000
0 as 1/z

The solutions po of Eqs. (11) and (12) are given in Table
I for several values of the coordination number z, where
we also include the corresponding values of the percola-
tion threshold. %'e emphasize that the po concentra-
tions must not be interpreted as a new percolation con-
centration since the site-bond correlation in the Bethe
lattice is irrelevant for the formation of the infinite clus-
ter at the percolation threshold. Nevertheless for the
directed correlated model in hypercubic lattices these po
values correspond to the critical percolation concentra-
tions in the Bethe-Peierls approximation. For instance,
the value of p0=0.5971 for z=4 (Table I) should be
compared with those ones obtained within efT'ective field
approximation po ——0.765, and Monte Carlo calcula-
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tions p0=0. 741. On the other hand, for the model B
the correlation does not affect the percolation concentra-
tion, since all percolative clusters are the same as for un-
correlated limit. This is another characteristic feature
of the directionality of the directed site-bond correlation.

Now we consider the case of a &0 (antiferromagnetic
correlation). In this situation the exchange interaction
of a given pair of nearest-neighbor magnetic atoms can

vanish or have its sign changed depending on the num-
ber of magnetic atoms present in its active neighboring
sites. Therefore, for a given concentration the system
can be regarded as a random mixed distribution of fer-
romagnetic and antiferromagnetic bonds with several
strengths. The critical concentrations at T=O will be
dependent on the magnitude of a and are given by the
solutions of the following polynomial equations (a & 0):

q

1 qp (—p —1)+p g q p t "(1—p)"sgn[q n(1 ——a)] =0 (model 2),
n=0

2q

1 —qp g p ~ (1 —p) sgn[2q —m (1 —a)]=0 (model 8) .
m =0

(13)

(14)

In the above equations, sgn(x))0 or &0 for x &0 or
&0. Since n =0, 1, . . . , q and m =0, 1, . . . , 2q in Eqs.
(13) and (14), we can identify the existence of (2q —1)
critical concentrations for the model A and (4q —1) crit-
ical concentrations for the model B when

n —1 —q n —q&a&, n =1,2, . . . , q
n —1 n

model 2,
n =1,2, . . . , (q —1)

n

(15)

m —1 —2q m —2q&a& m =1,2, . . . , 2q
m —1 m

model B.

We note that for each value of a (a & 0) specified by Eqs.
(15) and (16) a diFerent polynomial equation corresponds
given by Eqs. (13) and (14), respectively. In Figs. 3 and
4 we plot the T=O critical concentration as a function of
a for the models A and B, respectively, for some values
of q. We call to the readers' attention that these critical
concentrations for a &0 no longer have relation with the
percolation concentration, since the system is composed
of a mixed distribution of ferromagnetic and antiferro-
magnetic bonds and frustration effects can be present.

Finally, for a=1 both models describe the usual un-
correlated site dilute spin systems; that is, in this limit
both Eqs. (9) and (10) give the critical temperature for
the Bethe lattice given by

m =1,2, . . . , (2q —1)
m 1 qptD (DK, ) =0—, (17)

(16) where K, =J/k+T, which has already been obtained by

t.o l.0
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FICx. 3. Critical concentration at T=O for model A, as a
function of the correlation parameter for z= 3, 4, and 6.

FIG. 4. Critical concentration at T=O for the model B, as a
function of the correlation parameter for z= 4 and 6.
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FIG. 5. Ferromagnetic critical temperature vs concentration
for model 3 with Ising spins (D=1) and coordination number
z=4, and for several values of a as indicated. (The thick solid
line indicates the critical line for a=0.)

FIG. 7. Ferromagnetic critical temperature vs concentration
for the model A with Heisenberg spins (D=3) and coordina-
tion number z=4, and for several values of a as indicated.
(The heavy solid line indicates the critical line for +=0.}

several authors for D= 1, 2, and 3 (Ref. 6) and by Stan-
ley (Ref. 5) for general dimensionality. The phase dia-
grams ( T„p) for the Ising system (D= 1) and for both
models can be obtained by substituting tD (x ) by tanhx in
Eqs. (9) and (10). In Figs. 5 and 6 we present these dia-
grams for the case J&0, q=3 (z=4) and for several
values of a. For 0&a &1 all critical lines meet at the
same percolation concentration p, =1jq with an infinite
derivative. For a &0 we point out the existence of the
critical concentrations at T=O obtained by the values of
a given by Eqs. (15) and (16) [see also Figs. (3) and (4)].
Furthermore, for some negative values of a, we observe
the appearance of reentrant phases which are charac-
teristic of competing interactions systems. We also plot
in Fig. 7 the phase diagram (T, ,p) of the model 3 for
the Heisenberg system (D=3) which can be obtained
from Eq. (9) by substituting tD(x) by L(x), where
L (x) =(cothx —1/x) is the Langevin function. This di-

agram shows the same features of the one shown in Fig.
S for the Ising case, that is, the same critical concentra-
tions at T=O, the same percolation concentration for
0&+ &1 and reentrant phases for some values of e &O.
However, for Heisenberg spins the critical lines have
finite derivatives at the critical concentrations at T=O.

Finally, the ferromagnetic critical temperature phase
diagrams for the infinite spin dimensionality case are ob-
tained by evaluating the D~ op limit of the generalized
hyperbolic tangent given by Eq. (6), that is

ID iz(DK) 2K
lim tD(DK)= lim

D-oc D-ao ID/2, (DK) 1+(1+4K )'

(18)

and by substituting this result in Eqs. (9) and (10). The
phase diagram (T, ,p) of the model A and for the D ~ ao

case is shown in Fig. 8 for several values of n. The same
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FIG. 6, Ferromagnetic critical temperature vs concentration
for model B with Ising spins (D=1) and coordination number
z=4, and for several values of a as indicated. (The thick solid
line indicates the critical line for a=0.)

FIG. 8. Ferromagnetic critical temperature versus concen-
tration for the model 3 with D~ ~ vector spins and coordi-
nation number z=4, and for several values of a as indicated.
(The heavy solid line indicates the critical line for a=O. )
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features of the previous cases can be observed showing
that the physical behavior of the system is not strongly
afT'ected by the spin dimensionality for D & 1.

IV. CONCLUSIONS

The critical temperatures of the randomly diluted D-
vector spin system on the Bethe lattice with general
coordination number have been calculated exactly for
the directed (model A) and the nondirected (model B)
site-bond —correlated models. The results for both mod-
els have been analyzed for the entire range of values of
the correlation parameter a. For ferromagnetic correla-
tion (a &0) all critical lines meet at the percolation con-
centration p, = 1/(z —1) at T=O. On the other hand
the critical lines for o. strictly equal to zero are located
in the region p ~ po, where po, for model 3, corresponds
to the critical percolation concentration for hypercubic
lattices in the Bethe-Peierls approximation. For the an-
tiferromagnetic correlation (a &0) there are (2q —1) and
(4q —1) critical concentrations at T=O as a varies, for
the models 3 and B, respectively. The phase diagrams
(T„p) for the ferromagnetic Ising (D= 1), Heisenberg

(D=3), and D = oo cases have been shown in Figs. 5, 7,
and 8 for the model A. The (T„p) diagram of the Ising
case for the model B is also shown in Fig. 6. All dia-
grams show almost the same features. We point out the
presence of reentrant phases for o: & 0 which are charac-
teristic of competing interaction systems. For cx &0 the
system can be regarded as a random mixed distribution
of ferromagnetic and antiferromagnetic bonds. In this
case we expect that the system presents a spin-glass-like
phase, in addition to the paramagnetic and the fer-
romagnetic phases, due to the frustration and the ran-
domness of the competing interaction introduced by the
site-bond correlation. The study of the stability of this
spin-glass-like phase is a subject matter of present
research.
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