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Surface properties of liquid 'He and He: A density-functional approach
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We present a comparative study of the free surface of 'He and He at zero temperature using
phenomenological density functionals. The functional for each fluid is adjusted on experimentally
known properties; the surface profile is then obtained variationally. Simple analytical formulas are
derived for the relevant quantities characterizing the surface. Our results are compared with other
available theoretical calculations.

I. INTRODUCTION

Surface properties of quantum liquids have constituted
a field for numerous interesting investigations, both ex-
perimental and theoretical. ' In He and He, the surface
tension is known over a range of temperatures (see, for
example, Refs. 2 and 3 and references therein); however,
the density profile of the free surface of liquid helium
remains to be determined experimentally.

The free surface of liquid He has been the object of
several theoretical studies. Some attempts have been
made to develop theories for the wave function of the
ground state. The early relevant works in this direction
are by Shih and Woo, and Chang and Cohen. Recent-
ly, more sophisticated approaches to inhomogeneous
Bose systems have been proposed. ' In particular, the
results for the binding energy of He clusters obtained in
Ref. 10, carrying out variational Monte Carlo calcula-
tions, extrapolate well to the experimental values for the
volume and surface energy of liquid He. In the case of
large clusters, the above calculations are then expected
to provide a realistic description of the free-surface
profile too. Alternative approaches to inhomogeneous
Bose systems have been developed using density-
functional methods. " ' Ebner and Saam (Ref. 14 and
references therein) have stressed the importance of the
surface zero-point motion in renormalizing the surface
properties of liquid He. These effects can be taken into
account by including nonlocal components in the energy
density functional as discussed in Ref. 13. It is interest-
ing to note that when such renormalization effects are
properly included in the density-functional approach, the
resulting predictions for the surface properties turn out
to be in quite good agreement with the ones given by mi-
croscopic calculations; in particular, values of 6—7 A are
predicted for the surface thickness. ' '

The free surface of liquid He has received much less
attention in the literature. This is due to the enormous
difficulties in carrying out microscopic calculations in in-
homogeneous Fermi systems. The first microscopic cal-
culations using the correlated basis functions were per-
formed by Buchan and Clark, ' Mackie and Woo, ' and
Senbetu and Woo. ' More recently, accurate variational

Monte Carlo calculations of He clusters containing up
to 240 atoms have been made. ' ' ' ' The surface tension
extracted in these works, by liquid-drop fits to the calcu-
lated binding energies, agrees well with the experimental
value. Density-functional approaches have been exten-
sively used to investigate the surface properties of Fermi
systems (metals, and atomic nuclei ) However, only
recently such methods have been applied to the study of
the surface of liquid He. ' In particular, the results
of Refs. 24 and 25 for He clusters agree well with the
findings of Ref. 10 concerning both the binding energies
and the density profiles.

It is the purpose of the present work to develop a
unified density-functional approach to treat the free sur-
face of liquid He and He. The density functional we
use is of phenomenological nature and has been already
employed in an extensive way to investigate the proper-
ties of atomic nuclei. The same approach can be gen-
eralized to the time-dependent case to investigate the
propagation of collective phenomena. An application to
the study of surface ripplons is given in Ref. 26.

The explicit form of the energy density functional is
discussed in Sec. II. Our choice includes local as well as
nonlocal components, the latter being crucial for a
correct description of the surface properties. We also
discuss the relations between the kinetic-energy density
and the diagonal density used to investigate the surface
of He and He. In Secs. IIIA and IIIB we derive
Euler-type equations for the density of He and He, re-
spectively. After having adjusted the surface-free pa-
rameters entering the energy functional to reproduce the
surface tension, we determine the surface profile of both
isotopes, and find useful relations between the surface
thickness, the surface tension, and the bulk compressibil-
ity. Our results are compared with other recent theoret-
ical calculations of the surface of quantum liquids. Fi-
nally we draw our conclusions in Sec. IV.

II. DENSITY FUNCTIONALS

Our starting point lies in the assumption that the en-
ergy of the system can be written as a functional of the
one-body density matrix. This is supported by a well-
known theorem due to Hohenberg and Kohn, which,
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be derived usin a hg phenomenological interaction of~ ~ ~
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with =0.041 Ap, —.041 A; it was shown in Ref. 27 that E . (2)
accounts very accurately for the variation of the specific
heat with pressure. In the case of liquid He, there is no
su cient c ear experimental information o th 1n e vaue of

e effective mass, so we have chos
e kinetic-energy density r(r) requires different treat-

ments for the cases of He and H d he, ue to t e different
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ing the functional. In the present work h ll
o owing form for the expectation value of the energy in

a time-reversal invariant state at zero temperature:
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medium.
In the case of He, the system will be discussed as a

ose condensate; then the kinetic ener a
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where the indice 0 indicates zer-o-pressure i.e., satura-
0

tion) quantities. This is done in Fig. 1(a). One sees that
ow ensity, w ere theoth curves differ essentially at 1 d

inetic energy for He is dominant over the attractive
force up to a ratio p/po-0. 15. For higher densities the
potential energy becomes dominant, also because the in-
crease of the effective mass reduces th e contri ution of
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FIG. 1. a PloPlot of the energy per particle for liquid 'He
(dotted curve an) ~ He (solid curve) as a function of the density
using dimensionless coordinates. Th '

d 0e in 1ce re ers to satura-
tion quantities. (b) Plot of the energy per particle f l 'd

4
e or iqui

mean distan
e o e curve) and He (solid curve) as a functi f huncion o t e

mean istance between the atoms relative t th l lo e sca ing ength

30.
e ned in Sec. I. The thin curve is taken from F' 1 f R f.ig. o e .

Let us now turn to the other terms entering Eq. (1);
the term in b is attractive and fl hre ects t e attractive
character of the interatomic for t 1rce a arge istances, i.e.,
at low density of the medium. Th

~ ~ ~

e c term is repulsive,

~ ~ ~

as is the interaction at short distance d 't d, an it ominates
at high densities. The coefficients b, c and
mined so amine so as to reproduce the equilibrium density, the en-
ergy per particle, and the compressibility I(: of the uni-
form liquid.

The nonlocality term in (Vp) reflects the re ulsive in-
teraction at the sura e surface, and is chosen to reproduce the
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n a zero temper-experimental value of the surface tension at

si ere in previous works on the free surface of He, in-

ace ension of the zero-point energies of the
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per particle for liquid He and H
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the kinetic energy to the total energy of liquid He;
indeed, for p/po ~ 1 both curves are almost identical.

The differences between the two curves below satura-
tion density persists if one uses a scaled abscissa, as pro-
posed in Ref. 30, in order to exhibit a universal binding-
energy —distance relation. Let us introduce the in-
compressibility of the liquid as

1 5 2 5(E/N)
Kp $p Qp

(5)

(it has the dimension of an energy); the authors of Ref.
30 introduce a scaled abscissa a* by

r —roa*=
I

(6a)

where r is the interparticle distance at the density p, ro
the equilibrium distance, and l a length scale defined as

(E /N)0
I =ro (6b)

9/Epo

E =eN+ f (&—ep)d r . (7)

The resulting curves are plotted in Fig. 1(b), where we
also show for comparison the curve presented in Fig. 1

of Ref. 30, representing the binding-energy —distance re-
lation for molecular and metallic systems. Although at
short distances the scaling accounts satisfactorily for the
small differences seen above saturation density in Fig.
1(a), the effect of the different statistics obeyed by liquid
He and He shows up clearly for a* &0. The scaling

length (6b) accounts for the fact that different physical
systems have different compressibilities; however, the
relative variation of K with density (related to the
Griineisen constant) may also be quite different for vari-
ous systems, and indeed we think that this fact explains
the differences seen in Fig. 1(b) between the curve of Ref.
30 and the curve that we obtain for He. The value of
the ratio of surface-to-volume energy is partly related to
the same question. The value proposed in Ref. 30
(=0.82) does not apply for He or He, quantitatively.
This ratio =2.4 for He and =3.4 for He (=1.2 for
atomic nuclei). We shall indeed derive below a relation
between the compressibility, the surface tension, and the
surface thickness. Such relations have already been in-
vestigated in the literature.

We now turn to the description of the semi-infinite
medium. Starting with a finite system with spherical
symmetry and taking the limit N~ ~, we shall define in
a general way the surface, curvature, etc. contributions
to the total energy. Due to the saturating character of
the interaction, one can isolate the contribution to the
energy of the surface; one subtracts from the total ener-
gy a volume contribution equal to the energy the system
would have if the energy density per particle kept a con-
stant value equal to its value e in the center,

o = lim (E —eN)/5 = f (&—pp)dz .
S~ oo

(10)

The semi-infinite profile is thus determined by the
one-dimensional Euler equation

MV

6p
=p

In the N~~ limit, the equivalent sharp radius R, is
such that

f [po —p(z)]dz= f p(z)dz .

Introducing the radius constant ro,
' 1/3

3

4~po

(12)

the surface energy coefficient is given by

a, =4nroo. .2 (13)

From the knowledge of p(z), one can calculate the cur-
vature energy coefficient a, and the constant term ao as

a, =8mro f + (&—ep)z dz, (14)
+ oo 2a0=4m (&—ep)z dz . (15)

III. SURFACE PROPERTIES

A. Liquid 'He

Inserting Eqs. (2) and (3) into (1), one gets for the en-
ergy density

&(p, Vp)=h (p)+ P +d, (Vp)'+d, p(Vp)',fi ( Vp)
2m p

'2
g2

& (p)=
2m

1—
pc

&p + p+ p2 2

and a new variable z =r —R, ; Eq. (7) takes the form (for
a spherical geometry)

E =eN +4', f (&—ep)dz
S

+8nR, .f (A —ep)z dz
S

+4~ —ep z dz . (9)
S

The surface energy, the curvature energy, and the con-
stant term (independent of R, ) appear as surface mo-
ments of the surface energy density &—ep.

In the limit N (or R, )~ oo, the central density tends
to the saturation density po, and e tends to the saturation
energy of the uniform medium (E/N)0=@, which is sta-
tionary with respect to po. Hence, in this limit, minimiz-
ing the energy amounts to minimizing the surface ten-
sion, defined as

N = 4~R, p, , (8)

Let us introduce the sharp equivalent radius R„related
to the central density by

m p,

P—25
d2 —

22m p
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He 4He

TABLE I. Values of the parameters entering the energy
density functionals.

TABLE III. Density of semi-infinite medium, relative to sat-
uration density po, as function of distance across the surface.
The origin is taken at half-density.

b (KA)
c (KA )

r
p, (A ')
d (KA)

—6.8300)& 10
1.405 057 && 10'
2. 1

4.06 X 10
2.222 ~ 10

—8.888 10)& 10~

1.045 54 && 10'
2.8

2.383 x 10

The Euler equation (11) reads as

dh fi'
~

p' 2p"
dp 2m p p

—2d, p" —d~(p' +2pp")=p .

(17)

This equation, after multiplying by p', can be integrat-
ed once to yield

$2 &2

h (p) P —d, p' d2 pp —=pp
2m p

OI

z(A)
—11
—10
—9
—8
—7
—6
—5
—4
—3
—2
—1

0
1

2
3
4
5

6

'He

0.990
0.985
0.978
0.967
0.952
0.930
0.898
0.853
0.793
0.713
0.615
0.500
0.376
0.256
0.150
0.071
0.023
0.004

4He

0.997
0.994
0.991
0.985
0.976
0.960
0.936
0.897
0.839
0.755
0.640
0.500
0.346
0.201
0.089
0.025
0.004
0.001

dp
dz

1/2
h (p) —p

(A'/2m)P+d, +d, p
(18)

r

I IpI = I F(p)+G(p) —pp dz

The integrability of Eq. (17) is due to the fact that the
variable z does not appear explicitly in the functional;
Eq. (18) can be interpreted using the following analogy:
the functional which is being minimized is of the form

2 2dt p d2(p +2pp

whose asymptotic value is just

(2O)

Equation (18) can now be solved numerically. The re-
sult is given in Table III and shown in Fig. 2, where we
also plot the mean field

U(z) = 5A d A'

&(p)+b + V c I 1+yI2+/ (1+ j

5P dp 2m *(p) 2

I Ip I can be considered as an action integral for a
dynamical system of a point particle in a potential

pp F(p), wh—ere p represents the position of the particle
and z represents the time; the mass of the particle de-
pends on its position and is given by m (p) = —,'G(p). The
Euler equation (11) is formally identical to the Lagrange
equation obtained from I I p I, and Eq. (18) is just
equivalent to the conservation of energy.

Using Eq. (18), the surface tension can be written as
1/2 1/2

h (p)
CT =2 f3+dt p+dpp —p dp

0 2' p

(19)

Equation (19) does not require the knowledge of the den-
sity profile p(z). It can thus be used to fix the still un-
determined coefficient d, so as to reproduce the experi-
mental value of the surface tension (see Tables I—II).

d~
U( —oo ) =p — „=@-

2m* dp 2m

oQ

C3

1 —
—,apo

po

pc

(21)

lO

TABLE II. Bulk and surface properties at saturation, ob-
tained using the parameters of Table I.

tv =5

po (A )

E/N (K)
1/Kpo (K)
o. {KA )

He

1.6347 && 10'
—2.49

12.1

0.113

4He

2.1836)& 10~
—7.15
27.2

0.274

z (A)
FIG. 2. Surface profile of liquid He and the corresponding

mean field [Eq. (20)j. The origin is taken at half bulk density.
0

The equivalent sharp radius R, is —0.43 A.



36 SURFACE PROPERTIES OF LIQUID 'He AND He: A. . . 8373

We find that the surface thickness t 1Q 9Q defined as
the distance separating the points where the density has
decreased by 10% and 90%, is equal to 8.3 A. This
value is in excellent agreement with the calculation of
Ref. 10 on large clusters of He using the interatomic
Aziz potential with correlated wave functions. We also
find that the skewness of the density profile is large.
This property can be understood as follows. From Eq.
(16), it appears that the density reaches exponentially its
asymptotic bulk value,

d 1

]5po (1—,'r),
where I is related to the Gruneisen-like constant G,

dv

v~ dp

[v, denotes the sound velocity &I/(mKP)] by

I =(26 —4)/3 .

(28)

(29)

(30)

P«) Po-
cc exp(z /a;„),

po
(22) By use of Eq. (23) one gets a simple relation between cr,

E, a;„, and I,
with

1/2

'"
(1 —'r) .

15 K
(31)

Po ~+ ) Po+ 2Po2m

=(2') )'i po . (23)

Next we have calculated the curvature coefficient a„
which we find equal to 5.5 K. Collecting the different
coefficients, we can write a mass formula for He clusters
as a function of the number of atoms N,

E =a„N +a,N +a,*N' +ao
The outward exponential falloff of the density is

governed by the chemical potential p,
poa

1

(32)

Z
p(z) cc exp

aout

P
aout =

2m p

1/2

(24)

(25)

p(z) = po

[1+exp(z /a, „)]
(26)

The surface thickness t)o 9o resulting from Eq. (26) is
given by

Numerically, one finds a,„=2.37 A (which would cor-
respond to a surface thickness of =10 A) and a,„,=0.42
0

A. The surface profile is thus highly nonsymmetric
around the inflexion point of the density distribution.
[The true exponential decay of the density is asymptoti-
cally governed by Eq. (25) with P= —,', rather than with
the value P= —,', used in the present work. However, this
is true in the outermost region of the tail, which is not
relevant for the calculation of the surface thickness. ]

The above results suggest the following approximate
shape for the density profile in liquid He:

In this case, the energy density reads

~(p, Vp) =h (p)+ — +d (Vp)',1 (Vp)
2m 4 p

2+ p) 2+)')
2 2

(33)

The Euler equation, integrated once as in Eq. (18),
reads

where a„=(E/Ã)o represents a volume energy.
The constant term ao is the sum of ao, which we find

equal to 8.6 K, and of several corrections from compres-
sibility effects. These corrections cannot be calculated
with enough accuracy, and it is more reliable to adjust
ao to calculated clusters. The value ao ———19.8 K was
found in Ref. 25.

Finally, in order to evaluate the importance of the
zero-point surface motion, we have set to zero the
coefficient d in Eq. (1). The resulting value for the sur-
face tension is can =0.0308 KA, and for the surface
thickness it is t =2. 15 A; hence both quantities are re-
duced by a factor of almost 4. The curvature energy is
reduced to 0.58 K (instead of 5.5 K).

B. Liquid He

101/v
t ]o 9o =a;„ ln ()0) v—

9

(27)
1 p'

2m 4 p

and the surface tension can be written as

(34)

We find that with the exact value of a;„and a value of
v=2. 8, Eq. (26) reproduces well the self-consistent re-
sult. Equation (26) clearly shows that due to the large
value of v, the surface thickness is merely determined by
the value of a;„.

A useful approximate expression for o. can be derived
if one uses a cubic expansion of h (p)/p around satura-
tion density. The result is

1/2 1/2

~=2 f — +dp —p dp.1 fi h (p)
o 42m p

(35)

The value of d which allows us to reproduce the ex-
perimental surface tension is given in Table I. Equation
(22) holds also in the present case, with d, being re-
placed by d.
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The surface profile, obtained by solving numerically
Eq. (34), is given in Table III and shown in Fig. 3, to-
gether with the mean field,

U(z)=bp+ cp" +~' —2dV p .2+~ (&+ )

2
(36)

1a;„= 2Kpo —+dpo2m 4
=(2Kd)' po . (37)

0
The surface thickness t ~o 9p is found to be 7 A. This

value agrees with all previous calculations which try to
incorporate correlation effects in the surface ' ' it is
significantly larger than that found by Shih and Woo,
partly because these authors impose a profile with zero
skewness; indeed, as in the case of He, the skewness of
the surface profile is large, and most of the surface thick-
ness is related to the inward surface diffuseness a;„,

1/2

Since a;„ is much larger than a,„„the ratio of the sur-
face thicknesses of liquid He and He is close to the ra-
tio of the inward diffusenesses a;„, which in turn can be
estimated from Eq. (31),

t(~He) ~ ( He) cr(~He) K('He) =1.2 . (39)
t( He) a;„( He) o( He) K( He)

a ~rp pod
2 (40)

Together with Eqs. (31) and (37), this implies

This result agrees well with the exact calculation of
r( He)lr( He).

Similar arguments allow one to understand the value
found for the curvature energy coefficient of liquid He,
a, = 10.9 K; from Sec. (4.1) of Ref. 28, we see that

The outward diffuseness is fixed by the chemical poten-
tial p

1/2

2roa;„
a, ~

K
~ cr roa;„, (41)

a,„,=

1 I I I l / 1 t 1 1 l

I I I I I I 1 I i I I I I I

z (A)

FIG. 3. Same as Fig. 2 for liquid He. R, = —0.35 A.

(38)
2m 4p

Numerically, one finds a;„=1.96 A and a,„,=0.46 A;
the profile is well produced by the simple parametriza-
tion (26), if one uses the exact value of a;„with v=2. 5.

Of course Eq. (31), which relates cr, K, a;„, and I,
holds also for liquid He. The term in I represents a
correction to the leading term; by neglecting it, one can
easily relate, as we shall now see, surface properties of
He to those of He.

or

a, ( He)
=1.83,

a, ( He)
(42)

which is in fair agreement with the ratio of the calculat-
ed. values.

Next, a mass formula similar to Eq. (32) can be used
to calculate the binding energy of He clusters. The con-
stant term ap is equal to 14.6 K, and here also, the con-
stant term ap to be used in the mass formula includes
additional corrections from compressibility effects. The
value found in Ref. 25 was ao ———29 K.

Finally, as in the case of He, in order to characterize
the importance of the zero-point surface motion, we
have repeated our calculations with a value of d =0 in
Eq. (1). The result for the surface tension is cr =0.0801
KA, and for the surface thickness it is t =1.75 A.
Here also, the values are reduced by a factor of almost 4.
The curvature energy is now equal to 1.45 K (instead of
10.9 K). These results are in agreement with those of
Atkins who first pointed out the importance of zero-
point energies to the surface tension of liquid He at zero
temperature; our results also agree with those of Ebner
and Saam (see, in particular, Sec. V of Ref. 14).

To summarize this section, we note that the results
obtained in the framework of the energy density formal-
ism show an overall agreement with the more fundamen-
tal calculations of Pandharipande et al. ' One should,
however, notice that the asymptotic behavior of our
self-consistent one-body potential (36) is wrong; if the in-
teratomic potential is proportional to 1/z, the mean
field should go to zero as an inverse power law
——1/z, whereas it has in our case an exponential be-
havior. Thus our one-body potential cannot be used to
analyze the scattering of "He atoms by the free surface
at low energy. Indeed, as described in Ref. 35, the
scattering is essentially sensitive to this asymptotic be-
havior.
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IV. CONCLUSION

In the present work we have developed a density-
functional formalism for investigating the surface prop-
erties of liquid He and He. The energy density is of
phenomenological nature and contains local as well as
nonlocal components which account for the renormaliza-
tion effects of the zero-point motion of the surface.
These effects are found to be large both in liquid He
and He. The free parameters of the model have been
adjusted to reproduce relevant bulk properties known
from experiment as well as the experimental value for
the surface tension. Similar forms for the energy density
have been extensively employed to investigate the prop-
erties of other quantum systems (atomic nuclei).

Using suitable relations between the kinetic-energy
density and the diagonal density we have derived Euler-
type equations and have explicitly investigated the densi-
ty profile of He and He. We have found that the sur-

0

face thickness (10—90% density) is =7 A in the case of
He and 8.3 A in He, in good agreement with the recent

result of Ref. 10, where clusters of He and He have
been investigated using a variational Monte Carlo
method. We have also derived useful relations between
the surface thickness, the surface tension, and the bulk
compressibility. Similar relations have already been dis-
cussed in the literature in the context of different quan-
tum systems (metals, nuclei).

A major advantage of the present method is its simpli-
city. It can be extended to investigate surface effects in
He and He mixtures and helium films. It can also be

extended to analyze the propagation of surface excita-
tions.
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