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Chaotic behavior in an array of coupled Josephson weak links
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Using the resistively shunted junction model, an array of three resistively coupled, noncapaci-
tive, Josephson weak links, driven only by dc bias currents, is studied for the existence of chaos.
This system represents one of the set of three simplest Josephson systems that, in principle, can
have chaotic dynamics. The results attest to the validity of the Ruelle-Takens-Newhouse scenario

for the onset of chaos.

INTRODUCTION

The resistively shunted junction (RSJ) model is gen-
erally accepted as successfully describing the behavior of
various superconducting systems falling under the rubric
of Josephson junction, including weak links.! The corre-
sponding equations are highly nonlinear and imply
strong coherent®3 and chaotic phenomena.* These may
be important effects in experiments and in technological
devices, coherence having been suggested as a means of
attaining practical microwave sources using arrays of
coupled weak links, while chaos could be a threat to the
proper functioning of the superconducting systems em-
ployed. The recent discovery of high-7, superconduc-
tivity which includes the Josephson effect, should spur
new interest in such applications.

There are three mathematically simplest Josephson
systems that have the requisite minimum three-
dimensional phase space* to display chaotic behavior:
the single capacitive junction biased with dc currents
and driven by an ac current, two resistively coupled non-
capacitive (“overdamped”) weak links dc biased and
driven by an ac field, and three resistively coupled over-
damped weak links dc biased, but without a driving ac
current.

The first system® has been examined for chaos exten-
sively by means of numerical simulation as well as
through the pendulum mechanical analogue.® Further-
more, the existence of chaos has been demonstrated for
the second.*

Results for the third system,’ the subject of this paper,
have some bearing on use of arrays of weak links in
technological applications including microwave sources
and computer memories. Hadley and Beasley® have pub-
lished an interesting work on chaos and other phenome-
na in three coupled weak links, but with reactive cou-
pling between junctions. This introduces derivatives
higher than the first in the equations, which entails a
phase space for their system of dimension considerably
higher than 3, thus disqualifying it from ranking among
the mathematically simplest.

The equations of motion for a linear array of three
resistively coupled Josephson weak links are®

$1=R,[(I, =1, sing))+all,—I. )sing,],
¢'>2=R2[(12—102 sing)+a(l; -1, )sing,

+all, —Ic3 sing;)] , (1)
$3=R;3[(I;—1, sing;)+all, I, )sing,] .

;5 Ici, R;, and I;, i=1,2,3, are the phase across the ith
link, the critical current and resistance of that link, and
the dc bias current passing through it. Overdots refer to
differentiation with respect to (normalized) time.® The
coupling represented by the parameter a may be pro-
duced by quasiparticle diffusion between junctions as
well as by shunting the links via resistors.” For simplici-
ty the coupling is assumed equal for nearest neighbors,
and negligible for non-nearest-neighbors.

The equations describe three phases ¢;, ¢,, and ¢,
which can be taken to reside in a three-dimensional
toroidal phase space, since the equations are periodic in
each phase with period 277. One expects three types of
motion are possible for this sytem: coherent (periodic, or
quasiperiodic with only two independent periods), quasi-
periodic (i.e., triply periodic), and chaotic. The first is
characterized by two or more of the average rates of
winding (frequencies) of the three phases bearing a ra-
tional ratio to each other (voltage locking),
(¢,):{d;)=n:m. The second is characterized by all
three of these rates being in an irrational ratio to each
other, with the motion regular in behavior and with
discrete power spectra. The third has average rates of
winding in irrational ratios to each other, but accom-
panied by apparent randomness of motion, noisy (con-
tinuous) spectra, and exponential divergence of neigh-
boring trajectories (sensitivity to initial conditions).

In geometric terms coherence corresponds to trajec-
tories which are closed curves in the three-torus, or
closed curves in the two-dimensional subspace of the
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pair of locked junctions when only two links are locked.
These trajectories are “‘attractors,” in that any motion
not starting on such a trajectory is attracted ever more
closely to such sets as  — + o0. Attractors are concomi-
tants of dissipation in the-system with its associated
phase-space volume shrinkage with time. Triply period-
ic motion fills the entire three-torus and is here associat-
ed with volume conservation in time. Contrasting
sharply, chaotic motion usually results in a “‘strange at-
tractor,” that is, an attracting set having fractional di-
mension (fractal) and self-similar structure.

As mentioned above one can assign a dimensionality
to a trajectory by means of a “correlation” func-
tion.!®!! This dimension calculation can be motivated
by noting that a sampling of a p-dimensional object em-
bedded in a higher-dimensional space will yield a num-
ber of points proportional to r? lying within a radius r of
a given point on it, at least for sufficiently small ». The
correlation function is defined by

C(r)= or—|X,-X;|),

1 N
N2
(i

tFMz

where O(u)=1 for u >0, ©(u)=0 for u <0, and {X;} is
a set of N sample points on the orbit. N2C(r) is the
number of pairs, (X,-,Xj ), at a distance less than r. If
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for sufficiently small r, C(r)~r", then v is referred to as
the correlation dimension, a quantity which, while being
an attribute similar to the Hausdorff (fractal) dimension,
is somewhat more economically computed. The former
dimension has been used recently to determine the possi-
ble existence of low-dimensional attractors in complex
systems such as climate!®!! and the human brain.'?

It is also of interest to discover the routes by which
the onset of chaos occurs, the best known of which being
the Feigenbaum scenario of a sequence of period-
doubling bifurcations.!> This seems to be the main route
for the capacitive junction. Of more relevance in
the present case is the Ruelle-Takens-Newhouse
scenario,!>!* in which the very existence of a bifurcation
from a solution with two to a solution with three in-
dependent frequencies, also harbors within it the poten-
tiality of the otherwise unheralded onset of chaotic sto-
chastic dynamics. More precisely, Ruelle and Takens'*
show that in the neighborhood of a quasiperiodic solu-
tion involving at least three frequencies lie chaotic (“‘ax-
iom A”) attractors. This route was asserted as a counter
to the suggestion first made by Landau in regard to tur-
bulence!® in which stochastic motion is presumed to
occur only after an indefinitely large number of bifurca-
tions; chaos being the limiting state of quasiperiodic
motion with the number of independent frequencies
tending to infinity.

=
o~

FIG. 1.

A Poincaré plot using 20000 intersections of the trajectory with the two-torus ¢,=0(mod 27).

, o

Since we are in a

toroidal phase space the opposite edges should be identified. The parameters are I,=2.0, I,=2.309, I,=2.0, Ic1 =0.9, ICZ=0. 9,
Ic3 =1.2, R,=1.1, R,=1.0, and R;=0.9, with a=0.4. The motion is chaotic with largest Lyapunov exponent of about 0.6. This
Poincaré plot has correlation dimension of 1.67; hence the orbit is that of a strange attractor with correlation dimension of 2.67.
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RESULTS As well, the simulation monitored the relative rate of
change of volume in phase space with time. If W(t) is
the volume of an “infinitesimal” element starting at t =0
with a volume W, and if the generic n-dimensional sys-
tem satisfies d x /dt = f(x), then it is easy to show

Equations (1) were solved in 17-decimal-digit arith-
metic using a fourth-order variable-step-size Runge-
Kutta method. The local error was controlled through
the step size, ensuring reproducibility of the results. The
largest Lyapunov exponent, the positive value of which 1 daw " of;
being the definitive indication of chaos, was computed ———=3 =L
by the method of Bennetin et al.'® W dt =1 0x;
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FIG. 2. I-V curves for the three weak link system, with I, as the control parameter. The dc voltage V; is, in these units, (¢, ).

a=0.3 for the lower curve and a=0.1 for the upper. All other parameters as for Fig. 1. The largest Lyapunov exponent, A, is
plotted as well (see text).
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which in our case from (1) becomes

1 dw 2
—_——— = R;I, cos¢; . (2)
W dt 12‘ { C‘- ¢l

In contrast to the single capacitive junction where the
right-hand side of the corresponding equation is a nega-
tive constant, here the volume rate of change is vari-
able. We find solutions to (1) such that the time average
of (1/W)(dW /dt) is zero as well as negative. This indi-
cates that some solutions are not attractors. When this
ratio averages zero, the nature of the solution is quasi-
periodic (with three independent frequencies) and vice
versa. Unlike Hamiltonian systems, where dW /dt =0,
yet chaos can nevertheless occur, here chaos is always
associated with volume shrinkage with time. When
((1/W)XdW /dt)) is less than O, the solutions either are
phase locked (at least two of the three frequencies in ra-
tional relation to each other), or are chaotic with the at-
tracting sets being fractals on the three-torus (see Fig. 1).
It should be noted that in the case of weak coupling,
with a as low as 0.1, a “weaker” chaos, with low posi-
tive Lyapunov exponents, occurs. This happens only
when one junction is operating at relatively low frequen-
cy compared to the other two. These solutions are still
attractors but with relatively low rates of volume shrink-
age. For higher frequencies at these low couplings the
motion is nonchaotic. The triply periodic solutions
would apparently fill the entire three-torus (technically
dense in the three-torus), as indicated by Poincaré plots

done with many thousands of points (not illustrated).

NERENBERG, BASKEY, AND BLACKBURN 36

As the coupling is increased, triply periodic behavior
disappears entirely leaving only chaos, except when lock-
ing of some frequencies (dc voltages) takes place or one
of the junctions is passive, i.e., with dc voltage across it
zero. Free-running solutions with their corresponding
sets of three independent frequencies are apparently no
longer possible. Figure 2 illustrates this by giving the
I-V curves with the largest Lyapunov exponents plotted
on the same graph. For the smaller @, quasiperiodic
motion is the rule, except for very small intervals of
locking, and a small region of “weak” chaos when the
one junction is operating at low frequency. For the
much higher a we see chaos prevails (A>0), except
when there is coherence evidenced by the locking zones
with their sharp edges.

One finds that chaos, totally absent at zero or very
small coupling (a <0.1) and barely present at intermedi-
ate couplings (0.1 <a <0.27), is generic when the cou-
pling is sufficiently large. The exceptions occur when
one of the junctions is passive (dc voltage is 0) or, the
more interesting case, when two or more are locked.
The value of @ =0.27 for this overall threshold for chaos
will vary a small amount as other parameters are
changed from the typical values chosen for Fig. 1.

As final corroboration of the determinations, the
correlation dimensions of various solutions were comput-
ed. We find, as would be expected, that v=3 (to three
decimal places) in the cases of triply periodic solutions,
somewhat confirming the hypothesis that such trajec-
tories fill the entire three-torus. For the chaotic solution
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FIG. 3. Time traces of the voltage, ¢;, across link 1 for a=0.1 and 0.4. I,=
The lower trace is a voltage for a chaotic trajectory, while the upper one is that of a quasi-

all other parameters are as for Fig. 1.
periodic trajectory.

2.28 for the former, while I, =2.309 for the latter;
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used in Fig. 1, this dimension was found to be 2.67, indi-
cating that the corresponding orbit is an attracting set
not filling the three-torus, its fractional nature character-
izing it as a ‘“‘strange attractor,” as opposed to a periodic
attractor with dimension 1, or a partially coherent quasi-
periodic attractor (two links locked, the third free run-
ning), which has a v of 2.

Careful study was made of the routes taken to chaos.
Time traces of the voltages (e.g., Fig. 3) reveal that
chaotic solutions are without long bursts of regular be-
havior, as might be expected from the Manneville-
Pomeau intermittent chaos scenario.!> Exhaustive
search does not find any period-doubling sequences near
the onset of chaos, as the Feigenbaum scenario requires;
hence we conclude that the aforementioned Ruelle-
Takens-Newhouse (quasiperiodic) scenario is the only
one. The observation of this route to chaos has, as well,
been recently reported to occur in experiments on
fluids.'”!8

Parenthetically it should be finally remarked that
despite allowing for a fairly long transient period during
the simulations prior to commencing of Lyapunov-
exponent computations, one observes occasionally ‘“‘tran-
sient chaos,” a phenomenon reported in other studies.!’
A solution may start out behaving chaotically, generat-
ing Poincaré plots very much like Fig. 1, only ultimately
to fall into a coherent state, a periodic attractor. To en-
sure the reality of the observation of chaos, many trajec-
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tories were checked by allowing for extremely long tran-
sient periods in excess of 10® time units.

CONCLUSIONS

We have shown by numerical simulation that sets of
three strongly resistively coupled weak links will behave
only coherently or chaotically under the effect solely of
their mutual interaction. This would indicate that, ex-
perimentally, large arrays should be very ‘““noisy” unless
they are in some coherent state, at least when coupling
between pairs is reasonably large, but nonetheless very
much within the realm of experimental values.?*?! The
onset of chaos in this system corroborates the contention
that nonlinear systems with three or more frequencies
are inherently unstable against stochastic motion. Fur-
ther studies on much larger arrays are being carried out
in order to determine whether thresholds for chaos drop
with increasing number of links. In particular, the
“weak” chaos observed at relatively low coupling might
be more apparent in extended arrays. As well, larger ar-
rays may go chaotic even when some subsets of links are
mutually locked, providing only that three independent
frequencies can be present.

ACKNOWLEDGMENT
This work was supported through grants from the

Natural Science and Engineering Research Council of
Canada.

1J. Bindslev Hansen and P. E. Lindelof, Rev. Mod. Phys. 56,
431 (1984).

2A. S. Deakin and M. A. H. Nerenberg, Phys. Rev. B 25, 1559
(1982).

M. A. H. Nerenberg and J. A. Blackburn, Phys. Rev. B 23,
1149 (1981).

M. A. H. Nerenberg, James A. Blackburn, and S. Vik, Phys.
Rev. B 30, 5084 (1984).

SR. L. Kautz, IEEE Trans. Magn. MAG-19, 465 (1983).

6James A. Blackburn, Yang Zhou-Jing, S. Vik, H. J. T. Smith,
and M. A. H. Nerenberg, Physica 26D, 385 (1987).

"Preliminary results on this system were first reported by the
present authors at the MIDIT Workshop on Coherence and
Chaos, Lyngby, Denmark, 1986 (unpublished).

8p. Hadley, and M. Beasley, Appl. Phys. Lett. 50, 621 (1987).

°D. W. Jillie, M. A. H. Nerenberg, and J. A. Blackburn, Phys.
Rev. B 21, 125 (1980).

10C, Nicolis and G. Nicolis, Nature (London) 311, 529 (1984).

11C, Essex, T. Lookman, and M. A. H. Nerenberg, Nature
(London) 326, 64 (1987).

12A. Babloyantz and A. Destexhe, Proc. Natl. Acad. Sci. U. S.

A. (Neurobiology) 83, 3513 (1987).

BD. Ruelle, in Turbulence and Predictability in Geophysical
Fluid Dynamics and Climate Dynamics, edited by M. Ghil
(North-Holland, Amsterdam, 1985).

14D, Ruelle and F. Takens, Commun. Math. Phys. 20, 167
(1971).

15A. S. Monin, Usp. Fiz. Nauk 125, 97 (1978) [Sov. Phys.—
Usp. 21, 429 (1978)].

16G. Bennetin, L. Galgani, and J. M. Strelcyn, Phys. Rev. A
14, 2338 (1976).

173, Stavans, F. Heslot, and A. Libchaber, Phys. Rev. Lett. 55,
596 (1985).

18K . R. Sreenivasan, in Frontiers in Fluid Mechanics, edited by
S. H. Davis and J. L. Lumley (Springer-Verlag, Berlin, 1985),
p- 41.

195, P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

20p, W. Jillie, M. A. H. Nerenberg, and J. A. Blackburn, Phys.
Rev. B 23, 1149 (1981).

21H. J. T. Smith (private communication).



