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Antiferromagnetic order and high-temperature superconductivity
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The nearly half-filled Hubbard model with strong on-site repulsion is used as a model for the
recently discovered copper oxide high-temperature superconductors. The onset of superconduc-
tivity upon doping the half-filled lattice of La2Cu04 is explained in terms of the Bose-Einstein
condensation of effective mass O(m, ). These holes move freely over an antiferromagnetic back-
ground. The mechanism is very different from the BCS mechanism. A fit to data is obtained by
adjusting the interplane hopping amplitude, which turns out to be extremely small, though neces-
sary.

I. INTRODUCTION

In this paper we study the recently discovered' high-
temperature superconductors La2 „X„Cu04,where 2'is a
divalent element, by idealizing the system as a nearly
half-filled Hubbard model with large on-site repulsion, as
first suggested by Anderson. The half-filled lattice, with
exactly one electron per site, simulates the insulator
La2Cu04, in which nearest-neighbor electrons are thought
to have strong antiferromagnetic correlations. Doping,
i.e., replacing the trivalent La by a divalent element X,
will create vacancies (holes). Anderson argues that the
vacancies will enable bound singlet pairs of electrons to
become current carriers, and lead to superconductivity.
This suggestion has gained credence, when recent experi-
ments on single La2Cu04 crystals demonstrated the ex-
istence of planar antiferromagnetic order in the Cu —0
plane.

We shall show that the antiferromagnetic order is im-
portant for the onset of superconductivity upon doping, in
that it provides a template over which the holes move as
noninteracting bosons of charge +2e. The approxima-
tion, which we shall refer to as antiferromagnetic back-
ground approximation (ABA) is that the template can be
treated classically, and is left undisturbed by the motion
of the holes. The ideal Bose gas of holes will undergo
Bose-Einstein condensation below T„and the superfluid
flow of the condensate induced by an external field will

give rise to superconductivity.
The effective mass of the ho1es in ABA turns out to be

about two electron masses, which sets a temperature scale
of the order of 2000 K. The much lower observed value of
T, reflects the fact that Bose-Einstein condensation can
occur only in three or more dimensions, and is consider-
ably reduced by the quasiplanar nature of the lattice. We
are able to fit data by adjusting the interplane hopping
amplitude, which turns out to be about 5 x 10 times the
in-plane hopping amplitude. Our model predicts that T,
is proportional to the cube root of the interplane hopping
amplitude. It should increase under external pressure, or
with a change in lattice structure that brings the planes
closer together.

We estimate that ABA is valid only for doping fractions

much less than 60%. For higher doping we use mean-field
theory as a guide, although it cannot be made to fit data
by varying the parameters of the model. In mean-field
theory superconductivity comes about through Cooper-
pair formation (CP). The mechanism diff'ers from that in
conventional BCS theory, in that the pairs here are bound
by nearest-neighbor antiferromagnetic attractions, instead
of forces arising from phonon exchange.

We begin by defining the Hubbard model used as a
starting point, and then justify the assumptions used in
formulating ABA. We then solve the model in ABA, and
obtain an analytical expression for the critical tempera-
ture, which is used to fit data from La„—2Sr„Cu04. Re-
sults from mean-field theory are then cited. We end with
a discussion on the contrast between Bose-Einstein con-
densation and the CP mechanism.

II. STRONG-COUPLING HUBBARD MODEL

Consider a Hubbard model on a three-dimensional
(3D) rectangular lattice, with M sites and N electrons.
We are interested in the nearly half-filled case, for which
N is slightly less than M. The Hamiltonian of the system
is given by

H =URN; tN;1 —g t;J (C~~, CJ, +H.c.),
i (i j )s

(2.1)

where C;, is the annihilation operator for an electron at
site i with spin s, N;, the corresponding occupation num-
ber, and (i,j) denotes a pair of nearest-neighbor sites.
The first term in Eq. (2.1) discourages double occupancy
of any site, and the second term allows the electrons to
hop from site to site. We take

r

t, if (i,j ) lies in Cu —0 plane,
t s, if (i,j ) is orthogonal to Cu —0 Plane. (2.2)

Typically U» t, t3/t « 1, t =0.5 eV. In numerical esti-
mates later we take for definiteness U =2.5 eV, or
t/U=0. 2. Formally we take the large U limit, and treat
the second term in Eq. (2.1) by perturbation theory. In
this limit the half-filled lattice is populated exactly one
electron per site. In the underfilled case there are vacan-
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cies (holes), and the fraction of vacant sites x 1 —N/M
is called the doping fraction.

The unperturbed Hamiltonian has highly degenerate
energy levels equally spaced by U. The lowest level corre-
sponds to states with no doubly occupied sites, the first
level corresponds to exactly one doubly occupied site, etc.
Let Sp be the Hilbert subspace spanned by the states hav-
ing the lowest energy. To second order in standard per-
turbation theory, the linear combination among the states

of So that best approximates the ground state is to be
found by diagonalizing the following effective Hamiltoni-
an:

H, ff H'+ H' H',
Ep —Hp

(2.3)

where Hp and H' are respectively the first and second
term in Eq. (2.1), and Q is the projection operator out of
So. Working out H, tt explicitly, we obtain

Huf H] +H2+ H3

H&- —g [g;C t~, C j, +(i j)],
&i,j &,s

H2 2U g ttj (Cj,s Cr sNi', —s C, i,s Cj,s + Cg s C(' —Cst&sj,, )s
&i,j&,s

H3 U g tij tjk [4k(CksCjsNj, —sCgsCi s+Ck, —sCj, —sCgsCis) +, (t ~k)1
&i,j,k&,s

(2.4)

(2.S)

(2.6)

(2.7)

where (i,j,k) denotes a triplet of sites in which ij and jk
are nearest neighbors, and

~
I, if site i is empty,

0, otherwise.

the form btb, which might lead one to think that H2 is
simply the total number of nearest-neighbor singlet pairs.
But appearance is deceiving, for the commutation rela-
tions between b and b t are complicated:

Introducing the operator

brj -2 ' (C;tCjl —C;tCjl), (2.9)

[b; ,b;t] -1—. —,
' (N;+N ),

[b~j, bjt ] - —,
' gC;, Ckt, ,

(2.is)

(2.i6)

we can also write

H2= —4U ' g t'btb
&i,j&

H3 —2U ' g t jtjk (gkbkjbj'; + (t ~k)1
&,j,k&

"
(2. io)

(2.11)

Actually the factor g; is unnecessary as long as we only
consider matrix elements of H, ff in the sub-Hilbert space
So. It is included merely as a reminder. The independent
parameters in the model are the antiferromagnetic cou-
pling J, the ratio of hopping parameters r, and doping
fraction x:

J=4t 2/U,

r =t3/t,
x =1 —N/M .

(2. i2)

(2.i3)

(2.14)

The case r -0 corresponds to a two-dimensional (2D) lat-
tice.

As is evident from Eq. (2.6), the Hamiltonian H2 de-
scribes the virtual process illustrated in Fig. 1 (a), in
which an electron hops to a neighboring site occupied by
an electron of the opposite spin, making it doubly occu-
pied momentarily, and redresses the situation either by
hopping back itself, or having the other electron hop back.
The negative sign favors antiferromagnetism, since each
nearest-neighbor triplet pair misses the chance to lower
the energy by J/2. In the scenario we shall describe later,
the onset of superconductivity depends on the existence of
antiferromagnetic order, for which H2 is responsible.

In the form (2.10) H2 is expressed as a sum of terms of

() ()
ll

0 () ()

(b) () () 0 ~ 0 ( ) 0
0 () ()

FIG. l. (a) Virtual process that gives rise to an attraction be-
tween nearest-neighbor electrons in a singlet spin state. (b) The
three-site interaction enables a singlet spin pair to move.

where N; =N;~+N;~. In fact, as one can readily verify,
H2 has the same matrix elements in Sp as the Hamiltoni-
an of a Heisenberg model. 5 Thus, in more than one di-
mension, H2 is just as insoluble as the Heisenberg model.

From either Eq. (2.7) or Eq. (2.11) we see that H3 de-
scribes the three-site virtual process illustrated in Fig.
1(b), which enables a singlet pair to move, provided there
is an adjacent empty site. (In contrast, a triplet pair can-
not move at all. ) As we shall see later, this term is crucial
for the onset of superconductivity upon doping.

The Hamiltonian H& enables an electron to hop singly
to an adjacent empty site. It tends to destroy an estab-
lished antiferromagnetic order, as illustrated in Fig. 2(a),
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ttt*t
FIG. 2. (a) Moving a hole one space over an antiferromag-

netic background ruins it. (b) Moving a hole two spaces, on the
other hand, 1eaves the background undisturbed.

and thus works against any mechanism for superconduc-
tivity that is based on antiferromagnetism.

At exactly half filling we have H, tt=H2. [Note, in-
cidentally, that the commutator (2.15) vanishes. ] In this
case the system is equivalent to a Heisenberg model with
antiferromagnetic coupling —J in the Cu —0 planes, and—rJ in the orthogonal direction. The ground state is be-
lieved to be well described by small quantum fluctuations
about the classical Neel state. If the ground state were
a pure Neel state, the excited states would be separated
from it by an energy gap J. The existence of quantum
fIuctuations leads to gapless spin-wave excitations. On di-
mensional grounds we expect that they have rather large
velocities, of the order of c =Ja/h„where a is the lattice
spacing. Taking J=0.5 eV and a =1 A for an estimate,
we have bc=0.5 eV A, or c=5&&10 cm/s. Thus the
half-filled lattice is hard to excite, and should be an insu-
lator. These expectations, while not rigorously proven in
the Hubbard model, are strongly supported by experi-
ments performed on a La2Cu04 crystal. In particular
the estimate for c given above agrees with experiments.

modynamic limit), and falls off rapidly when the number
of Aipped spins increases.

Now consider very light doping, in which the density of
holes is vanishingly small. Define a state with n holes lo-
cated at z= fz~, . . . , z„J by

~z;a)—= (z~, . . . , z„;a)—:constx(Cjt. Catt „)(0),
(3.3)

where site labels on the Cit
's refer to the occupied sites, in

ascending order to the right. A complete orthonormal
basis for the sub-Hilbert space 50 is generated by allowing
a and z to take on all possible values. The order of the z's
in Eq. (3.3) is irrelevant. For example, for a 4-site lattice
(z~,z2] and fz2, z~J both specify that electrons be created
only at sites 3 and 4, and the order of their creation is
fixed by convention. Thus, interchanging z~ and z2 does
not change the state, not even by phase factor. In this
sense the holes obey Bose statistics. This is consistent
with the usual notion of holes in solids, for a hole here re-
sults from removing two electrons from a completely filled
site. Since a hole cannot be created on a site where there
is already a hole, there is effectively a zero-range hard-
core repulsion between holes.

We can trivially rewrite

Huf g g ( z ';a'&&z ';a'
( H, tr ~

z;a&&z;a
~

. (3.4)
Z, 2 C, C

For light doping the background lattice is essentially a
Heisenberg lattice with holes. For given z, let us use as a
basis the eigenstates of an antiferromagnetic Heisenberg
model in which the sites z are taken out, by setting to zero
all nearest-neighboring couplings to those sites. We have
seen that spin excitations are costly in energy. On the oth-
er hand, the holes can move with relatively little effort.
Thus, to study low-lying excitations associated with the
motion of the holes, we may ignore all but the ground-
state spin configuration, and consider a more restrictive
sub-Hilbert space spanned by

~
z;Heisenberg) =+K(a)

~
z;a), (3.5)

III. ANTIFERROMAGNETIC BACKGROUND
APPROXIMATION (ABN

Let a denote a spin configuration for the half-filled lat-
tice, i.e., it is a list specifying the spin states of the sites.
The ground state of the system, which in this case is
equivalent to a Heisenberg lattice, is of the form

~
Heisenberg) =+K(a)

~ a),

i a)=constx (C} ' ' Cst) i 0)

(3.1)

(3.2)

where
~
0) is the vacuum state, the state in which the lat-

tice is entirely unoccupied. The subscript X on Ci is an
abbreviation for the site and spin label [ii,sil. We must
adopt a fixed convention on the ordering of the C~~'s, for
example, the one with a higher site label should be written
further to the right. We expect K(a) to be peaked at the
Neel configuration (that is, at one of the two possible Neel
configurations, the other one being decoupled in the ther-

where K(a) is the same function as in Eq. (3.1).
For our purpose the spin distribution is relevant only in

neighborhoods of the holes, of next-nearest-neighbor size.
Since there are very few holes, the probability of finding a
Aipped spin in these neighborhoods is presumed small, and
will be neglected. Accordingly, we make the further ap-
proximation of replacing K'(a) by a h function peaked at
the Neel state, and replace the basis Eq. (3.5) by

~

z&—:
~
z;Neel& —=

~ z;ao&, (3.6)

where ao denotes the Neel spin configuration. The space
spanned by these states is called the antiferromagnetic
subspace. For a state to remain in this subspace, the
motion of a hole must not disturb the antiferromagnetic
background. This requires that the site left behind by a
moving hole be filled by the spin at that site specified by
ao. Like a figure in animation, a hole may block out
different parts of the background scenery as it moves, but
the same part is restored when it passes. To emphasize
the point, we term the choice of basis Eq. (3.6) the anti
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ferromagnetic background approximation (ABA).
The effective Hamiltonian in ABA is given by

neither i nor j can be a hole. Using Eq. (2.2) we rewrite
this as

H.n= g lz'&&z'IH. irlz&&z I . (3.7) &z I H2I z& = —
2 J(Nt+r %~), (3.iO)

zjz

First we observe that

&z'
I Hi I

z& =0, (3.s)

&z'I H
I

z& = —(2/U)B. ..g t;
(i,j )

(3.9)

where &ij& denotes an actual nearest-neighbor pair, i.e.,

because H~ takes a state in the antiferromagnetic sub-
space out of it, as illustrated in Fig. 2(a). The virtual
effects of H& give an estimate of the range of validity of
ABA, which we shall quote 1ater.

Next we note that H2 is diagonal:

where N~l and N& are, respectively, the number of actual
nearest-neighbor pairs in the Cu —0 plane, and the num-
ber of interplane pairs. By construction, all such pairs
have antiparallel spins. Suppose there is only one hole
present. Since it takes away four nearest-neighbor links in
the plane, and two in the orthogonal direction, the energy
of the system is given by

&z I H2 I z& =Fo+&F
(3.i i)

&F- =J(2+r'),
where Eo is a constant. For two holes we have (using NN
as abbreviation for "nearest neighbor"),

0 if the holes are not NN,
&z I H2 I

z& =Eo+ 2'.F. —' J/2 if the holes are in-plane NN,
r J/2 if the holes are interplane NN.

(3.i2)

More generally we can write

&z I H2 I z& =Fo+2« —,' J(n((+r'n~—)+ (3.i3)

1f Z 1 =Z2,
—J/2 if z i, z2 are in-plane NN,

V zi, z2) =' —r J/2 if zi, z2 are interplane NN,

0 otherwise.

The dots in Eq. (3.13) denote contributions from the
simultaneous interaction of three or more holes, which

(3.i4)

where n II and n & are, respectively, the number of NN hole
pairs in the plane, and orthogonal to the plane. This im-
plies there is an eff'ective two-body potential between
holes:

will lead to three- and higher-body potentials. All the in-
teractions are negligible when the density of holes is small.
Accordingly we neglect them entirely, and take H2 to be a
constant. The eff'ects of the interactions will be comment-
ed on later.

We now turn to H3, whose action in the antiferromag-
netic subspace is illustrated in Fig. 2(b). It enables an
electron to "leapfrog" over its nearest neighbor (neces-
sarily of opposite spin), and jump to an initially empty
next-nearest-neighbor site. The net result is that a hole
skips two lattice spacings at a time, so that it always
moves in the same Neel sublattice.

For convenience we denote a lattice vector by p or v,
and use the notation t;J =t(p), where fi,j/ mark the end-
points of p. The nonvanishing matrix elements of H3 can
then be written in the form

z&, i. . . , z; +p +, v. . . z„l HI3z , i. . . , z;, . . . z„=&—U 't(p)t(v), i =l, . . . , n, p+vwo . (3.i S)

(3.is)

In the antiferromagnetic subspace we can introduce boson
operators h t(z) and h(z), which respectively creates and
annihilates a hole at lattice position z, with

fh(z), h t(.') 1 =~„, , (3.i6)
gh'(z)h(z) =n . (3.i7)

z

When a hole is annihilated by h (z), the site at z is refilled
by the spin that was removed from the Neel configuration
in order to create that hole originally. We can now
represent H3 in the form

H3= —U 'g g t(p)t(v)ht(z+p+ v)h(z),
Z PjV

(&+&~0)

where the z sum extends over all lattice position vectors.
For a more formal derivation of Eq. (3.IS), note that Eq.
(3.I 5) defines an n-body Hamiltonian acting on the
configuration space of holes. It is then straightforward to
rewrite the Hamiltonian in second-quantized form, result-
ing in Eq. (3.1S).

We emphasize that the ABA is a kind of semiclassical
approximation in which the quantum-mechanical spin
fluctuations about the Neel configuration are neglected.
In other words, we ignore the coupling between the holes
and spin ~aves. The estimate given at the end of the last
section, which yields a high spin-wave velocity, makes the
approximation plausible for phenomena below a few hun-
dred degrees Kelvin. An improvement to ABA should
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take the spin waves into account, possibly along the lines
discussed by Anderson sometime ago.

where p is the density of holes, and g(3/2) =2.612. . .. In
our case this gives

IV. THE ONSET OF SUPERCONDUCTIVITY

h(z) =M 't ge' 'h(k),
k

h(k) =~-'"pe -'"'h(z) .

(4.1)

(4.2)

The Hamiltonian in ABA, which is given by 03 up to
an additive constant, can be diagonalized by Fourier
analyzing h (z):

8K i/3
1 + r 2/3

lg(3/2)]
(4.12)

In Fig. 3 we plot T~ against the doping fraction x, for
various values of the hopping parameter ratio r, with the
data' for Lap —„Sr„Cu04 shown on the same graph. Our
curves are computed for t =0.5 eV and the somewhat ar-
bitrary choice U =2.5 eV. This set of parameters gives

It is easily verified that
J=0.4 eV =4800 K,

(4. 1 3)

[h(k), h t(k')] =S«, ,

g h t(k) h (k) =n .
k

In terms of the Fourier transforms we have

(4.3)

(4.4)

H,a=const+K3 =const+QE(k)h (k)h(k),
k

(4.5)

E(k) = g t(p)t(v) [1 —cos[k (p. +v)]j . (4.6)1

2U
(p+ v&0)

The Hamiltonian is now in diagonal form. For the low-
lying excitations we can take the small-k limit of E(k):

E(k) = g t(p)t(v)[k (p+v)l' .
1

2U
(p+ v~0)

Using Eq. (2.2) we can recast Eq. (4.7) in the form

(4.7)

E(k)=t' " '+
2m 2m 3

(4.8)

h 2 r=4Ja 1+—
m 2

(4.9)

2 r=4Ja3r 1+— (4.10)

2z
Tg

[g(3/2) l (m ~m2m3) ' (4.11)

where the x-y plane refers to the Cu —0 plane, and a and
a3 are, respectively, the in-plane and interplane lattice
constants. As expected, the effective mass m 3 for inter-
plane motion goes to infinity in the 2D limit, when the ra-
tio r of hopping parameters goes to zero.

For light doping, the system is equivalent to an ideal
Bose gas of holes with number conservation, and hence ex-
hibits Bose-Einstein condensation below a critical temper-
ature Tq. The superfluid flow of the Bose-Einstein con-
densate induced by an external magnetic field leads to su-
perconductivity.

For arbitrary masses m i, m2, and m3 for motions along
the x, y, and z axes, the Bose-Einstein transition tempera-
ture (with Boltzmann's constant set to unity) is given by

m*=2m, ,

where m, is the mass of a free electron. The fact that the
eAective mass is of electronic magnitude puts the transi-
tion temperature on a high-energy scale. (That it comes
out to be two electron masses is amusing but accidental. )
However, Bose-Einstein condensation can take place only
in three or more dimensions, and the phenomenon disap-
pears in the 2D limit (r 0). This is reflected in the r 't

dependence in Eq. (4.12). To counteract the large energy
scale of 4800 K su%ciently to bring the transition temper-
ature down to the observed range of around 100 K, r has
to be as small as 10 —10 . Thus, the lattice is almost
two dimensional, in agreement with experimental
findings, but it is not known whether these small values
of r are quantitatively correct.

The theory predicts that, at least for small doping, one
can increase the critical temperature by increasing the in-
terplane hopping. In practice, this may be accomplished
through a structural change of the lattice to bring the
planes closer, or application of external pressure. The
pressure dependence of the critical temperature cannot be
predicted within this model, which takes the hopping pa-
rameters as given. The conclusion that a more nearly
three-dimensional lattice has a higher critical temperature
agrees with that of Lee and Read, " though for an ap-
parently diff'erent reason.

Taking the eA'ective potential Eq. (3.14) into account,
we have a dilute nonideal Bose gas, whose properties are
well understood. ' The interaction can be summarized by
a single parameter, the scattering length D, which may be
thought of as an eA'ective hard-core diameter. The small
dimensionless parameter in the problem is ~=p' D. The
transition temperature changes only by O(e), which is not
significant. The most important eff'ect of the interactions
is to alter the single-particle excitation spectrum from be-
ing particlelike, as in Eq. (4.7), to being phononlike, with
sound velocity proportional to e' . This gives a specific
heat proportional to T near absolute zero, instead of the
T behavior of the ideal Bose gas. The width of the tem-
perature region in which the cubic law applies, however, is
O(e).

The linear phonon spectrum is important in the present
application, for any scattering among quasiparticles with
a quadratic spectrum will destroy the superfluidity of the
condensate. The transition from single-particle behavior
to collective-phonon-like behavior, as well as the inteplay
between them, is well understood. '
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FIG. 3. Critical temperature as a function of doping fraction. The parameter r =t3/t is the ratio between the hopping parameters
normal to and in the Cu —0 plane. Diff'erent scenarios give the branches Ts (from Bose-Einstein condensation) and T~ (from mean-
field approximation). T~ is insensitive to r, but Tg depends on it. The data are from Ref. 10.

When the fraction of holes becomes significant, the an-
tiferromagnetic background loses meaning, and ABA
must breakdown. The cause lies in the increasing impor-
tance of H ~, which tends to disrupt the antiferromagnetic
order. The second-order energy shift due to H~ is of the
order of nt /J, where n is the number of holes, t comes
from the squared matrix element of H ~, and J=4t /U is a
typical energy denominator, the price of a Aipped spin.
Thus the energy shift per lattice site is Ux/4, where x is
the doping fraction. For ABA to be valid this must be
much smaller than the energy per site due to H2, which is
of order J=4t 2/U. Therefore a criterion for the validity
for ABA is

A=(Md) ' g (C;lCP —C;lC)t),
(i,j)

ek = —g (2xt„+PJ„)cos (k„a„),

P=(Md) ' g (Ct, C, ,),
(i,j )

Jk =g J& cos(k&a&)

(s.2)

(s.3)

(s.4)

(s.s)

an is given by

HMF =g (ek —p)C), Ck, QJk—(CjtC kth+—H c ), . .
k, s

(s.I)

x « (4t/U)' . (4.I4)

For our choice of parameters the condition is x «0.6.

where p is a constant (the chemical potential). This
Hamiltonian is of the BCS type, and can be diagonalized
by a Bogoliubov transformation. The gap and chemical
potential equations are as follows:

V. MEAN-FIELD THEORY

There is yet no reliable method to treat the problem
beyond ABA. For qualitative orientation, one can turn to
mean-field theory, which has been discussed by Anderson,
Baskaran, Zou, and Hsu' and by Ruckenstein, Hirsch-
feld, and Appel. ' The treatment consists of three drastic
approximations: (a) replacing the operator g in Eq. (2.8)
by the doping fraction x (a poor approximation for small
x); (b) neglecting the three-site term H3 (justifiable in
hindsight); (c) linearizing H2 (a practical necessity).

We shall denote by Ck, the Fourier transform of C; „
and use p to denote both a lattice vector and the direction
of that lattice vector. For example, we shall denote the
component of k along p by k„. The mean-field Hamiltoni-

I = g g cos(k„a„)tanh(pEk/2),1

Md k E

tanh(PEk/2),1 ek P
M k Ek

4(ek p) +~ Jk

(s.6)

(s.7)

(s.g)

where P is the inverse temperature. Numerical factors in

these equations disagree with the corresponding ones in
Refs. 14 and 15. In this respect the quoted references also
disagree with each other.

The critical temperature T~ is the temperature at
which 4 =0, and is obtained by solving the above equa-
tions numerically, with the result shown in Fig. 3. As a
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function of x, it is insensitive to r, and the dimensionality
d of the lattice. The important model parameters are t
and J. It can be shown analytically that the curve extra-
polates to J/4 at x =0, and vanishes at a value determined
by J/t. With t fixed by electronic calculations at 0.5 eV,
there is essentially only one adjustable parameter J.

The Cooper pairs here are bound by the attraction be-
tween spin-singlet pairs, arising from H2. They have zero
total momentum, and therefore no translational motion as
a whole, and thus the neglect of H3 is a self-consistent ap-
proximation. The stability of the Cooper pairs is under-
mined by H &, which encourages electrons to hop singly to
empty sites. When the number of empty sites increases,
so does the importance of H&. This is why TM decreases
with x, and eventually vanishes.

The work in Ref. 15 actually takes H3 into account, but
linearizes it. The effect of a linearized H3 is to enhance
the stability of the singlet pairs against transition to a trip-
let state but in the mean-field approximation it has only a
small effect on the critical temperature.

Confrontation with the data in Fig. 3 shows that the
mean-field approximation is rather poor. No value of J
can make the mean-field curve fit the data in any quanti-
tative sense.

less certain, for the mean-field theory used in this regime
is inadequate. For lack of an alternative, however, let us
take the suggestion of mean-field theory that the mecha-
nism is Cooper-pair formation (CP). We would like to
compare these two different pictures.

Although the ABA and the CP scenarios cannot be
bridged by a common set of variables, it is instructive to
try to describe them in a common framework, even though
we may have to resort to ill-defined concepts. In both
schemes there are bosons arising from the binding of elec-
tron pairs, and we can think of the system loosely as a
superfluid of composite bosons. In the CP case the com-
posite bosons are obviously the Cooper pairs. In ABA
they are the holes, whose dynamics originates in the anti-
ferromagnetic order. In either case we can associate two
energy scales with the system: a binding energy 5, and a
critical temperature Tz. The binding energy measures the
integrity of the bosons as particles, and the critical tem-
perature measures the cohesiveness of the Bose-Einstein
condensate. In ABA we have Tz((h. When the system
heats up, the Bose-Einstein condensate evaporates long
before the bosons dissociate. This is why 3, is irrelevant in
this regime. In the CP regime we have just the opposite,
i.e., T~ &&h. Upon heating, the bosons quickly dissociate,
and Tg never had a chance to enter the picture.

VI. DISCUSSION

As we found in ABA, whose basis and results are not in
disagreement with experiments, the mechanism for the
onset of superconductivity is Bose-Einstein condensation.
What sustains superconductivity at moderate doping is
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