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The normal and superfluid densities are defined by the response of a liquid to sample boundary
motion. The free-energy change due to uniform boundary motion can be calculated by path-
integral methods from the distribution of the winding number of the paths around a periodic cell.
This provides a conceptually and computationally simple way of calculating the superfluid density
for any Bose system. The linear-response formulation relates the superfluid density to the
momentum-density correlation function, which has a short-ranged part related to the normal den-

sity and, in the case of a superfluid, a long-ranged part whose strength is proportional to the
superfluid density. These facts are discussed in the context of path-integral computations and
demonstrated for liquid He along the saturated vapor-pressure curve. Below the experimental
superfluid transition temperature the computed superfluid fractions agree with the experimental
values to within the statistical uncertainties of a few percent in the computations. The computed
transition is broadened by finite-sample-size effects.

I. INTRODUCTION p(R, R';/3)=t R
~

e ~
~

R') = ge "It„(R)+„(R'),

It has been recently demonstrated that the microscop-
ic properties of interacting Bose systems can be calculat-
e@i by discretized-path-integral computations of the den-
sity matrix. ' Most laboratory examples of superAuidity
are, however, best described by two-Auid hydrodynam-
ics. The connection between the microscopic description
and the two-Auid model and, in particular, determina-
tion of the superAuid density, can be made by consider-
ing the system response to sample boundary motion.
The free-energy change in a periodic system is related to
the path-integral winding number, while the linear-
response function is the momentum-density correlation
function (MDCF). In this article these relations are
presented and discussed in a form useful in path-integral
computations. Path-integral simulation results for
liquid He at temperatures above and below the A, transi-
tion are then used as an illustration. While the values
obtained, so far, for the superAuid densities of He along
the saturated-vapor-pressure (SVP) curve from these
simulations are numerically not more precise than the
Landau formula which relates the superAuid fraction to
the experimentally determined excitation spectrum, these
simulations use as input only the interparticle potential,
A, and the mass of the helium atom, and provide infor-
mation not given by quasi-particle approximations.
These simulation methods have previously been used to
calculate the momentum condensate and the specific
heat in He.

where the summation is over energy eigenstates of the
system and P= 1/k Ttt. In particular, the next section
discusses how the superAuid density may be obtained
from the density matrix, so it is necessary to first discuss
how it is computed.

The basic identity for discretized-path-integral compu-
tations of the density matrix is

p(R, R'P)= f p(R, R&, 7)p(R&, R, ;w) . p(RM &, R', )r
XdR ) dR~

where r—=P/M for some positive integer M and the R
variables denote points in the 3N-dimensional coordinate
space. The R, R&,R2, . . . , R' in this equation describe
the discretized paths of the particles. Each step in the
path is associated with a high-temperature density ma-
trix. The advantage in using this identity is that, for
sufficiently large M (small ~), an accurate approximation
for the high-temperature density matrices is known.
The best convenient approximation is the pair-product
form

N N

p(R, R'; )=rg p, (r, , r,'; )rQ exp[ —U(r, , r,', ;r)],

where the one-particle, or ideal-gas term,

II. PATH-INTEGRAL COMPUTATIONS
OF THE DENSITY MATRIX p, (rir r,';~) = rn

2~6 ~

3/2

exp
(r, —r,')'
2A ~/m

(4)

All of the statistical-mechanical properties of a many-
body system may be determined from the density matrix and U gives the nonideal part of the pair density matrix
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obtained by solving the two-particle Bloch equation.
Equation (3) becomes exact as r decreases. The correc-
tions are of order ~ .

For periodic boundary conditions Eqs. (3) and (4)
must include sums over the periodic images. The one-
particle term is then

with V representing the particle interactions. This scalar
operator is unchanged in going to the lab frame (in phys-
ical terms the distribution of states is identical in the lab
and moving frames), so p„=p'.

Defining the normal component of the fluid as that
part which responds to this boundary motion,

p, (r, , r,';~)= g 2~% ~

' 3/2 (r, —r,'+L)
exp

2W ~/m

px Tr[Pp, ]Nmv= P
p

" Tr[p„]
(9)

where the L are periodic lattice vectors.
In applying these formulas to Bose systems, an addi-

tional sum over permutations is necessary to symmetrize
the density matrix,

where P is the total momentum. Expanding p, to first
order in v will give an expression for p& in terms of the
momentum-density correlations. This approach will be
discussed in the next subsection. In terms of the free en-
ergy for the system with moving walls,

pa„,(R,R ', P)=, g p(R, PR ', f3) .Bose & & N t

—PF„
e "' =Tr[p„],

Eq. (9) may be rewritten as

(10)

Without permutations, the path for each particle will re-
peat after M steps, for R =R'. With permutations, a
path can involve many particles and steps before repeat-
ing, depending on the cyclic structure of the permuta-
tion. In the computations the permutations P and the
path variables R i, . . . , R~ are sampled by a generalized
Metropolis algorithm. Some computational details are
given in Ref. 2.

At high temperatures only the identity permutation
contributes significantly to this sum, but at lower
temperatures —such that the de Broglie thermal wave-
length becomes comparable to the interparticle
spacing —other permutations also become important. In
particular, it is the long cyclic permutations that are
essential both for Bose condensation and superfluidity.
These effects are due to the one particle terms, Eq. (4),
modified by the interaction. For the ideal Bose gas only
particles on the same permutation cycle are correlated in

p(R, PR ';P).

III. CALCULATION OF p,

A. Relationship to the winding number

The normal and superfluid components are experimen-
tally determined by their different response to boundary
motion. The Gedanken experiment envisioned here cor-
responds to a system enclosed between two cylinders of
radii R and R+d rotating with angular frequency co.

For d/R &~1 the centrifugal effects can be neglected
and the system becomes equivalent to one enclosed be-
tween two planes moving with velocity coR = U but
periodic in one direction. The density matrix for a sys-
tem with moving walls, p„, is needed to calculate this
response. The density-matrix operator for this system
can be immediately written down in a frame at rest with
the boundary walls (primed frame) as

px
Nm v= ln(Tr[p„])+Nm v

p Bv

BF,
+Nm v,

Bv

or

B(F, /N)

8( —,'mv )
(12)

The free-energy change due to the motion of the sample
walls is thus

N
= —,'mv +O(v ) .

p
(13)

Bp„(R,R ';P)

ap
g( —iAV —mv) +V

2m

Xp„(R,R ';13), (14)

with periodic boundary conditions,
I Ip(ri rx ri "+ rm'I )

=p„(r, , . . . , r&, r ~, . . . , r&, 13) . (15)

Define p by

When there is no superfluid present, the free energy is
unaffected by uniform boundary motion. This is clearly
true for any classical system. The experimental pz
values are for the limit U~O and pz will here after refer
to this limit.

The path-integral algorithm can be easily modified to
compute p„and b,F, . From Eqs. (7) and (8), p„satisfies
the Bloch equation

where

—PH' (7) p„(R,R ';P) = exp i vg (r —r' ) p(R—,R ';P),
J

(16)

(p —mv)H'= g
and note

—PF„
e "=Tr[p] . (17)
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Bp(R, R ', P)
ap g( i—AV ) + V p(R, R', P),

2m

p satisfies the usual Bloch equation for a system with sta-
tionary walls,

where Z is the partition function. This prescription can
be made precise following the above discussion. If this
cylindrical system is made periodic in the L direction,
then moving the walls with a velocity v is equivalent to a
phase factor 9=muL /A' and, from Eqs. (20) and (23),

but behaves under periodic translations as

2L (;op) I (W
I9'~p ~p

(24)

I /?pqr, , . . . , r&, r &, . . . , r~+L, . . . , r» p)

. m I= exp i v L p(r&, . . . , rz, r&, . . . , rz, p) .

Hence we can use the usual density matrix for a sys-
tem with stationary walls to calculate p„ if the phase fac-
tor is included as a weight. In particular, in a path-
integral calculation the contribution to the density ma-
trix from a path ending on a periodic image of its initial
point must include the e' '" factor. This is most
easily done by defining the winding number, W, by

ps m ( ~2)L~—"

pdP
(25)

It has been predicted theoretically and observed experi-
mentally that for He films the superAuid density jumps
from 0 to the universal value

2 mk~T,
ps(&, )=— (26)

where the last equality is in the limit of small v or 6, and
8'here refers to the winding number in the L direction.

Nothing in the above derivation is restricted to three
dimensions and, in general, for dimensionality d,

g (rp —r;)=WL . (19)

mu (8')L
(

4

2A
(21)

for a three-dimensional system assuming a cubic periodic
cell. Comparison with Eq. (13) gives

ps m ( W')L'
3PX

(22)

The mean-squared winding number can be related to
the helicity modulus, Y, introduced to describe the
free-energy change associated with "twisting the order
parameter. " Specifically, the helicity modulus was
defined by fixing the order parameter at 0 and 0 at oppo-
site ends of a cylinder of area A and length L by the irn-
position of a wall potential and taking

&e
1n (23)6'3 p &o

Y= lim
A, L~ oo

In interpreting the above equation it is necessary to trace
the path of the particle from its origin at r, to its des-
tination at r~ a "time" p later and note how many times

periodic boundary conditions have been invoked. This is
analogous to determining the actual trajectory of a parti-
cle in a classical molecular-dynamics simulation using
periodic boundary conditions. The winding number just
describes the net number of times the paths of the N
particles have wound around the periodic cell.

The free energy change, AF„ is obtained from the
winding-number distribution as

f p„(R,R;p)dR
u ( i(m /AN wL) (2())f p„o(R,R;p)dR

The free-energy change is thus the Fourier transform of
the winding-number distribution and is periodic under
v ~v +h /mL. For small velocities

ps D

Do
(27)

where Do —=A /2m is the usual quantum "diffusion"
constant and D is a permutation partner "diffusion"
constant,

1 2N

D =— gr, —rp (2g)
i =1

analogous to the Einstein expression for self-diffusion in
a classical fluid (D = (x ) /2t ).

Accurate computation of the mean-squared winding
number is dificult since a change in, for example, 8
involves a "global move. " This is because 8' is a topo-
logical characteristic of the path. In the ~~0 limit the
paths become continuous directed closed loops on a
torus. W equals the number of paths intersecting a y -z

plane going in the +x direction minus the number inter-
secting this plane going in the —x direction and is in-
variant to which cross section one takes. Hence, to
change the winding number an entire path across the
periodic cell must be changed. The number of atoms in-
volved in a winding-number change will be at least pro-
portional to the length of the central periodic cell. A
practical consequence of this is that the algorithm used
here, which was not developed with winding numbers in
mind, converges somewhat slowly.

2dP,

B. Relationship to the MDCF

A more detailed description of superAuidity is given
by the momentum-density correlation function which

just below the transition. In the present language this
says that the average squared winding number, ( W~),
jumps from 0 to 4/m just below the transition, indepen-
dent of particle density and periodic cell size. In this pa-
per only three-dimensional simulations are reported.

The expression for the super Auid fraction can be
rewritten as the ratio of two "diffusion" constants,
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enters in the linear-response treatment of boundary
motion. Expanding p„ in Eq. (9) to first order in U gives

px
Nm v= (P )„=P(PP).v,

p

or, for an isotropic system in d dimensions,

(~')
d&rnk~ T

(29)

(30)

This expansion assumes H to be translationally invariant
along the direction of P so that H and P commute. The
more general case of, for example, a closed system where
H might include an external potential representing the
boundaries and thus not commute with P, is also easi1y
handled in path-integral computations (see Appendix).

For a classical fiuid only the self-terms in (P ) are
nonzero and are proportional to the kinetic energy, and
thus pz ——p. In a superfluid p~ ~p because of the nega-
tive non-self-momentum correlations, as will be explicitly
shown by the computations.

Evaluating Eq. (30) for the free-particle density matrix
[the first product in Eq. (3)] reproduces the winding-
number expression given earlier in Eq. (22). This deriva-
tion is, in fact, true, in general, since in the density ma-
trix for an interacting system everything except the one-
body or free-particle terms depend on the relative coor-
dinates and are thus unaffected by a translation (generat-
ed by the total-momentum operator). Repeating this re-
mark more explicitly, apply the total-momentum opera-
tor, P= ilia, —V, , to the density matrix as given by
Eqs. (2) and (3). The pair term in (3) is not affected since
it depends only on the relative coordinates. Equation
(22) follows, with, of course, the expectation computed
using the full rather than just the free-particle density
matrix.

Repeating Eq. (29) for the momentum-density, p(r),
response yields

& p(r) ) ~ =P f & p(r)p(r') )odr' V, (31)

responds, while for a system with periodic boundary
conditions only the normal component responds. The
integral in Eq. (31) thus depends on the sample boun-
daries when p„&p. The integrand (the MDCF) must
therefore be long ranged, i.e., decays as slowly as
1/r —but no slower or there would also be a volume
dependence when the superfluid density is nonzero.

In an isotropic liquid the momentum-density correla-
tion function can be written in the form

f (p(r).p(0))d r,3' (33)

and for periodic boundary conditions,

psrnk~ T
Gg(r) ~—

4m
(34)

at large r, which can be used to compute normal and
superfiuid densities. Equation (33) is equivalent to Eq.
(29). Equation (34) follows from the f-sum rule and will
be demonstrated for the ideal and the weakly interacting
Bose gas in the next section. First, explicit formulas for
the MDCF will be derived.

Using the form for the momentum-density operator in
coordinate space,

p(r) = —.g Vi6(r —r, )+5(r—r, )Vi,2l J
(35)

G(r)—:(p(r)p(0) ) = [—,'mpÃ5(r)+Gz(r)]I

3r r —I+Gs(r) r3

since the only available second-rank tensors are r r and
I. This defines the two functions Gz(r) and Gs(r). E is
the kinetic energy per particle.

G~(r) and Gs(r) have the important properties that

G)v(r)
p~ =p ', pIC + f— 4vrpr dr

mk~ Tp

where the total momentum has been written as the in-
tegral of the momentum density over the system volume

The MDCF is thus the response function relating the
expected momentum density to the motion of the sample
boundaries.

An extensive discussion and proof of the properties
stated below for this correlation function may be found
in Refs. 3 and 4. The expected momentum response to
motion of the sample walls depends on the boundary
conditions. For a closed sample the entire fluid

the ensemble average in Eq. (32) may be written as

Q2
(p(r, )p(r, ) ) = — lim (V, —V, . )(V,—V, , )

4 1'~ I
2'~2

&& n ( l(12, 1'2', P),

where the two-particle density matrix,

(36)

N(N —1) f p(1, 2, 3, . . . , N, 1', 2', 3, . . . , N;p)d3 ' ' ' dN
n('l(12, 12;p) —= (37)

in terms of the X-body density matrix.
Using Eqs. (36), (3), and (4) the MDCF has the explicit form

G(r)= —
(
—X [V;V —V, V U(r, ', r, :;w) —V, V U(rg&, , r, ';v)[5(r —r,

' )),
l J

I,J

(38)
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where

R w/m

+ g V; U(r& p, r,&,~) .[M] f i l. (39)

fi dkp„= f k n(k)[l+n(k)]
3m (2~)3

an(k)
6m'. o Be(k)

=P no . (43)

The ( ) here denotes averaging with the density matrix
of Eq. 3 and over permutations, which are written as P
in the above equations. The superscripts refer to points
along the discretized path of the particle indicated by
the subscript. All gradients are with respect to r '~.

For suKciently small ~ and "end-point" approxima-
tion

U(r, r';~) = —,
' [Uo(r;r)+ Uo(r', r)] (40)

IV. APPLICATION TO IDEAL AND %'EAKLY
INTERACTING BOSE GASES

The MDCF can be easily evaluated for the ideal Bose
or Fermi gas since in the grand-canonical ensemble the
two-particle density matrix factorizes into a direct and
an exchange term,

ii l(12, 1'2')=n( 1(11')n '1(22')+n ' (12')n (21'),

becomes -accurate for the pair density matrix. If this ap-
proximation is used, Eqs. (38) and (39) simplify consider-
ably. Only the first term, the free-particle part, remains
in the expression for 9', and the last two terms in Eq.
(38), which are short ranged, may now be evaluated us-
ing the radial distribution function. The interesting part
of the MDCF is thus just the correlation between
"steps" separated by r along the paths in the path in-
tegrals. The presence of a superAuid fraction thus corre-
sponds to a "dipolarlike" correlation in these paths at
large r because the paths are winding around the torus.

Three ways of estimating the superAuid fraction have
been introduced: Eqs. (22), (33), and (34). The variance
of all three estimators is probably controlled by the slow
convergence of the winding-number distribution. The
winding-number estimator, Eq. (22), has the significant
advantage that it does not explicitly contain the "time
step" ~, while the variance of G diverges as ~~0.
Thus for suSciently small ~ the estimator based on the
winding number will have less statistical uncertainty.

where e(k)=Pi k /2m.
From the small-k behavior of the ideal Bose gas n (k),

n (k)= 1

P(A k /2m —p)

1 +O(k ) . (44)
(e ~"—1)+(iri k /2m)e

Equation (42) shows that above the transition tempera
ture the one-particle density matrix falls oA' exponential-
ly and thus so does Gs(r). Below T&, where the chemi-
cal potential p is zero,

at large r. Together with Eqs. (36) and (41), this gives
Eq. (34) with ps=no.

Turning now to the weakly interacting case, the
single-particle momentum distribution leads to the
large-r limit,

n( )(r)~no+ — for r &&PA'c,1 m 1

4irpR r
(46)

where c is the speed of sound. The large-r form is thus
predicted to hold at distances such that phonons of the
corresponding wavelength can be thermally excited.
This distance is about 8.5 A for He at T=2.0 K and
saturated vapor pressure. (A similar limit is predicted
for the strongly interacting case, but with the coe%cient
multiplied by no/ps (Refs. 9 and 10). Although the
coefficient of the 1/r term in the above equation is half
that for the ideal gas, the two-particle density matrix
now contains a compensating "anomalous" term in addi-
tion to the direct and exchange terms of Eq. (41).
Again, Eqs. (33) and (34) can be shown to hold for the
weakly interacting model. " For a strongly interacting
Bose system such as He, the only presently available
technique for studying momentum correlations is com-
puter simulation.

V. SIMULATION RESULTS FOR He

where the upper sign is for bosons and the lower for fer-
mions. For any system the one-particle density matrix is
the transform of the single-particle momentum distribu-
tion

n(')(r)=no+ f n(k)e'"'
(2' )'

(42)

where no is the condensate fraction. Using Eqs. (33),
(36), (41), and (42) with the ideal-gas momentum distri-
bution correctly reproduces the ideal-gas result,

The winding-number distribution and the MDCF were
computed by path-integral methods for a model of He
where the atoms interact by the Aziz (HFDHE2) pair
potential. ' Periodic boundary conditions were used for
all cases. The computations discussed below are for 64
and 125 particles in the periodic cell and typically take
10 or more hours of central-processing-unit time on a
Cray-1 computer for each computation. Most of this
time is spent in equilibrating and averaging over permu-
tations as required in Eq. {6).
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TABLE I. Experimental (Ref. 13) and computed superAuid fractions, based on Eq. (22). Simulation results are for 64 atoms in
the periodic cell. The number density p is in units of 10 cm . The standard error in the last digit of the computed superAuid
fraction is given in parentheses. P( 8' ) is the probability of a winding number 8' in the x direction, and P( 8' ) =P( —8'„).

T (K)

2.86
2.50
2.35
2.00
1.82
1.60
1.18

2.142
2.179
2.191
2.191
2.186
2.183
2.182

(expt. )

0.0
0.0
0.0
0.45
0.66
0.83
0.98

0.03(1)
0.08(2)
0.16(2)
0.44(4)
0.66(4)
0.88(7)
0.98(5)

P(0)

0.966
0.881
0.785
0.489
0.352
0.270
0.223

P(1)

0.0168
0.0582
0.102
0.211
0.233
0.221
0.195

P(2)

0.0004
0.0013
0.0055
0.040
0.077
0.107
0.118

P(3)

0.0006
0.0046
0.013
0.031
0.052

P(4)

0.002
0.005
0.018

P(5)

0.0009
0.005

P(6)

0.0002
0.001

Earlier work showed that using the full pair density
matrix in Eq. (3) rather than the "end-point" approxima-
tion permitted much larger values of ~ to be used
without loss of accuracy in computing expectations such
as the kinetic energy. For r corresponding to 40 K (the
value used for most of these computations) using the
end-point approximation causes an error of about 8% in
the kinetic energy and 1&o or 2% in the potential ener-
gy. In these initial computations we have, however,
used the end-point approximation in evaluating G [using
Eqs. (38) and (39)], but retained the full pair density ma-
trix in selecting the configurations and thus in comput-
ing the winding number.

Winding-number distributions and superfluid fractions
for a series of simulations using 64 atoms in the central
periodic cell are summarized in Table I. At the lowest
temperature the winding-number distribution is Gauss-
ian, while above T& it appears to be exponential. The
computed superAuid fraction is in good agreement with
experiment' well below the transition.

This is more clearly seen in Fig. 1, which compares

pz/p values computed from the integral of the MDCF
[Eq. (33)] and from the winding number [Eq. (22)] with
experiment. ' A11 of the pz/p estimates based on Eq.
(33) shown there are for periodic systems of 125 atoms.
Statistical uncertainties are estimated as roughly 10%
for the estimates based on Eq (33}an.d are indicated for
the estimates based on the winding number. There is, in

addition, the systematic error due to finite sample size.
Finite-size effects have not been thoroughly studied here,
but intuitively cause the transition to be rounded and
displaced to higher temperatures since at all tempera-
tures there is a nonzero probability of a path winding it-
self around a finite-size periodic cell, giving p»0. The
winding-number distributions (here for the x direction)
P( W, ) are shown for two temperatures whose pz /p
values are given on the lower graph. These distribu-
tions, of course, depend on the periodic cell size.

Figure 2 shows the MDCF at T=2. S K and
p=0. 0218 atoms/A for a system of 125 atoms in the
periodic cell. This is well above the k transition temper-
ature of T& ——2. 17 K. To provide a convenient scale of
distances, Fig. 2(a) shows the radial distribution function
for this system. From Fig. 2(b), Gz(r) is almost negligi-
ble except for nearest neighbors. Since the square-

bracketed quantity in Eq. (33) must be less than 1

(pz (p), and the first term, the ratio of the correct
quantum-mechanical kinetic energy to its classical value,
is greater than 1, the integral involving G~(r) (dashed
line) must be negative, as it is seen to be in Fig. 1(b).
Accurate values for the kinetic energy along the
saturated-vapor-pressure curve are given in Ref. 2. The
error due to the use in the present work of the "end-
point" approximation for ~ of —,

' K increases these
values by about 1.2 K. The value of p&/p calculated
from Eq (33}. using the G~(r) displayed in Fig. 2(a) is

0.6

(o}
I I ) ) ) ) )

(wx)

0 4 T=2.0K
& T=1.18K

N = 64

Jl i
—5 —4 —3 —2 —1 0

wx

s
2 3 4 5

)
I I t I

)
I I I

PN
0.5

P

I i I I ) I I I i I I I J I

T (K)

FIQ. I. Computed p~/p values along the SVP curve (lower

panel). The solid line is the experimental curve (Ref. 13). The
solid dots, for 125 atoms, are calculated from Eq. (33). The es-

timates based on the winding number [Eq. (22)] (open circles)
are for 64 atoms. The upper panel shows the x-direction
winding-number distribution at T=2.0 and 1.18 K,
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-0.9 with an estimated error of at least 10%. It is
dificult to determine pz from the asy pas m totic behavior o
G (r), Fi . 2(c), but it is consistent with pz —0.

Results for a system well below t..he k transition are
b

n in Fi . 3 (T= 1.1765 K, p=0.0218 atoms/A,
, d,...,..d,.R.f.and 125 atoms in the periodic cell). As

2 it is muc easiern t do path-integral simulations or
~ ~ishable articles than for bosons since averaging

over ~ermutations is not necessary.
for both bosonsvailable in real experiments. Results for bavai a e in rea

lid line) are com-(circ es an i1 ) d distinguishable particles (solid
F' 3 The values for Gz(r) are altere yred onlpared in ig.
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slightly by Bose statistics. The values of p~/p calculat-
ed from Eq. (33) are 0.99 for the distinguishable-particle
case and 0.20 for bosons. (The experimental value is
0.024.) Over 90% of this difference in p&/p between bo-
sons and distinguishable-particles is due to the kinetic
energy difference rather than differences in Gz(r). It is

clear, however, that Gz(r) has some dependence on
statistics. For example, above T&, pz/p is 1 for both
cases, but the kinetic energy for the distinguishable-
particle system is still larger than for the Bose system.
This must be compensated by difterences in the integral
involving Glv(r) in Eq. (33). The change in Gz(r), Fig
3(b), is a systematic lowering for the Bose case. The
differences are plotted in Fig. 3(c). The Gv(r) values
(upper curve), as remarked above, are not significantly
changed by Bose statistics; however, the subtraction pro-
cess removes much of the short-range structure from
Gz(r) (lower curve), making it easier to determine the
asymptotic limit for the Bose case. This asymptotic lim-
it is still uncertain; however, it is definitely consistent
with the experimental value of p~ jp =0.976 (dashed
line).

Figure 4 displays the (equal-time) momentum correla-
tions G(r) for r in the (x,y) plane for the boson case
shown in Fig. 3. The vector-field components are pro-
portional to

G(r)= p g(r)VVu(r),
2

(47~

which is in semiquantitative agreement with the short-
range structure of G for the commonly used u (r)'s. '

'((p„( )p (0)), (p, ( )p„(0)))/ k T ' .

(The singular self-contribution at the origin is not indi-
cated and some of the vectors at small r have been trun-
cated for display purposes. ) The distinguishable-particle
case would be quite similar, but without the weak dipo-
lar field at large r. The negative-momentum correlation
between neighboring particles is again evident. This
figure has no classical analog. In particular, it should
not be misinterpreted as the How field which develops at
later times in response to the motion of a particle at the
origin. That How field, in contrast to Fig. 4, shows posi-
tive correlations between near-neighbor particles with a
backAow at large distances. At low temperatures the
density matrix becomes the product of the ground-state
wave function at R and A'. If the ground-state wave
function is approximated by the Jastrow form
iI'o ——exp( —g; u, ), then
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VI. CONCLUSIONS

Several expressions for the superAuid density in the
context of path-integral calculations have been given in
this article: a new expression in terms of the topological
concept of winding number in a periodic system and the
equivalent formulation in terms of momentum correla-
tions. These were demonstrated for He. Winding-
number calculations are the most convenient since little
new analysis is required. Computations of the momen-
tum correlation shown negative correlation between near
neighbors and are consistent with an asymptotic decay
proportional to the superAuid fraction times the inverse
cube of the separation distance. Path-integral methods
have now been used to compute both the momentum-
condensate, specific heat and the superfluid fraction for
the same model of He. These calculations are computa-
tionally taxing, but this will be reduced by continuing al-
gorithm development.
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where V(RK ) is the total potential energy.
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APPENDIX

If the system Hamiltonian is not translationally invari-
ant, the momentum response of Eq. (29) must be calcu-
lated from the general linear-response formula

f 1
d g p —(P—A. )Hp —1H1

0
(A1)
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—WL +~F +~K v+0 ~

where

M N
(rK+1 K)

K=1 i =1

(A4)

(A5)

M N
F= g g V V(RK)

K=1 i=1
(A6)

is proportional to the integrated force around the path,
and

~2 M N
K= g g VV V(RK).

K=1 i=1
(A7)

As ~~0, W, F, and K approach a constant for any
given path. Terms proportional to ~ drop out in the lim-
it and

m(P)„=Nmv — (WW). v . (A8)

is proportional to the center-of-mass displacement
around the path,

where P is the total-momentum operator and
Z =Tr[e ~ ]. It is shown here that this formula leads
to the same expression for the superAuid fraction in
terms of winding numbers as before.

Approximate the above integral by a sum and use Eq.
(2) on p(R, R ';/3 —k) and p(R ', R; X) to obtain

Pp(R 1R2,'r ) , M Pp(RK, RK+» r)
P „= lim

p(R1, R2, r) K q p(RK, RK+1, w)

(P)„= Nm v;PN

P
hence,

(A9)

For a liquid, (WW) will be diagonal and the momen-
tum response will be along v.

As before, the normal fraction is defined as that part
of the liquid which moves with the side walls,

PPp(R 1,R 2', r)
+ v

p(R, , R2;r)
(A2)

p„m & W„')I. '=1-
p PA'N

(A10)
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