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Upper critical field of superconducting anisotropic polycrystals
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We present a theory of the upper critical field for an anisotropic polycrystal. This theory is
based on the well-known separable model for the electron-phonon anisotropy which is expanded to
describe the Fermi-velocity anisotropy. It is assumed to be sufficient to describe these anisotropies
by the mean-square parameters (a') and (b'), respectively. Comparison with existing N-band
models shows that our model only allows formation of Cooper pairs from quasiparticles which be-
long to the same Fermi-surface sheet. Predictions of this theory are discussed using a model sys-
tem emphasizing the deviation of the upper critical field of the anisotropic system from an
equivalent isotropic one. Finally, a procedure is suggested which should enable experimentalists
to make a more detailed analysis of experimental data in terms of anisotropy effects.

I. INTRODUCTION

In real superconductors almost all the important phys-
ical properties deviate from the values predicted by iso-
tropic theories, i.e., theories which do not take into ac-
count the anisotropic nature of the Fermi surface. The
first steps toward a more accurate theory were made by
Anderson, ' and later on by Markovitz and Kadanoff
and Clem. They investigated on the basis of the BCS
theory the effect of varying impurity concentrations on
the critical temperature and on the thermodynamics of
anisotropic superconductors by defining a separable pair-
ing potential Vk, ~ =(1+ak)~Bcs( +ak ) a~ is the
temperature-independent anisotropy parameter which
describes the effect of the anisotropic Fermi surface on
the isotropic BCS coupling potential V~cs. ak has the
important feature that its Fermi-surface average
(a ) =0, and as anisotropy eff'ects are rather small it is
sufficient to keep only the mean-square anisotropy (a )
as the important anisotropy parameter.

Niel et al. were able to show that this basic concept,
extended to the strong-coupling Eliashberg theory, was
capable of giving an accurate interpretation of experi-
mental data for indium in terms of a mean-square anisot-
ropy of the electron-phonon interaction, not only for the
critical temperature T, but also for other bulk properties
like the thermodynamic critical field H, (T) in its tem-
perature dependence. (This concept was also applied
successfully to describe the variation of the critical tem-
perature of vanadium as a function of impurity con-
tent. )

It is possible to observe anisotropy effects directly by
measuring the angular dependence of the upper critical
field H, 2 of a single crystal. H, 2 is basically determined
by the effective electron-phonon coupling and by the
Fermi velocity. Thus any anisotropy of H, 2 is the result
of the influence the anisotropic Fermi surface has on the
electron-phonon interaction and on the Fermi velocity.
From this it is obvious that only nonlocal microscopic
theories will be able to give an accurate description of
the upper critical field. Important contributions to this

subject have been made by Butler, ' Teichler, ' Taka-
naka and Nagashima, " ' and Youngner and Klemm. '

The theoretical work of Butler was concentrated on
niobium single crystals and was based on the strong-
coupling H, z equations of Eilenberger and Ambegao-
kar, ' and on extensive band-structure calculations. His
approach was restricted to the clean limit, and used the
assumption that the anisotropy of the Fermi surface is
the dominant feature. He was able to calculate the an-
gular variation of H, 2, and his results agreed well with
experimental data reported by Kerchner et al. '

Teichler's theory is more general and can be applied
to all cubic type-II superconductors. The angular
dependence of H, 2 in this theory is expressed in terms of
normalized cubic harmonics, giving explicit formulas for
the temperature dependence of the expansion
coefficients. Seidl et al. ' analyzed experimental data of
niobium in terms of Teichler's theory, and found that
the temperature dependence of all expansion terms in-
vestigated (up to sixth order) agreed reasonably well
with the theoretical predictions. Nevertheless, under im-
proved experimental techniques' the agreement was less
satisfying, and in some cases experimental trends were
inconsistent with theoretical predictions. Finally, it is
not an easy task to identify the abstract expansion
coefficients with special physical significance.

The obvious success of the separable model for the
pairing potential in descf ibing the effect of anisotropy on
the bulk properties of superconductors, and its easy
physical interpretation, tempted the authors of this pa-
per to expand this model to the theoretical description
of the upper critical field of polycrystals. Polycrystals
do not show an angular variation of H, z,

' on the other
hand H, 2 as a function of temperature does show
significant deviations from isotropic results. ' We there-
fore present in Sec. II a straightforward expansion of the
recently formulated strong-coupling theory of H, z (Ref.
20) to the case of an anisotropic polycrystal. The theory
is compared to other X-band model calculations, and the
dirty limit is discussed. In Sec. III numerical results are
presented, and an attempt is made to separate the vari-
ous effects. Finally, in Sec. IV conclusions are drawn.
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II. THEORY

According to Ref. 20 the upper critical field of an iso-
tropic superconductor is determined by the following set
of equations:

b„(m)
b~(n }=m T, g (1+ak)A(m —n) (1+ak. )—

CO k Pal

Ak(m)
~T, g(p* —5 „t+/T, ) (10)

cv„=co„+nT g ).(m —n)sgn(cv )

+~t +sgn(cv„),

b.„=~T g [A,(m —n ) —p* ]X„,b, +~t X„A„, (2)

A(m —n) = ( (Ak q(m n) )'—),
~h~re ( ) denotes the Fermi-surface average, and(.„)=0.

If one introduces a separable model to describe the an-
isotropy of the Fermi velocity in the form

X„=(2/&cc) f dq exp( —q ')
0 VFk —(VF )(1+bk) (12)

)& tan '(q&a/
~

cv, ),
(Q)F(Q)

0 +CO~

a =eH, 2( T)vF /2,
t+ = 1/(2~&, „),

(3)

(4)

(5)

((vF ) is the Fermi-surface average of the Fermi veloci-
ty), it is possible to expand Eqs. (1)—(3) to describe an
anisotropic system in analogy to Eqs. (9)—(11),

cvz(n) =co„+mTg . (1+a&)iL(m n)sg—n[G~(m)]

cv„=rrT(2n +1), n =0, +1,+2, . . . (7

where co„and A„describe the renormalized Matsubara
frequencies and gaps, respectively, on the imaginary axis.
p* is the Coulomb interaction pseudopotential,
a ( 0 )F ( 0 ) the electron-phonon interaction spectral
function, UF the Fermi velocity, ~„ the transport relaxa-
tion time, and co, is the cutoA frequency, usually taken
to be an integer multiple of the Debye frequency. At T„
the transition temperature, H, z(T)=0, and Eqs. (1) and

(2) reduce to the standard T, -Eliashberg equations
(linearized Eliashberg equations).

An anisotropic version of the linearized Eliashberg
equations was discussed by Daams et al. ' using a separ-
able model to describe the anisotropy of the electron-
phonon interaction,

[a (Q)F(Q)]k z ——(1+a&)a (Q)F(A)(1+ak ) . (8)

+~t+sgn[a„(n)], (13)

~TX(P —& .t+/T)(&„(m)X„(m))',

Xz(n)=(2/+a&) J dq exp( —q )
0

Xtan [qQak/
~
Qk(n)

~ ],

(14)

(15)

aq ——eH, 2( T) ( vF ) ( 1+bz )~/2 .

Equations (13) and (14) imply the ansatz

~k(n)=~T g (1+ak)A(m n)((1+a—k. )g„,(m)X„,(m))'

In this model the T, equations are given by

@k(n}=cv„+~T, g ( +ak)~(m —n)sgn[cvk(m)]

+~t+sgn[m„(n)], (9)
.l

&„(n)=DO(n)+a„A, (n),

with two isotropic gap functions &0(n) and g, (n)
following closely the procedure outlined in Ref. 21 it is
possible to transform Eqs. (13) and (14) into

ho(n) =rrT g A(m —n)—
m

p*( 1 E„)—
1 ~Tp*g-

1+~t+s

rm +Smarm ho(m )

r +s +p (s +t ) X(m}
(18)

with

X„(m)), s =(a X„(m)), t =(aqXk(m)), p =(1—art r )/(1+rrt s ),
A(m —n)(s + t ) ~t +s„ Pm1+~t+s„r +s +p (s +t

@*Mg (n)=g (n)/p„, b, ,(n)=p„5o(n)+, M =rrT g fr b, (m)+s 4 (m)] .1+~t+s„' m 1
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It is immediately apparent that Eq. (18) is formally iden-
tical to the isotropic T, -Eliashberg equation without im-

purity contributions. It is therefore possible to use the
standard algorithm to solve Eq. (18) numerically. Furth-
ermore, it is convenient to use

R = g [((5„( )') —(&„( ))'] g ((-"( ( )'), (20)

A. The dirty limit

This limit is defined for zero-transport relaxation time
(t+ ~ ao ), and Markovitz and Kadanoff proved in their
analysis that in this limit the anisotropy of the electron-
phonon interaction (represented by ai, ) becomes smeared
out totally. It is therefore sufficient to keep only bi, and
we expand (15),

1
Xg(n) = (21)

and find for Eq. (14),

b(n)=m T g [k(m —n) —(cc +5 „t+/T]b(m)

1
X

/
cv„(m)

J

e&

3 (m„(m(( ') (22)

For Eq. (13) we write

cv( n ) =co„+m T g A (m —n )sgn[cv(m )]+nt + sgn[cv( n ) ]

with b,z(n)=6k(n)/
~

cvk(n)
~

as a measure for the
mean-square anisotropy of the gap function. '

Having established the basic equations it is essential to
analyze some important limits.

B. Equivalence to existing N-band models

N-band models have been extensively studied as a tool
to describe anisotropic features of superconductors.
It is therefore of interest how the presented model com-
pares to X-band model calculations. First of all we ob-
serve that the separable model can be described in its
simplest form by

P (a ) =5( —a)/2+5(a) /2, (28)

thus describing a Fermi surface split into two half-
spheres of equal weight with radii r+a, if r is the radius
of the equivalent isotropic Fermi sphere. Using the
Fermi-surface harmonics (FSH) notation introduced by
Allen, ' Daams observed that this separable model
was equivalently described by a restriction to zeroth-
order FSH in each of the two subregions of the Fermi
surface. This again is the essence of proposed X-band
models which divide the Fermi surface into X parts ap-
proximating the superconducting parameters in each
part by their mean values.

The equivalent %-band model H, 2 equations for a
strong-coupling superconductor are given by

cv;(n)=co„+mTg [A,;~(m . n)+5—„t,+/T]
J, m

in the dirty limit. The only di6'erence from their result
is the 1 + (b ) factor appearing in the definition of the
"pair-breaking" parameter p(T). Therefore the solution
p(T) will be the same for isotropic as well as anisotropic
superconductors. Because of Eq. (26) we find the rather
unexpected result that in the dirty limit H, z(T) of the
anisotropic system will be smaller by a factor of
1 + (b ) than the upper critical field of the equivalent
isotropic system.

=cv (n)+mt+sgn[cv(n)] . . (23) &(sgn[co (m)], (29)

The remaining Fermi-surface integral in Eq. (22) can
easily be performed by introducing the distribution func-
tion P (b) according to Clem. P (b)db denotes the prob-
ability for b& to lie in the interval b &bi, &b +db. P(b)
has the obvious properties.

f db P(b}=1, f db bP(b)=0,
FS FS

(24)f db b'P (b) = (b')
Fs

b, , (n)=rrT g [k, (m n) —p*+—5 „t+/T]
j,m

XX, (m)h (m),

P, (n)=[2/(a, )' ] f dq exp( —q )tan

X[q(a;)' '/i cv;(n)
i ],

(30)

(FS denotes the Fermi surface). This gives the final for-
mula which determines the upper critical field of an an-
isotropic superconductor in the dirty limit,

b(n)=vrT g [k(m n) p']b(—m)/—[ ~

cvo(n)
~
+p(T)],

(25)

a, =eH, 2( T)v~, /2,
with the band indices i and j. For T =T, these equa-
tions are consistent with those reported by Entel and
Peter.

In the FSH notation on the other hand all indexed pa-
rameters in Eqs. (29)—(31) are quite generally derived
from the following expansion of k-dependent functions
to zeroth-order FSH's,

p( T)=eDH, 2( T)(1+ ( b ) ),
D = (vz) r,„/3 .

(26)

(27)

f (k;n)= g f (n)F& (k),
J

g(k, k';n, m) = g g z'(n, m)F (k)F& (k'),

(32a)

(32b)
Equation (25} is identical to the result quoted by

Rainer and Bergmann for the isotropic superconductor with j and j' the indices which indicate the surface
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sheets on which the FSH F (k) is defined. The two-
band separable model is restricted to FSH's of the form, 10

F, (k) =[N(0)/N, (0)]' 5k, ,

Fz(k) = [N(0)/Nz(0)]'i 5k z,
(33)

D(t)
('/oj

with N(0) the average quasiparticle density of states at
the Fermi surface and N;(0) the equivalent value for
sheet i. 5k; symbolizes the restriction of allowed k vec-
tors to sheet i.

According to this analysis, the separable model
presented here corresponds to a two-band model in
which the quasiparticle-impurity interaction (t+) (Ref.
30) and the Coulomb pseudopotential (p*) (Ref. 31) are
assumed to be isotropic. Only the formation of Cooper
pairs from quasiparticles belonging to the same FS sheet
is considered to be of significance. (This is in agreement
with assumptions made by Entel and Peter. )

III. NUMERICAL RESULTS

As anisotropy effects are often rather small it seems to
be convenient to discuss the results of our calculations in
terms of a deviation function:

D (t) =100[H,'z(t)/H, 'z(t) —1], t = T/T, (34)

where H;z(t) and H,'z(t) are the upper critical fields of
the anisotropic and the equivalent isotropic system, re-
spectively. Both systems have the same T„ the same im-
purity content described by t+ and H;z(t) is calculated
by solving Eqs. (13)—(16), while H,'z (t) is determined
from Eqs. (1)—(5). Moreover, by this definition of the
deviation function we avoid problems which arise very
often from the lack of accurate data for the Fermi veloc-
ity (vF ) as long as we assume the isotropic and the an-
isotropic system to have the same value for (vF ). (It is
obvious that for a given material p' has to be calculated
independently for the isotropic and the anisotropic sys-
tem to give the same T, by solving the standard T, -

Eliashberg equations. )

To present numerical results we use the a (Q)F(A)
data for niobium measured by Arnold et al. with a
T, =9.305 K for the clean limit ( t + =0). (Sauerzopf
et al. ' measured a T, of 9.301 K for a very pure Nb
single crystal with an RRR of 2080.)

In a first step we want to discuss the influence of the
mean-square anisotropy of the Fermi-surface velocity
(b ), neglecting all other anisotropy contributions. In
this case the gap function is isotropic and all anisotropy
effects enter via the "Werthamer function" Xz(n) accord-
ing to Eq. (15). In Fig. 1 the clean limit is studied show-
ing the deviation function D (t) according to Eq. (34) for
various values of (b ) keeping (a ) equal to zero. The
anisotropic H, z(t) is smaller than the isotropic one for
all 1) t )0.75, and for all t &0.75 H;z(t) starts to be-
come larger than H,'z(t). This general behavior supports
an assumption which is very often made in analyzing ex-
perimental data: Low-temperature enhancement of
H, z(t) over isotropic-model calculations together with a
high-temperature tail which lies below the isotropic
model are assumed to be an indication of anisotropy

FIG. 1. Inhuence of the mean-square Fermi-velocity aniso-
tropy (b ) on the upper-critical-field deviation function in the
clean limit. The mean-square anisotropy of the electron-
phonon interaction (a ) =0.

-5
0 0.5

FIG. 2. Inhuence of the impurity concentration on the
upper-critical-field deviation function for an anisotropic super-
conductor with (a )=0 and (b )=0.04. t+=0 meV corre-
sponds to the clean limit, while t+ =100 meV is already well in
the dirty limit.

effects in the sample.
Turning to more realistic materials which have normal

scattering impurities and, consequently, t+ &0, reveals
the rather unexpected interaction between Fermi-
velocity anisotropy and impurity scattering already indi-
cated by our dirty-limit result. In Fig. 2 we present the

5

D(t)
(Og, )

4
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FICx. 3. Influence of the impurity concentration on the
upper-critical-field deviation function for an anisotropic super-
conductor with (a2) =0.04 and (b~) =0. This figure demon-
strates how the anisotropy e6'ect becomes smeared out by nor-
mal scattering impurities.

results for a system with (a ) =0 and (b ) =0.04, and
t+ values ranging from 0 meV (clean limit) to 100 meV
(well in the dirty limit). The low-temperature enhance-
ment of H;z(t) becomes more and more suppressed as
t+ is increased toward the dirty limit. The result for
t+ =100 meV is obviously very close to the result of Eq.
(25) because the deviation function D (t) is negative and
shows almost no variation with temperature. This result
is somehow in contrast to experimental data measured
by Laa which show even for rather dirty Nb polycrys-
tals a low-temperature enhancement of H;2(t). Thus we
conclude that for the analysis of polycrystal data
Butler's approach of (a ) =0 seems not to be appropri-
ate.

In Fig. 3 we want to discuss the influence of (a
alone, keeping (b ) =0. This graph shows the influence
of normal scattering impurities on the H;z(t) of a system
with (a ) =0.04. In general one can say that (a )&0,
together with (b ) =0, results in an enhancement of
H;z(t) over H,'2(t) for all temperatures. This enhance-
ment is drastically reduced with increasing impurity con-
centrations, indicating the well-known effect of smearing
out the electron-phonon interaction anisotropy by nor-
mal impurity scattering. For t +~ ~ we find
D(t)=0% for all values of t, thus supporting the argu-
ment we used in deriving the dirty-limit formulas in Sec.
II.

The results for a realistic system ((a ) = (b ) =0.04,
0& t+ & 100 meV) are presented in Fig. 4. It is now ob-
viously possible to discuss two cases: (i) ai, and bi, have
the same sign in same sheets, and (ii) they have opposite
signs in same sheets. Case (ii) corresponds to the situa-
tion observed by Crabtree et aI. ' in niobium: ". . . that
(the mass enhancement factor) A, is large where vF is
small and vice versa. " From our result it becomes im-
mediately apparent that only for case (ii) (all curves la-

30

20

10

t'
0.0

1.0

2.5
~50

10.0-+ 100.0
+ 10.0

0.0

I

0.5

FIG. 4. Influence of the impurity concentration on the
upper-critical-field deviation function for an anisotropic super-
conductor with (a') = (b') =0.04. The curves labeled with—
correspond to the case where ak and bk have opposite sign on

the same Fermi-surface sheet. + indicates the same signs for

ak and b„.

beled by —) can an enhancement of H;2(r) over H,'2(r)
be expected. The depressing influence of (b2) is in this
case partly compensated by the electron-phonon interac-
tion anisotropy. If we compare the result for D(t) in
Fig. 2 for t + = 5 meV with that of Fig. 4, we still see an
enhanced H; (t2) over a rather large region of 0&t &0.9.
From this we conclude that our model seems to give a
realistic description of features found by experiment.

So far we have only discussed systems with equal
weight for the two Fermi-surface regions according to
Eq. (28). It is of course also possible to define different
weights for the two regions, thus changing the distribu-
tion function, keeping in mind its basic properties (24).
The influence of different weights in a separable model
on the thermodynamics of anisotropic superconductors
was already studied by Daams and found to be of no
significance. Figure 5 discusses the effect of different
weights on H, 2(t) in the clean limit of a system with
(a ) =(b ) =0.04. Obviously the case of equal weights
for both regions represents an extreme case showing the
most pronounced temperature dependence of D (t). Any
deviation from this extreme configuration results in a
more "isotropic" D (t) still showing a significant
enhancement of H;2(t) over H,'2(t) which becomes less
and less temperature dependent.

Finally, in Fig. 6 the root-mean-square anisotropy
R (t) [Eq. (20)] of the gap function is presented as a
function of the impurity content. We compare systems
with (a2) = (b ) =0.04 (solid line for ai, and bi, having
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0.0
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-10
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FIG. 5. Influence of different weights for the two model
Fermi-surface sheets on the upper-critical-field deviation func-
tion for an anisotropic superconductor with (a ') = (b') =0.04
in the clean limit. The labels indicate the weight ratios. (1:1
corresponds to equal weights. )

opposite signs„dashed lines for ak and bk having same
signs) to a system with ( a ) =0.04 and ( b ) =0
(dashed-dotted lines). The two Fermi-surface sheets are
assumed to have the same weight ~ This result agrees
completely with deviation functions shown in Fig. 4 and
Fig. 3 for the respective systems. A larger deviation
from the isotropic system is always coupled to a larger
anisotropy of the gap function. It becomes also trans-
parent that (b ) and the sign of ak compared to that of
bz on the same FS sheet affects largely the gap-function
anisotropy. This influence weakens with increasing im-
purity content and the successive smearing out of the
electron-phonon coupling anisotropy. Close to the dirty
limit (t + = 100 meV) the gap-function anisotropy be-
comes almost negligible.

We would like to note in passing that a similar in-
crease of the gap-function anisotropy with increasing
magnetic effects (in that case —increasing concentration
of paramagnetic impurities) was reported by Daams
et al. ' It was pointed out that this increase was obvi-
ously necessary to establish superconductivity beyond
the isotropic limits. As H, 2 is increasing with decreasing
temperature the argument given there can be expanded
to the case studied here.

FIG. 6. Anisotropy of the gap function for an anisotropic
superconductor as a function of the impurity concentration.
Solid lines: (a ) =(b ) =0.04, al, and bi, have opposite sign.
Dashed lines: (a ) =(b ) =0.04, al, and b„have same sign.
Dashed-dotted lines: (a ) =0.04, (b ) =0. For t+ =100 meV
the three curves lie almost on top of each other.

mean-square anisotropies of the electron-phonon interac-
tion and of the Fermi velocity. The special features of
this model allowed a formal separation and discussion of
the influence of both anisotropies on the upper critical
field. A very interesting result was found for the dirty
limit with the anisotropic H, 2 to be always smaller than
the H, 2 of the equivalent isotropic system.

It should be possible to use the above theory to devel-

op a more detailed analysis of anisotropy effects in poly-
crystals. First of all it is possible to find rather reliable
values for (a ) by studying the T, depression with in-

creasing impurity content. ' The deviation function
D(t) of the upper critical field for rather dirty samples
gives a first estimate of ( b ), as ( a ) is then almost
negligible. Finally, the D ( t) for the cleanest sample
gives an excellent hint about the different weights to be
used for the two-model Fermi-surface regions (Fig. 5).
Having found this information, only a little freedom is
left to fit the system parameters in a way that all physi-
cal properties ( T, degradation, thermodynamics, and
upper critical field) of all samples can be theoretically
reproduced by one set of parameters p*, t+, (a ),
(b ), (ut;), and a (Q)F(Q).

In light of the results presented here we do not believe
that it is sufficient to take only the Fermi-velocity anisot-
ropy into account, as the electron-phonon coupling an-
isotropy seems to have substantial effect on the upper
critical field of a real superconductor.
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