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The nonequilibrium and equilibrium behavior of the two-dimensional Ising model are studied
after rapid cooling in a random field. Extensive Monte Carlo simulations are presented, covering
a wide range of temperature and random-field strength. Quantitative comparison is made with
several recent theories of domain growth and equilibration. In particular, strong support is given
to the Villain-Grinstein-Fernandez theory of logarithmic growth.

I. INTRODUCTION

The addition of local, static, random fields to the ordi-
nary Ising model results in the drastic modification of its
behavior in both equilibrium and nonequilibrium situa-
tions. The random fields give rise to many local minima
of the free energy, obscuring the true equilibrium state
of the system and making analysis of its ordering charac-
teristics extremely difficult.’> Whereas the zero-field Is-
ing model is well known to exhibit long-range order at
finite temperature for all dimensionalities d > 1, it has
only recently been demonstrated that the ground state of
the three-dimensional random-field Ising model (RFIM)
is ordered.® In one dimension, the RFIM does not order
at all,* and for d=2, the lower critical dimension
d,.,»°~° there is strong evidence that it is disordered
even at zero temperature.

The complexity of the random-field free energy also
gives rise to long relaxation times as the system lingers
in a succession of local minima on its way to the lowest
energy state. The physical manifestation of the free-
energy barriers are local clusters of random fields which
influence the formation of domains and then hinder their
subsequent evolution. This is clearly seen in Fig. 1,
which shows the time development of a spin system in
the presence of random fields, after a quench to a low
temperature. The initial state is uncorrelated, but the
spins rapidly coalesce to form domains in the early
stages of growth [Figs. 1(a) and 1(b)]. The domains then
expand and compact at the expense of their smaller
neighbors [Figs. 1(b) and 1(c)], but their continued
growth is greatly diminished [Figs. 1l(c)-1(e)]. The
remaining small domains and rough interfaces, stable
due to local concentrations of the random fields, disap-
pear only after extremely long times [Figs. 1(e) and 1(f)].
This slow relaxation can be contrasted with the zero-
field Ising model: While the initial growth is much the
same as in Figs. 1(a)—1(c), the subsequent development is
much faster, with the domains rapidly approaching the
size of the system. For a small lattice such as in Fig. 1,
one domain will dominate and long-range order will be
established for ¢ =400.

Nonequilibrium theories of the RFIM (Refs. 10-15)
have concentrated their attention on the kinetics of the
interfaces between domains, in the spirit of the work of
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Lifshitz and of Allen and Cahn'® (LAC) on the zero-field
Ising model. In the pure system, the driving force
behind domain growth is the reduction in surface ten-
sion which results from the flattening of domain walls;
the linear domain size L is found to obey the well-known
growth law L ~¢!/2. The added ingredient in the RFIM
is the roughening of domain walls as they wander to
gain energy from local concentrations of random fields,
as seen in Fig. 1. The walls may then be temporarily
pinned, until thermal fluctuations drive them to new po-
sitions with lower energy. The subsequent domain
growth will be reduced from the LAC result, and if the
fields are strong enough, it will be halted altogether. If
the domains continue to gradually increase in size, the
system may be considered metastable, and, after very
long times, it will attain long-range order. This is ap-
plicable to the three-dimensional RFIM, for small fields.
But if the domains eventually stop growing, the system
will be in a disordered phase (although the domain size
may be very large). This describes the two-dimensional
RFIM for any field strength. In the intermediate-time
regime, however, metastability and disorder can be
difficult to distinguish.

This similarity has been responsible for a large part of
the controversy over the RFIM, with field-cooled diluted
antiferromagnet systems [experimental realizations of
the RFIM (Ref. 17)] in both two and three dimensions
appearing to be stabilized in a glassy, domain state,'8 =2
or exhibiting a slow, logarithmic increase in the order-
ing.?! Given that the domains are approximately static,
their size is found to depend algebraically on the field
strength A,

L~h ", (1.1)
where v, is a decreasing function of temperature. In
both the two-dimensional system'® Rb,Co, Mg, .F, and
the three-dimensional system!° Fe,Zn,  F,, v, has a
value X2 at low temperatures and <1 near the critical
temperature (although larger exponents have been ob-
served in other materials).?°

Because equilibrium theories of the RFIM (Refs. 4, 6,
and 7) predict such a power-law behavior for d <d,,
these experiments were initially taken to be evidence
that the lower critical dimensionality was at least three.
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However, if the system is not in equilibrium, but rather
is very slowly ordering, (1.1) may instead describe the
size of metastable domains, in both two and three di-
mensions. This was demonstrated by Bruinsma and
Aeppli,'® who generalized the LAC theory of interfaces
to include the effects of random fields, and calculated the
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ing pinned. Villain'' and Grinstein and Fernandez'? ar-
rived at a similar result by estimating the free-energy
barriers which must be overcome for a domain wall to
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FIG. 1. The time development of a random-field Ising spin system after a quench to a temperature 7'=0.10. The static random
fields of strength 4 =0.5 are represented by + and —; white and black areas are “up” and **down” domains, respectively. Indicat-

ed times are in Monte Carlo steps per spin.
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L~h ""lnt . (1.2)

For each of these theories the calculated exponent,
v, 32, was consistent with the experimental measure-
ments. Subsequently, Nattermann'> and Andelman and
Joanny'* were able to unify the work of Villain and of
Grinstein and Fernandez with that of Bruinsma and
Aeppli, finding the latter to be a low-temperature, early-
time limit. These theories were therefore very successful
in explaining both the algebraic field dependence (1.1)
and the logarithmic growth of the ordering observed in
some experiments. Also, because the results derived for
d =2 and d =3 are not qualitatively different, the close
resemblance of two- and three-dimensional experimental
systems is accounted for.

A somewhat different analysis of the nonequilibrium
RFIM was performed by Grant and Gunton, ! who, like
Bruinsma and Aeppli, considered a generalization of the
LAC theory of curvature-driven growth, but instead de-
rived a time-dependent description. In three dimensions,
they found that the ¢!/2 LAC result was modified only
by a field-dependent reduction in amplitude, while in
two dimensions the growth law contained a logarithmic
correction term,

L~t"Y[A—Bh%In(t/7)]V?, (1.3)
where A, B, and 7 are field-independent constants. This
derivation therefore predicts a reduced growth in the
presence of random fields and a maximum domain size
in two dimensions, which is in qualitative agreement
with the scenario outlined above. It also naturally
reduces to the LAC t!/? growth law in the limit of zero
random field. However, it differs in detail from the oth-
er theories, and implies a more rapid equilibration; it has
therefore been suggested that it may only be applicable
in the earlier stages of growth.'>!> Grant and Gunton??
have also recently examined the random-field problem
from the point of view of classical nucleation theory,
reproducing the metastable growth law (1.2) in two di-
mensions, but again finding L ~1'/? for d > 2.

It is clear, then, that each of these theories explains
some aspects of the experimental situation, while com-
plementing each other to varying degrees. There is still
some question about their applicability to diluted antifer-
romagnets, however, especially given the continued
claims that there is no observable time dependence in
the domain state of these materials.'®~2° There is also
recent numerical work questioning a fundamental as-
sumption of these theories, viz., the root-mean-square
fluctuation of random fields within a domain.?* In what
follows, Monte Carlo simulations are used to examine
the growth kinetics of the RFIM and provide numerical
support for these theories. Several other simulations
have already been performed to test various aspects of
these theories: Pytte and Fernandez?* studied a small-
domain version of the theory of Grinstein and Fernan-
dez, while Gawlinski et al.?° attempted to verify the
theory of Grant and Gunton. Chowdhury and Stauffer®®
also examined these two theories. However, the extent
of these simulations was limited, typically to one temper-
ature or one field strength, or both. This makes it
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difficult or impossible to get a complete understanding of
the complex interaction between these parameters and
the predicted time dependence. Their results, therefore,
have generally been consistent with the theories, but not
strongly supportive.

The simulation here differs from these others by
studying a wide range of temperature and random-field
strength, to determine at what times and in which part
of the phase diagram each of these theories may apply.
In particular, it is found that several of these theories
can be verified using larger values of temperature and
field strength than might otherwise be expected. This
makes them accessible to finite-time simulations. The
work here has also been restricted to two dimensions,
since more of the phase diagram can be studied for
longer times, while still providing useful verification of
the underlying principles of these theories.

The most important result of this study is the close
correspondence found to the theories of Villain and of
Grinstein and Fernandez, in every dependence on time,
temperature, and random-field strength. Qualitative
support is also given to the low-temperature results of
Bruinsma and Aeppli, of Nattermann, and of Andelman
and Joanny. In addition, some evidence is found for the
theory of Grant and Gunton, but with important
differences from (1.3). Supplementary to these nonequi-
librium results, the equilibrium state has been studied for
larger field strengths, and the domain size is found to be
consistent with an exponential dependence on random-
field strength, as predicted by Binder’ and as would be
expected at the lower critical dimension of the RFIM.

In Sec. II, the model and Monte Carlo methods used
are described, with some discussion of previous simula-
tions of the RFIM. In Sec. III, the results of the simula-
tion are presented and directly compared with the ap-
plicable theories in the early-, intermediate-, and late-
time regimes, and in the low-temperature region of the
phase diagram. Section IV contains a final discussion.

II. MONTE CARLO SIMULATIONS

In principle, because Monte Carlo simulations share
the underlying model of the theories, they should pro-
vide a more direct verification than experimental sys-
tems, which have “nonideal” effects such as slow cooling
and random exchange, in addition to random fields.!
Their parameters are also more easily adjustable, and
can be varied over a wider range. In practice, however,
simulations also share the long relaxation times of exper-
imental random-field systems, and the subsequent
difficulties in determining static and dynamic properties.
These difficulties are exacerbated by finite lattice sizes,
which limit the time over which a simulation may be run
before the growing domains saturate the lattice.

In simulating the growth kinetics of the RFIM, the
standard procedure is to use a set of spins o; and static
fields h; on a lattice of size N, with the initial spin
configuration characteristic of the high-temperature
phase. A random configuration, corresponding to
T initial = o, is typical. The fields are randomly distribut-
ed from site to site, so that (k;)=0 and {h;h;)=h>5,;.
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A bimodal distribution, h; =+th, was used here, and by
Pytte and Fernandez and Chowdhury and Stauffer, but a
Gaussian distribution of fields was used by Gawlinski
et al. The spins are randomly chosen and subjected to a
flipping algorithm based on the RFIM Hamiltonian
H/J=— 3 o0;,— 3 ho,, (2.1)
{i,j) i
and representing a temperature 7 below the zero-field
critical temperature T. The Glauber flipping probabili-
ty is used here,

W-=E 1— tanh————

T ) (2.2)

1

where 87, is the change in energy if o; is flipped. This
process can be described as an infinitely fast “field-
cooling” process. Note that the temperature 7 and
random-field strength 4 are expressed in dimensionless
units of J/(Boltzmann constant) and J/(magnetic mo-
ment), respectively, so that 7°=2.27 in two dimensions
and & <1 is a small field strength. After the quench, the
growth of order is observed as a function of time, which
is measured in Monte Carlo steps per spin (MCS). A
large number R of these “runs” is made, each with a
different, noncorrelated set of initial spins and fields.
The quantities of interest may then be calculated with a
time-dependent ensemble average.

The domain size is determined by the relation

L(t):<ﬁ [2‘7,' ]2>1/d ,

1

which measures the fluctuation of the magnetization
(3, 0,:)=0, and corresponds to the structure factor at
zero wave vector. This formula was also used by Gawl-
inski et al., along with several other measures of the
domain size. Chowdhury and Stauffer used a slightly
different version of this formula, L=I(| ¥, 0, | )%,
where I =N'/? is the lattice size. The disadvantage of
this expression is that / becomes yet another parameter
in the simulation. Pytte and Fernandez took the entire
lattice to be the “domain” and compared its size with
the time for the growth to saturate the lattice; they also
studied the decay of single, predefined domains. When
using (2.3), L must be, in some sense, much smaller than
I to avoid finite-size effects. A useful “rule-of-thumb” in
this regard has been established?”?® which states that
such effects can be avoided if the growth is only allowed
to continue up to a point where

25,27

(2.3)

L=0.4] . (2.4)

When (2.4) is satisfied, any differences due to lattice size
are subordinate to the statistical error.

Using these methods, much of the RFIM’s low-
temperature phase diagram has been studied, from fields
as small as £ =0.1 to as large as A =4, and for tempera-
tures 0< T <1.27=0.56T°. The domain size has been
simulated for times of up to 10000 MCS, using a range

of lattice sizes 16 </ < 128; the number of runs typically
varied from 200 for the larger lattices to 800 for the
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smaller.

Most of this work was performed as low-priority back-
ground jobs on a small network of Sun Workstations
over the course of many months. On a Sun-3 computer,
which is approximately twice as fast as a VAX 780, 800
runs to 10000 MCS on a 16 lattice could be performed
in about half a day, whereas 200 runs on a 1282 lattice
would take close to a week. This requires some pa-
tience, but it puts the excess CPU cycles to good use,
while providing a local, flexible, and inexpensive alterna-
tive to supercomputers or special purpose processors.?’
This will be increasingly true as minicomputers such as
the Sun become more powerful and more widely avail-
able.

III. RESULTS

The basic characteristics of the RFIM can be seen in
Fig. 2, which shows the domain size as a function of
time for several field strengths at a temperature
T =0.63. It is immediately apparent that there is a wide
range of behavior, from the fast, t!/2 growth of zero field
to almost immediate equilibration in a disordered state
for the larger fields. The initial time period displays
very rapid growth as the domains coalesce, as was also
seen in Fig. 1. In the early-time regime, the fully formed
domains continue growing with a slower, random-field-
impeded expansion. This is followed by the
intermediate-time regime, with a possibly logarithmic in-
crease in domain size. For field strengths # X 1.7, the
onset of the late-time regime is also observable, when the
domains cease their growth and the final equilibrium
state is obtained. The latter becomes more easily visible
as the field strength increases, while the extent of the
early- and intermediate-time regimes is correspondingly
reduced. The growth thus breaks very naturally into
several parts; each of them shall be considered in turn.
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FIG. 2. The domain size L as a function of time at 7' =0.63,
labeled by the field strength A. There are 20 data points per
decade, providing essentially continuous curves.
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A. Initial growth and early times

For times t <4 MCS the domains are only beginning
to form and expand, and for A 1, the growth is approx-
imately independent of field strength. Under these con-
ditions, a small random field h; will simply appear as
another “‘spin” in the environment of o, rather than a
pinning force [cf. Eq. (2.1)]. This can be easily seen in
Fig. 3, where the spin—random-field correlation

n={oh;)/h (3.1)

increases over this time range as the spins partially align
with the local field. For larger field strengths, the
growth is noticeably reduced, as the spins are more like-
ly to follow their local random field than their neighbor-
ing spins. The growth is essentially nonexistent for
h >4, when the spins merely switch from their initial
random configuration to that of the random fields.

After this initial time period, the curves in Fig. 2
separate and become manifestly field dependent, as
curvature-driven growth commences, retarded by the
random fields. In Fig. 3, the spin-field correlation peaks
and then decreases somewhat as the spins begin to act
collectively as domains. The position of this maximum
is approximately independent of field strength, ¢ ., ~4
MCS. Throughout this time regime the growth is rela-
tively fast, especially for the smaller field strengths,
which continue to follow the t'/? law for some time. In
the limit of zero random field, then, it is the early-time
regime which reduces to the LAC growth law; the onset
of the intermediate-time regime is delayed to later and
later times.

It is here that the theory of Grant and Gunton!’
should be an appropriate description, since it is a gen-
eralization of the LAC theory of curvature-driven
growth.!®3% Their equation for the growth law in two
dimensions can be written in the form

[L(h,t)/L(0,2)]*= A —Bh*Int , (3.2)
h
4
T = 0.63
3
0.8 .
2.5
0.6 -
2
n
1.7
0.4 —
1.3
0.2 1
0.7
0.5
o R iennl vl vl vl ] 002
0.1 1 10 100 1000 10000

t

FIG. 3. The spin-random-field correlation 1 as a function
of time at T=0.63, labeled by the field strength A.
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where A =1—aT +bh", a, b, and B are constants, and
pu=2. If the data are expressed in this format, they
should then appear as a straight line when plotted using
a logarithmic time scale, as in Fig. 4. The data are rela-
tively noisy, because it is the quotient of two statistically
independent quantities. However, for each field strength
it can be seen that there is indeed a time range which is
approximately logarithmic, as indicated by the solid
lines. For A =1, the beginning of this time range is ap-
proximately the same as the peak in the spin-field corre-
lation 7. Its extent decreases with increasing field
strength, covering a very narrow range for 4 2 1. If the
Grant-Gunton theory is to hold, then, it must be in this
time range.

To make a quantitative comparison with (3.2), the be-
ginning and end of the apparent logarithmic interval can
be estimated, as in Fig. 4. This is obviously somewhat
arbitrary, since it is not clear exactly where the ‘“real”
interval lies. The method used here is to maximize the
interval while maintaining a good visual fit; the resulting
statistical fit is then perfect. Because of finite resolution,
there will always be a small amount of curvature at the
ends. This is much less than would be present, however,
if a statistical fit alone were used, since the errors allow
“good” fits to a much larger interval.

The amplitude of the logarithm term is found to be an
increasing function of field strength for 0<h £0.7. For
larger values of &, however, it is approximately constant.
This can be seen from the slopes of the lines in Fig. 4.
Over its increasing range, which was measured in inter-
vals of h =0.1, the amplitude can be fit by an algebraic
form as in (3.2), albeit somewhat poorly because of the
noise. The resulting values of B and p are shown in Fig.
5 for several different temperatures. The exponent is
consistent with a constant value p=0.8+0.1, but not
with the predicted value of 2. Grant and Gunton did
suggest the possibility, however, that u is not a universal
quantity, so that it might, in fact, have a value in the

:

obuud 4y 4
0.1 1 10 100 1000
t

10000

FIG. 4. The domain size L for nonzero random field relative
to the zero-field growth, [L(h)/L(0)]% as a function of time.
Several different random-field strengths A are shown, at a tem-
perature T=0.52. The data are plotted on a semilog scale to
show the intervals of approximately logarithmic behavior, indi-
cated by the solid lines.
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FIG. 5. The coefficient B and exponent p of the curvature-
driven growth law L(h)=L(0)( A —Bh*Int)!"?, for several
temperatures 7. The coefficient B is approximately constant
for T2 0.5, with a value 0.23+0.03 (indicated by a horizontal
line). The exponent w is constant for all temperatures shown,
with a value 0.77+0.05 (again indicated by a horizontal line).

lattice-based RFIM which is reduced from its value in
the continuum (where their model was derived). This is
in analogy to the lattice effects found in equilibrium by
Binder’ and described in the late-time section below.
Another apparent discrepancy is the coefficient B, which
is seen to be a decreasing function of temperature. Its
increase at lower temperatures may be due to the ‘““field
discretization” that occurs when using a bimodal distri-
bution of random fields, as discussed in the low-
temperature section below. A fit to (3.2) also yields the
quantity 4 =1—aT +bh*. Again, it is fairly noisy, and
over the range A 0.7 it does not have any noticeable
temperature or field dependence. However, it is approxi-
mately constant, with a value 4 =1.140.1; this is con-
sistent with its predicted value if a and b are small. For
larger field strengths, though, it is a decreasing function
of field.

Previous simulations of the RFIM (Refs. 25 and 26)
have been able to fit their data in some time intervals to
a power law L(z)~t% with a field-dependent exponent
a(h)<0.5. It has been pointed out'>?® that for small
fields, (3.2) will also be similar to a power law, which
may explain these observations. It is evident from Fig.
2, however, that any algebraic growth is necessarily lim-
ited in extent, since it otherwise would be a straight line
such as the zero-field curve.

In their simulation, Gawlinski et al.?* also attempted
to fit their data to (3.2) with p=2. They considered one
temperature 7'=1, four field strengths in the range
0.35h 0.8, and times of 500 MCS (5000 MCS for the
largest field strength). Although they were able to get
good individual fits within the stated errors, the resulting

values of the coefficient B were found to depend on the
field strength, indicating, as here, that u=2 is not con-
sistent. An analysis of their published values of B, how-
ever, actually reveals an inverse dependence on h?, ie.,
the logarithmic amplitude BA* was found to be approxi-
mately constant with a value 0.12. As mentioned previ-
ously, a constant amplitude is also seen here, but only
for larger field strengths. However, it does have a simi-
lar value at this temperature. The smaller value of the
“crossover” field strength may be due to the use of
different random-field distributions, which would suggest
that the Gaussian distribution used by Gawlinski et al.
is somewhat better at reducing the growth than the bi-
modal distribution used here. A more mundane possibil-
ity is that their data were fit over too wide a time range,
which would have the effect of reducing the amplitude
measured at the larger field strengths (cf. Fig. 4). A
third possibility is that statistical fluctuations occurred
in their data; this would prevent meaningful conclusions
with so few data points.

Even with the larger number of data points used here,
the noisiness apparent in Fig. 4 makes the analysis
difficult. While the time dependence is appropriate over
a certain range, it is clear that the exponent u is not con-
sistent with the predicted value of 2. The data therefore
provide only highly qualified support for the Grant-
Gunton theory.

B. Intermediate times

As the domains expand and their interfaces flatten,
the driving force per unit area will decrease.'® At the
same time, the interfaces are roughened (over a smaller
scale) to take advantage of the local fluctuations in the
random fields; this results in a constant “pinning” force
per unit area.!® Eventually a crossover occurs, and con-
tinued growth becomes dependent on thermal fluctua-
tions to overcome the random-field-induced barriers.!!> 12
The rapid domain expansion of the early-time regime

20 ~

10

ceees?
|

PENWETITY AWy | L iug

10000

o Lud
0.1 1 10 100 1000
t

FIG. 6. The domain size L as a function of time at 7' =1.11,
for several field strengths 4. As in Fig. 4, the intervals of ap-
proximately logarithmic growth are indicated by solid lines.
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thus gives way to a much slower growth. This can be
more easily seen by plotting the data using a logarithmic
time scale, as in Fig. 6. It is then apparent that, for each
field strength, there is a time range where the growth is
approximately logarithmic, as indicated by the solid
lines. This region is sandwiched between the fast, early-
time growth and the final approach to equilibrium, and
it becomes larger and more visible with decreasing field
strength.

The theories of Villain!! and Grinstein and Fernan-
dez'? were independently developed to describe this
intermediate-growth regime, by estimating the energy
barriers which pin an interface in place. It is then the
time necessary to cross the largest barrier, ¢ ~eE" /T, that
limits the overall growth. To compare with the results
reported here, the analysis of Grinstein and Fernandez is
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They predicted that for low temperatures the domain
size L would increase as
L~2Th "In(t/7), (3.3)
with v, =2. Villain’s result, derived in the continuum,
differed only in the numerical factor of 2, suggesting that
it is a nonuniversal feature of (3.3). He also predicted
that, in the critical region, the exponent would be small-
er, v, 2 1.3! The direct temperature dependence of (3.3)
indicates the important role of thermal fluctuations in
producing the growth, in contrast to the equilibrium
state, where increasing temperature will reduce the or-
dering.
As in the preceding section, a quantitative comparison
can be made with (3.3) by maximizing the logarithmic

most appropriate, as they used a discrete-lattice model interval, while maintaining a good fit to L ()
and explicitly considered the two-dimensional case. = A In(t /7). The amplitude A can then be extracted,
T T T 12 : T : . ' . .
(a) X h=0.4 (b)
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FIG. 7. The amplitude A4 of the logarithmic growth L (¢)= A4 In(¢t /7): (a) As a function of field strength h. The data are scaled
by temperature to make them more easily visible. For each of the temperatures indicated, the solid line is a best fit assuming a
slope of —2. (b) As a function of temperature T. Best-fit straight lines are shown for several different field strengths. (c) Multiplied
by h? /2T, for several temperatures and field strengths. A constant value of 1 is expected.
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and compared with the predicted value 2T /h2 The
dependence on A is shown in a log-log plot in Fig. 7(a),
for several different temperatures; in each case, the
displayed lines have slope —2. Figure 7(b) shows the
dependence on T, for several different field strengths; as
predicted, good linear fits can be made. Finally, while
one would not be surprised if the constant factor 2 was
incorrect, it is interesting to note that the product
Ah?*/2T is, indeed, approximately equal to one for a
wide range of temperature and field strength, as seen in
Fig. 7(c). In total, therefore, the results shown in Fig. 7
are strong evidence for (3.3).

Grinstein and Fernandez also obtained an expression
somewhat different from (3.3) to describe small domains,
L 5(4/h)?, which can decay more rapidly,

2
l]n(t/‘r) (3.4)

L~
2h

This should describe an earlier-time regime than (3.3),
when the ordering is dominated by such small domains.
To compare with (3.4), the analysis technique used previ-
ously can be applied to L'/, Again, intervals can be
identified that exhibit a In’*s dependence. To a certain
extent, these intervals overlap both the earlier-time re-
gime described by the Grant-Gunton theory and the
later-time regime of (3.3), indicating that the intervals
used are somewhat too large. It also shows how subtle
the crossovers are between the different regimes. The
measured amplitude is indeed found to have an 4 depen-
dence consistent with (3.4), for field strengths in the
range 0.25h =1.5. However, its temperature depen-
dence is not consistent, but is better fit by L < T, as in
(3.3). Also, if this temperature dependence is used, the
numeric prefactor is found to have a value 0.34+0.02
rather than J. A better description of the data in this
regime is therefore given by L =[(T'/2/3h)1Int]?, in par-
tial disagreement with (3.4). (This expression will also be
considered in a somewhat different context in the low-
temperature section below.)

The simulation of Pytte and Fernandez?* was devoted
to the study of (3.4), using a single temperature 7°=0. 1
and several field strengths in the range 0.01<h <0.4.
The measured equilibration times were as large as
~ 10000 MCS. They found their results to be consistent
with both the time and random-field dependencies, as
here. Because they only used a single temperature,
though, they could not examine the 7 dependence of
(3.4). Chowdhury and Stauffer’® also compared their
Monte Carlo results to (3.3) and (3.4), but examined only
the time dependence, up to r~1000, at T=1.5 and
h ~1. For later times they found the growth to be con-
sistent with (3.4), but apparently did not consider long
enough times to be able to compare with (3.3). Both of
these simulations included three-dimensional studies as
well, which were found to be very similar to the two-
dimensional results, as predicted by Grinstein and Fer-
nandez.

Along with these two simulations, the Monte Carlo
data here are very supportive of the time- and random-
field dependence of the small-domain relation (3.4). The
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data are not consistent, however, with the temperature
dependence of this relation. On the other hand, the sim-
ple logarithmic growth law (3.3) is found to describe
very well the growth of the ordering, in the appropriate
time range. The results here are the first numerical sup-
port it has received.

C. Low temperatures

The results presented so far have avoided low temper-
atures, 7 =0.35. This is because of a freezing effect
which delays the onset of the intermediate-growth re-
gime, thereby making it difficult to observe in the finite
amount of time available to Monte Carlo simulations.
This is clearly represented in Fig. 8, which shows the
domain growth for several different temperatures at a
single field strength A =0.5. All of these curves follow
the same path for times ¢ S4 MCS, which indicates that
the early-time growth, when the domains are forming
and then roughening, is not only field independent, as
seen in Fig. 2, but temperature independent as well.
After this time, however, the domain walls have maxi-
mally roughened, and thermal fluctuations are required
to overcome the random-field-induced pinning centers,
as described in the preceding section. The zero-
temperature domains are therefore completely frozen in
a metastable state. At small but finite temperatures, the
domains are also frozen at the same size, until some later
time when the thermally induced growth sets in and the
domains resume their expansion.!> The subsequent
growth appears much the same as at higher tempera-
tures, although it is difficult to make this quantitative be-
cause of the large time scales involved. The transition to
this intermediate-growth regime is relatively rapid, once
large enough thermal fluctuations arrive to push the sys-
tem out of the frozen state. This entire process can also
be seen in Fig. 1, which shows an example of the domain
growth at T=0.10; as in Fig. 8, there is little activity for
10 =t = 1000.

The maximum size L, of the frozen domains was cal-
culated by Bruinsma and Aeppli'® by comparing the
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FIG. 8. The low-temperature domain growth as a function
of time at 4 =0.5, labeled by the temperature 7.
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curvature-induced driving force!® proportional to L ~!
with the random-field pinning force. The result is

Ly~h—4/06-d (3.5)

which is independent of temperature and has the same
form as (1.1). When d =3, the exponent is 2, consistent
with experiment,'® but when d =2, (3.5) predicts a small-
er value, %, which does not adequately describe the ex-
perimental data.!'® By generalizing the analysis of Vil-
lain!! to include the effects of curvature, Nattermann,'?
and Andelman and Joanny'* were also able to derive
(3.5) for low temperatures, where the effects of thermal
fluctuations could be ignored. As pointed out by Natter-
mann, this indicates that after a quench to low tempera-
ture, the domain size will initially be the same as at
T=0, and then begin to increase after a time
t ~ exp(const/T). This is exactly the effect seen in Fig.
8. Nattermann also considered the effects of a discrete
lattice, and found a low-temperature result correspond-
ing to the derivation of Grinstein and Fernandez, viz.,

Ly~h %84, (3.6)

In contrast to (3.5), this result is consistent with experi-
ment in two dimensions, but not in three.

The zero-temperature state seen in Fig. 8 was studied
in a previous simulation®? in both two and three dimen-
sions, and it was demonstrated there that, for h =2, a
completely ordered state has a lower energy. Hence,
this state is indeed metastable and does not represent the
true ground state of the system. It was also pointed out
that a bimodal distribution of random fields will give rise
to a discretization effect at low temperatures, such that
the growth kinetics is identical within certain ranges of
field strength, as seen for L in Fig. 9. While (3.6) would
be the appropriate theory in this regime, this effect
makes direct comparison impossible. However, a curve
following (3.6) is shown in Fig. 9 to indicate the gross
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FIG. 9. The metastable domain size L, at zero temperature,
as a function of field strength h. The bands of constant size do
not include their endpoints. The dashed line is the curve
14+4.3n72

similarity. This discretization effect has not been con-
sidered by any theories, as they usually assume a Gaus-
sian distribution of fields. However, together with the
temperature independence at early times, it may be relat-
ed to the freezing behavior observed in experimental sys-
tems at very low temperature, where the scattering in-
tensity is found to be insensitive to changes in random-
field strength or temperature.!8—20:32

When the frozen state begins to “melt,” it is the
remaining small antiphase droplets and barriers between
larger domains which will decay away first, as seen in
Fig. 1. These will be smaller than the typical size
L,54. As discussed by Grinstein and Fernandez,'? a
small domain L will disappear in a relatively ‘“monoton-
ic” fashion, since the time scale for overcoming field bar-
riers,

to=7oexp(2L'?h /T) , (3.7)

is shorter than the time scale for an unfavorable increase
in surface area ~ exp(2/7). Equation (3.7) should then
describe the time at which the frozen state destabilizes.
Estimating ¢, from the data is somewhat difficult, since a
small fluctuation can change its apparent value by a
significant amount. A reasonable fit can still be found
over the range 4 <1, however, given by

to=(0.06+0.02) exp[(1.5+0.1)h /T .

Unlike the preceding section, where (3.7) was used to de-
scribe the overall growth of domains as the smaller
domains decayed away, the temperature dependence is
found to be appropriate here. The numeric factor
1.54+0.1 does not compare particularly well with 2L /2
(since L >1), but this may very well be due to a sys-
tematic bias in the location of ¢;,. The derivation of (3.7)
also does not include detailed analysis of the geometry of
the decaying droplets, which might result in a difference
in numeric factors.

Although the rest of the description of the low-
temperature regime is qualitative, it is supportive of the
physical principles underlying the Bruinsma-Aeppli
theory of frozen domains. The reasonable fits to (3.7)
give further evidence for the importance of thermal fluc-
tuations in producing the subsequent growth, in agree-
ment with Nattermann.

D. Late times

In the presence of thermal fluctuations, the domains
will continue to increase their size, but (in two dimen-
sions) they eventually reach a point beyond which it is
energetically unfavorable to expand. The local concen-
trations of random fields which have guided the growth
of the domains do not allow any further reduction in
their interfacial energy.’~’ The system is then in a
disordered equilibrium state, which is observable for the
stronger fields in Fig. 2. In contrast to the
intermediate-time regime, the temperature now has a
disordering effect. This crossover in the temperature
dependence is displayed in Fig. 10, which shows the
domain growth and equilibration for several different
temperatures, at a single field strength. From these two
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FIG. 10. The domain size L as a function of time at A =1.5,
for several different temperatures 7. The crossover to the equi-
librium state is shown, where the temperature has a disorder-
ing, rather than ordering, effect.

figures it can be seen that the equilibrium domain size

L., and the equilibration time ., are strongly decreas-

ing functions of both temperature and field strength.
Continuum theories of the equilibrium RFIM (Ref. 6)

predict that the equilibrium domain size in two dimen-

sions has an exponential dependence on the field
strength,
L., ~ exp(const/h ). (3.8

The theory of Grant and Gunton,!? Eq. (1.3), even
though it is not supposed to be applicable in the late-
time regime, makes a similar but more detailed predic-
tion for the maximum domain size,

teqx exp[(4 —BT)/h%],

(3.9
L. htééz ,

where 4 and B are constants. For the lattice-based
RFIM considered here, the appropriate analysis is that
of Binder,” who reproduced the result (3.8) when
thermal fluctuations could be considered irrelevant,
e T but predicted that otherwise the & depen-
dence would be modified; in particular,

T1/362/3T/h 4/3) .

L, < exp(const X (3.10)

€q

The argument in (3.10) is a decreasing function of tem-
perature for all T < 2.

These theories generally assume that the random-field
strength is small in some sense, whereas the equilibrium
state seen in Figs. 2 and 10 is only visible for relatively
large fields. A reasonable comparison can still be made,
however, using the available data. The logarithm of the
domain size L., is shown in Fig. 1l(a) for several
different temperatures in the range 0.6 7 =1.3. For
small enough field strengths, # 2, a good fit can be
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made to the field dependence of (3.10): The lines in Fig.
11(a) all have slope —%. For h X2 the data have a
larger slope, with a value X 2. This crossover is con-
sistent with Binder’s general discussion of thermal
effects, although it occurs at a larger field strength than
might be expected.

The temperature dependence of InL., is shown in Fig.
11(b). The data have only a qualitative similarity to the
temperature prefactor in (3.10), being much better fit (for
the smaller field strengths) by a decreasing linear func-
tion, as in (3.9),

h*InL ., =(4.0%0.1)—(0.7+0.1)T . (3.11)

The magnitude of (3.11) is consistent with that of a
transfer matrix analysis® of the equilibrium domain size
at a much lower temperature 7 =0.01, where it was
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FIG. 11. The logarithm of the equilibrium domain size L.4:
(a) As a function of field strength h. The data are scaled by
temperature to make them more easily visible. For each of the
temperatures indicated, the solid line is a best fit assuming a

4. (b) As a function of temperature T. Best-fit

slope of —3.
straight lines are shown for several different field strengths.
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found that L. = exp(3.4/h*). For the larger field
strengths, the data are approximately independent of
temperature, which is indicative of its subordinate role
in the disorder.

The equilibration time ., can also be extracted,
defined here as the time after which the domain size is
constant within the error. While it is not as difficult to
pinpoint as the melting time ¢, in the preceding section,
the data are still very noisy, as pictured in Fig. 12. It is
obvious, however, that teq is strongly field dependent,
and it is natural to expect that it has a form such as
(3.9), but with an h ~*/3 dependence. Marginal fits can
indeed be found, as indicated by the solid lines; again,
the coefficient of & ~*/3 is, approximately, a linearly de-
creasing function of temperature. The equilibration time
does not appear to have a simple relation to the equilib-
rium domain size, however, as suggested by (3.9).

If these equilibrium results are extrapolated to small
values of 4, it is easy to see that very large domain sizes
and extremely long equilibration times result, as in ex-
perimental systems. At A =0.5 and 7T =1, for example,
L.,=5000 lattice constants and f,,~10'® MCS. To
reach this final state, one run on a Sun-3 computer
would take 10'! years; even a Cray computer would not
be much help here. But even though both L., and ¢,
are relatively large, the latter dwarfs the former; an in-
crease in L., by one lattice constant would require
~10'2 MCS. On a linear scale this growth would be
effectively unobservable.

An exponential dependence of L., on field strength, as
found here, is a hallmark of the lower critical dimension
of the RFIM.’~7 These results, therefore, provide addi-
tional numerical support for a lower critical dimension
of two. They are also the first evidence for Binder’s

modification of the field dependence of L, h*—h*/>.
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FIG. 12. The equilibration time ¢.5, as a function of field
strength h for several different temperatures. The solid lines
are fits to Eq. (3.9) using an exponent of % instead of 2.

IV. SUMMARY AND CONCLUSIONS

This paper has attempted to provide a comprehensive
view of the growth and equilibration of the RFIM by
bringing together the relevant theories and giving them a
firmer foundation through numerical simulation. As
seen in the preceding sections, the RFIM exhibits a wide
variety of behavior, each of which occurs in a restricted
range of time, temperature, and random-field strength.
A relatively large body of data is necessary, therefore, to
get an overall picture and identify the appropriate re-
gions on which to focus. It is otherwise difficult to make
definite statements.

The RFIM’s relaxation naturally breaks into several
distinct time regimes. The boundaries between these re-
gimes are not particularly well defined, but in general
they are decreasing functions of field strength. So, even
though slow equilibration is an inherent feature of the
RFIM, the later-time regimes can still be observed by
considering larger field strengths. In each case, howev-
er, there is also a maximum field strength beyond which
the appropriate theory will no longer apply. For exam-
ple, the initial growth involves the formation of domains,
and it is approximately independent of both temperature
and field strength for A 1. Then curvature-driven
growth sets in, which is weakly consistent with a
modified form of the Grant-Gunton theory'® if the field
strength is not too large, # =0.7. This is followed by a
slow, thermally produced growth, the first stage of
which is only partially described by the theory of Grin-
stein and Fernandez, for field strengths in the range
0.25h 51.5.!2 The second stage of the growth shows a
much closer correspondence to their theory, and to that
of Villain,!! in the range 0.4 = h 2. Ultimately, a cross-
over to the final equilibrium state occurs, with the equi-
librium domain size consistent with the field dependence
predicted by Binder’ for 1.15h S2.

There is a similar limitation on the ranges of tempera-
ture that can be considered. At very low temperatures,
the Bruinsma-Aeppli freezing effect!® occurs, delaying
the onset of the equilibration process. Moderately high
temperatures, 7 R 0.3k, must therefore be used. At the
other extreme, the RFIM’s behavior can be expected to
be very different near the critical temperature 7, and
this region has been deliberately avoided.

Most of the theories considered here were derived as-
suming small values of temperature and field strength.
It is not unexpected, however, that they would be applic-
able in a larger region of the phase diagram. Although
each of these theories has been verified in only a restrict-
ed range of the parameters, the lower limits are due to
the prohibitively long relaxation times involved. While
extrapolations must always be performed cautiously, it
seems reasonable, therefore, that they will continue to be
valid at lower temperatures and field strengths as well.
In contrast, the upper limits typically result from a
breakdown in the theories; the data are simply no longer
consistent with their predictions.

Within these confines, the degree of support for the
theories has varied from very close agreement with the
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Villain!! and large-domain  Grinstein-Fernandez
theories!? to only qualitative agreement with the theories
of Bruinsma and Aeppli'® and of Nattermann.'’ Often,
one aspect of a theory matched the data while another
part did not, as with the field and temperature depen-
dence, respectively, of the Grinstein-Fernandez descrip-
tion of small-domain growth, and of Binder’s’ expression
for the equilibrium domain size. Again, this may be due
to an unsuitable range of parameters, and better agree-
ment may be found, for example, at lower field strengths.
Finally, while the data were inconsistent with some pre-
dictions, such as the value of the random-field exponent
in the Grant-Gunton theory of curvature-driven
growth,!® the differences were often qualitatively under-
standable in terms of the lattice or field distribution
used.
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