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The concept of comparing the Gibbs free energy G (P, T) for different phases is used to under-
stand the phase diagram of an organic molecular solid for the first time. Calculations are carried
out for tetracyanoethylene, since it exhibits rather unusual phase transitions with large hysteresis,
and its two crystalline phases have almost equal static potential energy. The lattice part of the
free energy has a contribution from the molecular packing and the phonon density of states, which
are calculated using a six-exponential potential between nonbonded atoms. It is shown that the
low-symmetry monoclinic phase is stabilized at high temperature due to its higher vibrational en-
tropy, as compared to the cubic phase which is stabilized at high pressure due to its lower volume.
The calculated phase diagram is in good qualitative agreement with experimental observations.

I. INTRODUCTION

Complex molecular solids are usually found to exhibit
several polymorphic phase transitions. In particular, the
first-order transitions, which involve large rearrange-
ments of molecules and large hysteresis, are poorly un-
derstood. A study of the Gibbs free energy as a function
of pressure and temperature is useful for understanding
not only the relative stability of the phases, but also the
important factors contributing to the stability. Howev-
er, the above approach is not usually followed due to its
inherent difficulties. While, for insulators, the electronic
part of the free energy may be considered invariant, the
part due to molecular packing and thermal vibrations it-
self requires a good knowledge of the interatomic poten-
tials and extensive computations.

The organic solid, tetracyanoethylene (TCNE), shows
very interesting and rather unusual phase-transition be-
havior.! At atmospheric pressure, the cubic phase I
(space group Im3) transforms to the monoclinic phase II
(P2,;/n) on heating at 318 K, and the transition is ir-
reversible on cooling to 5 K. However, on application of
a pressure of 2 GPa at 295 K, the reverse transition
from phase II to I is observed via an intermediate meta-
stable amorphous phase III. Recently, we carried out
detailed studies of the thermal vibrations in TCNE by
coherent inelastic neutron scattering,2 Raman scatter-
ing,> and also by lattice dynamical calculations.?2™*
These calculations, which were based on the six-
exponential atom-atom pair potential between nonbond-
ed atoms and certain parameters to define the low-
frequency internal vibrations, agreed very well with the
experimental results.

We have now extended the calculations to obtain the
vibrational spectrum (density of states) as a function of
pressure in the two crystalline phases. Further, we have
calculated the lattice part of the Gibbs free energy as a
function of pressure and temperature, separately for the
cubic and the monoclinic phases. Since the stable phase
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is the one with the lower free energy, the equilibrium
phase diagram is obtained. It is implicitly assumed that
the phases are perfect, and so contributions from defects
have been ignored. The agreement of the results of the
calculation with those from the experiments is con-
sidered very satisfactory in view of the complexity of the
structures that are considered and the simplicity of the
potentials used. We believe that this work represents the
first study of this type for any complex organic molecu-
lar solid. A closer comparison of the components of the
free energy of the two phases has revealed that, although
the cohesive energy in the two phases is nearly the same,
the stability of the low-symmetry monoclinic phase at
high temperature and low pressure is due to its higher
vibrational entropy and higher volume, as compared to
that of the cubic phase.

As mentioned above, an amorphous phase also occurs
as an intermediate metastable state during the transition
from the monoclinic to the cubic phase at high pressure.
However, we have not evaluated the free energy in this
phase since the structural data are not available. We are
planning to study the amorphous phase using computer
simulation.

In the following, first we shall summarize the model of
the interatomic potential and the lattice dynamics,>~*
and present results of this model on molecular packing
and the vibrational spectrum at various pressures. Next
we shall describe calculation of the free energy of the
two crystalline phases as a function of pressure and tem-
perature and discuss the phase transition. We shall also
present results on the partial density of states corre-
sponding to the various thermal vibrations in TCNE.

II. THEORETICAL MODEL

The molecule of TCNE has certain internal vibrations
which occur at low frequencies and which are well
separated from the remaining internal vibrations.>* The
intermolecular interactions in the solid state would man-
ifest significantly only in the low-frequency internal vi-
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brations and the external rigid-body vibrations of the
molecules. The remaining internal vibrations would be
essentially invariant during phase transitions. We have
therefore adopted the “‘semirigid molecular model” of
lattice dynamics®* which involves only the low-
frequency vibrations. For each TCNE molecule we need
to consider the seven internal vibrations which occur
below 10 THz (Refs. 2 and 3) and the six external vibra-
tions, namely the three translations and three librations.
This gives a total of 13 degrees of freedom per molecule.
The monoclinic phase,? with two molecules in the primi-
tive cell of the space group P2,/n, has 26 modes for
each wave vector. The cubic phase,4 with three mole-
cules in the rhombohedral primitive cell of the bee space
group of Im 3, has 39 modes for each wave vector.

The intermolecular potential is obtained by summing
the six-exponential potential for all pairs of nonbonded
atoms belonging to different molecules. We used the pa-
rameters of the potential as given by Govers,” who ob-
tained them by fitting to the equilibrium structures and
cohesive energies of several molecular crystals. Contri-
bution from the intramolecular potential is included only
in the self-force-constants of the internal vibrations
through certain adjustable parameters, which were ob-
tained by using the known frequencies at ambient pres-
sure. The intermolecular potential contributes to all the
force constants.

The structure in a given phase, at a given pressure and
zero temperature, can be obtained by minimizing the
Gibbs free energy G(P,T =0)=U +PV +E, (U is the
static potential energy, PV is the product of the pressure
and the volume, and E is the zero-point energy), with
respect to the structural variables, namely, the lattice pa-
rameters, the positions, the orientations, and the internal
configurations of the molecules; while keeping the space
group symmetry unchanged® in the minimization pro-
cess. However, the variation of E, can be ignored as
compared to the variation of U + PV, for typical organic
crystals like TCNE. In fact, for TCNE the vibrational
pressure arising due to the zero-point energy is only
about 0.1 GPa. It is also found?® that the variation in the
internal configuration of the TCNE molecule in a given
phase is negligible for pressures up to 4 GPa. The equi-
librium structure thus obtained at a given pressure is
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used in the quasiharmonic dynamical calculations.?

The model has been successfully used for the mono-
clinic phase at ambient pressure in the calculation of the
phonon dispersion relation and the one-phonon cross
sections for neutron scattering experiments.”? Good
agreement was obtained between the calculated and the
measured dispersion relation and neutron intensities.?
We have also calculated the phonon frequencies of zero
wave vector at high pressures and found the results in
fair agreement with Raman-scattering experiments, in
both the monoclinic and cubic phases.3 However, in
these calculations in the monoclinic phase, one of the
internal modes, namely the symmetric out-of-plane rock-
ing mode, occurred at a much higher frequency than the
experimental value.>*® To remedy this situation, we have
now improved the parameters? of the intramolecular po-
tential from the earlier values of 3.1, 7.5, and 10.6 THz
to 3.1, 7.3, and 7.5 THz. The values for the cubic phase,
of 3.9, 7.3, and 8.2 THz, are the same as in our earlier
work.® The slight difference in these values, which were
obtained for the two phases using the Raman frequencies
at ambient pressure, may be attributed to the difference
in the values of the bond angles”® of the molecule in the
two phases.

In order to obtain the phonon density of states, which
is needed in the calculation of the free energy, we need
to integrate over all the wave vectors in the irreducible
Brillouin zone (IBZ). The techniques of analytical
geometry may be used’ to obtain the wave vectors be-
longing to the IBZ. However, for this purpose, we have
developed a small computer program which is based on
the following simple technique: The program is suitable
for crystals of any space group. Instead of considering
the conventional Brillouin zone (BZ) in the form of the
Wigner-Seitz cell in the reciprocal space, we start with a
primitive cell made of the reciprocal-lattice vectors. We
then partition this cell with a certain mesh size along
each of the reciprocal-lattice vectors, and collect the
coordinates of all the mesh points (wave vectors). Next
we obtain groups of points that are equivalent by sym-
metry, and retain only any one point from each group,
with a weightage equal to the number of points in the
group. We have thus obtained all the wave-vector
points corresponding to the IBZ with their proper

TABLE I. The calculated results on the pressure (P) variation of the molecular volume V, static potential energy U, zero-point
energy E, due to the thermal vibrations of the semirigid molecule, and the free energy G (P, T) at temperature T =0 K; all normal-
ized to one molecule of TCNE. Here G(P,T =0)=U +PV +E,. 1 GPanm®=6241 meV.

Cubic phase Difference?®

P |4 U E, G (T=0) AV PAV AU AE, AG (T =0)
(GPa) (nm?) (meV) (meV) (meV) (nm?) (meV) (meV) (meV) (meV)

0 0.1361 —748.4 112.4 —636.0 0.0009 0 1.2 —-17.5 —6.3

1.0 0.1251 —720.3 126.8 187.4 0.0013 8.2 5.0 —17.8 5.4

2.0 0.1187 —657.6 137.2 961.0 0.0013 16.6 4.4 —7.7 13.3

3.0 0.1140 —586.1 146.0 1694.4 0.0013 249 7.8 —17.8 24.9

4.0 0.1104 —509.0 153.5 2400.7 0.0013 32.1 14.0 —7.8 38.3

*This gives the values for the monoclinic phase minus that for the cubic phase. We estimate numerical errors of about 1 meV in
these various values of energies, due to the minimization procedure in calculating the structure, and the particular sums of poten-
tials over the atomic pairs, etc.
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weights. We could choose that wave-vector point from
each group of the equivalent points which is closest to
the zone center, and then the set of points so obtained
would be the same as those in the IBZ obtained from the
Wigner-Seitz cell. However, this is not necessary to do.
For the monoclinic phase, we have used a 10X 10X 10
mesh in the BZ. This resulted in 312 independent wave
vectors in the IBZ, with their weights varying between 1
and 4. For the cubic phase, with a mesh size of
16 X 16X 16 in the BZ, we obtained 213 wave vectors in
the IBZ with their weights between 1 and 48. Note that
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FIG. 1. The phonon density of states g (v) (arbitrary units)
for the cubic phase of TCNE, as calculated using the semirigid
molecular model for pressures of (a) 0 GPa, (b) 1 GPa, (c) 2
GPa, (d) 3 GPa, and (e) 4 GPa.
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the ratio of the volume of the IBZ to that of the BZ is
in the monoclinic phase and ;; in the cubic phase.

The phonon density of states is obtained by the histo-
gram sampling of frequencies over bins of 0.1 THz and
then smoothened by Gaussians of full width at half max-
imum (FWHM) of 0.2 THz. The results at various pres-
sures are presented in Figs. 1 and 2 for the cubic and the
monoclinic phases, respectively. With increasing pres-
sure, the phonon spectra have shifted to higher frequen-
cies, which is a result consistent with the earlier calcula-
tions® on the zero-wave-vector phonons. A more impor-
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FIG. 2. Same as in Fig. 1 for the monoclinic phase of
TCNE.
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tant result is, however, the significant difference between
the spectra for the two phases. The spectra for the
monoclinic phase have a higher density of states at low
frequencies compared to those for the cubic phase. Also
the average frequency of the spectra for the monoclinic
phase is somewhat lower. The implication of these
features of the spectra on the free energy and the phase
transition will be discussed later in the paper. Other re-
sults on the pressure variation of the molecular volume,
static potential energy, and the zero-point energy, which
J
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are also required in the calculation of the free energy,
are given in Table 1.

III. FREE ENERGY

We need to evaluate the lattice part of the Gibbs free
energy as a function of pressure P and temperature 7.
In the quasiharmonic approximation, the free energy has
contributions from the static potential energy, pressure
energy, vibrational energy, and vibrational entropy. The
free energy is given by

G(P,T)=U(P)+PV(P)+ fdvg(v,P)((hv/2)+kT1n[l—exp[—hv/(kT)]}) , (1)

where V(P) is the volume per molecule; U (P) is the
static potential energy per molecule, when all the atoms
are located at their equilibrium positions; and g (v,P) is
the phonon density of states at frequency v, normalized
for one molecule. Here we have ignored the relatively
small temperature dependence of U, ¥, and g compared
to their pressure dependence, since the variation in these
quantities over the temperature range of 0O to 300 K is
less than their variation due to a pressure change of a
fraction of 1 GPa. Moreover, such variation with tem-
perature is similar for the monoclinic and the cubic
phases, and therefore would not significantly alter the
relative stability of these phases on the P-T diagram.
Figures 3 and 4 illustrate the variation of the free en-
ergy with pressure and temperature, respectively, and
show the relative stability of the two phases. In Fig. 5
we present the calculated phase diagram which indicates
the relative stability of the cubic and the monoclinic
phases on the P-T diagram. The figure clearly shows
that while the monoclinic phase is stable at high temper-
ature, the cubic phase is stable at high pressure. This is
in agreement with the experimental observations.! How-
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FIG. 3. Variation of the free energy G (P,T) as a function of
pressure for T=300 K (a) for the cubic phase of TCNE, (b) for
the difference G(monoclinic) — G(cubic).

ever, the calculated transition pressure of 2.6 GPa at 295
K is somewhat higher than the experimental value of
about 1 GPa (the value of 1 GPa is obtained by averag-
ing over the hysteresis cycle of O to 2 GPa). This essen-
tially indicates the deficiency of the six-exponential po-
tential function, and will be discussed in the following.
Moreover, the observed phase transition has a rather
large hysteresis of about 2 GPa, which we believe is due
to the large activation energy!® of 2.4 eV during the
transition.

We recall that the potential, as used in the present cal-
culation, was not derived particularly for TCNE, but
was obtained by fitting over the characteristics of a num-
ber of similar molecular solids.> The pair potential is
isotropic in character and does not allow for anisotropy
of the interaction. Also it does not explicitly include
Coulombic and many-body interactions. With such
shortcomings of the potential, one may not expect good
quantitative estimates of the differences between the two
phases. However, with this in mind, we shall consider
the various components of the free energy to understand
their significance in the phase stability.
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FIG. 4. Variations of the free energy G (P,T) as a function
of temperature for P =3 GPa; (a) for the cubic phase of
TCNE, (b) for the difference G(monoclinic) — G(cubic).
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FIG. 5. Relative stability of the monoclinic and the cubic
phases of TCNE as obtained by comparing their free energies
as a function of pressure and temperature.

From Table I we can make a comparison between the
two phases of TCNE. At all the pressures for which cal-
culations have been carried out, the calculated volume
for the cubic phase is lower while the zero-point energy
is higher. We also notice from Table I that, while there
is a large variation in the values of V, U, and E,, as a
function of pressure, the difference between these values
for the two phases varies much less rapidly. The
differences between the volumes and the zero-point ener-
gies of the two phases are essentially invariant over the
range of O to 4 GPa. In fact, the difference AG(P,T
=0) varies with pressure largely due to the term PAV.
Here A symbolizes the difference of the monoclinic
phase from the cubic phase.

Clearly the cubic phase is favored at high pressure (at
low temperature) essentially due to its lower volume, and
partly due to the lower static potential energy. Howev-
er, at high temperature, the contributions from vibra-
tional energy and vibrational entropy must be con-
sidered. As temperature increases, the vibrational ener-
gy E for each mode approaches kT for both phases and
so the difference AE between the two phases becomes
negligible. The difference in the vibrational entropy
favors the monoclinic phase, which is therefore stable at
high temperature. The phase transition is essentially ob-
tained by the competition of the terms PAV and TAS,
although the transition pressures and temperatures are
significantly influenced by AU and AE also. We may
also note that since the variation of phonon frequencies
as a function of pressure, as calculated, is similar in the
two phases, the transition pressures and temperatures
are only slightly influenced by such variation. For simi-
lar reasons we have ignored the variation of frequencies
with temperature, both due to explicit anharmonicity
and the thermal expansion.

We note that the calculated volume of the monoclinic
phase is larger by about 1% than that of the cubic
phase. However, the value obtained from experiments®
is about 5%. Thus, although the sign of AV as calculat-
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ed is in agreement with experiments, the magnitude of
AV as calculated is much lower. This explains why the
calculated value of the pressure of 2.6 GPa at the phase
transition at 295 K is higher than the experimental value
of about 1 GPa.

We wish to mention that often one seeks to under-
stand the relative stability of phases by only comparing
their static potential energies. We find that for TCNE,
at zero pressure and temperature, the difference between
the potential energies of the two phases is more than
compensated by that between their zero-point energies.
So it is important to also consider the vibrational terms
in the free energy, particularly when the potential energy
difference is small.

Now we shall discuss how the details of the phonon-
frequency spectrum may influence the free energy. At a
given pressure and temperature, the contribution to the
free energy from a phonon of frequency v is given by

G =(hv/2)+kT In{l—exp[ —hv/(kT)]} . (2)

The change AG in this contribution, only due to an
infinitesimal shift Av in the frequency v, is

AG =Av(n+1)h , (3)
where
n=1/{explhv/(kT)]—1}

is the population of the phonon. The limiting values of
AG /Av are h/2 and kT /v, for kT <<hv and kT R hv,
respectively. Since (n +1)h is always positive, the free
energy will shift in the same direction as the frequency,
and the shift in the free energy per unit shift in frequen-
cy will be larger at higher temperature.

It is also clear from the above that AG /Av is larger
for smaller v. In particular, AG/Av=KkT /v for hvSkT
or v56 THz at 295 K. Therefore, at a given tempera-
ture, any shift of the low-frequency phonons will be
more effective in changing the free energy than a similar
shift of the higher-frequency phonons; although the total
free energy will have contributions from all the phonons.
By comparing the frequency spectra of the monoclinic
and cubic TCNE, as given in Figs. 1 and 2, we find that
the spectra for the monoclinic phase, in the low-
frequency region of below 2 THz, are shifted to lower
frequencies as compared with the spectra of the cubic
phase in the same region. This shift may result in lower
free energy due to these phonons, and thus favor the sta-
bility of the monoclinic phase at high temperature.

IV. PARTIAL DENSITY OF STATES

We also calculated the partial density of states g'(v),
corresponding to vibrations of individual coordinates or
degrees of freedom (i =1,2,...,13), namely, the three
translations and three librations of the molecules sepa-
rately about the three principal axes of inertia of the
molecule, and each of the seven internal vibrations of the
semirigid TCNE molecule.? Suppose §(q,j) represents
the normalized root-mass-weighted eigenvector of the
jth phonon (belonging to the jth branch in the disper-
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FIG. 6. The partial phonon density of states g‘(v) (arbitrary
units) for the cubic phase of TCNE at P=0 GPa.
i=1,...,13 correspond, respectively, to the translations
about the X, Y, and Z principal axes of inertia of the molecule
(Refs. 2 and 4), librations about these X, Y, and Z axes, and the
seven internal vibrations (Ref. 2), namely, a =scissoring (S,ip),
b =scissoring ( A,ip), ¢ =rocking (S,ip), d =rocking (A4,ip),
e =rocking (S,op), f =rocking ( 4,0p), g =twisting (op); where
S represents symmetric, and A4 represents antisymmetric, about
the center of inversion, ip is in the plane, and op is out of the
plane of the molecule. The principal X axis is perpendicular to
the plane of the molecule, while the principal Y and Z axes lie
in the plane (Refs. 2 and 4).

sion relation) of wave vector q, and frequency v(q,J),
and has components §;(k,q,j) corresponding to the vi-
brational amplitude along the ith coordinate of the kth
molecule. Then the contribution of a phonon of fre-
quency v to the partial density of states g‘(v) will be pro-
portional to
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FIG. 7. Same as in Fig. 6, for the cubic phase of TCNE at
P =3 GPa.
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gl(Y)
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FIG. 8. Same as in Fig. 6, for the monoclinic phase of
TCNE at P =0 GPa.

2 |§1(k’qp.]) ‘ 2 .
k

Thus we have

g'v)=43dq,8[v—vq,)]3 |&(kq,i)|?, “)
pJ k
where
A= [N Sdqg, |,
P
dq, is the weight associated with the wave vector q, of
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By 1c f

Y (THz)

FIG. 9. Same as in Fig. 6, for the monoclinic phase of
TCNE at P =3 GPa.
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the pth mesh point in the Brillouin zone, and the sum &
extends over the N molecules in the wunit cell,
i=1,...,13 and j=1,...,13N. The g'(v) is normal-
ized to vibrations of one molecule. Clearly the total den-
sity of states is just the sum of all the partial densities,

gv)=3gv)=4 3 dq,8[v—v(q,j)],
i P

as (5)

S |&i(k,q,j) | *=1; and also f gv)dv=13.
ik

The results on the partial density of states are given in
Figs. 6-9 for the cubic and the monoclinic phases at
pressure O and 3 GPa. These results are rather interest-
ing and useful. It is now possible to observe the behav-
ior of each vibration in terms of its frequency distribu-
tion and coupling with other vibrations. Significant
differences are visible between the distributions of the
translational and rotational motions, and also between
the distributions of these motions about the different
principal axes of inertia of the molecule. In particular,
differences are observed between the distributions of the
vibrations that occur in the plane and those out of the
plane of the molecule.

When the frequency distributions g‘(v) for a set of vi-
brational coordinates (i =i,, i,, etc.) overlap, the pho-
nons of the overlapping frequencies would most likely
involve coupled vibrations of these coordinates. In par-
ticular, when the frequency distribution of a certain
internal coordinate is overlapping with the frequency
distribution of the external coordinates, the phonons of
the frequencies in the overlapping region would involve
coupled vibrations of both the internal and the external
coordinates, and therefore such phonon modes would
not be purely external or internal modes, but would have
mixed character. Further, one can study each vibration
as a function of pressure, as well as compare its spec-
trum between the two phases. Such a study would give
the average behavior of all the modes in the Brillouin
zone, and would not be restricted to only certain modes.

As one might expect, with increase of pressure, the

distributions broaden and shift to higher frequencies.
These effects are more pronounced for the external vi-
brations than for the internal vibrations. Due to the fas-
ter shift for the external vibrations with pressure, new
overlaps and couplings develop between the external and
the higher-frequency internal vibrations.

These partial densities of states are also useful in
evaluating the density of states, g'”(v), as weighted with
the neutron-scattering lengths, which can be compared
with measurements by inelastic neutron scattering. We
have obtained g‘"'(v) by summing over the partial densi-
ties of the different coordinates, each weighted by a suit-
able factor containing the neutron-scattering lengths.
We shall, however, not discuss the determination of
g™ (v) here.

V. SUMMARY

In this paper we have presented exhaustive calcula-
tions of the vibrational density of states, and its partial
components for each degree of freedom, for the cubic
and monoclinic phases of TCNE as a function of pres-
sure. These results, along with those on the static poten-
tial energy and the volume in the two phases as a func-
tion of pressure, are used to evaluate the Gibbs free en-
ergy in the (P,T) space. By comparing the variation of
the free energy, which is calculated separately for the
two phases, we have derived the relative stability of the
phases in the (P, T) space. The results are in good quali-
tative agreement with the experimental observations.
We have further analyzed the variation in the various
components of free energy, namely, the potential energy,
volume, vibrational energy, and vibrational entropy. We
have also discussed the influence of the details of the fre-
quency distribution on the free energy and evaluated
their importance in the relative stability of the two
phases in TCNE.
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