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A model of localized interacting electrons is studied numerically, under conditions in which the
electron wave functions significantly overlap in space. A Coulomb gap in the one-particle density
of states is found to persist throughout the localized regime. From the calculated rise of a
quantum-mechanical order parameter, and from the increase in the number of metastable
"pseudo-ground" states, evidence is obtained of a glass transition, occurring at zero temperature,
as the overlap is varied.

The long-range Coulomb repulsion between electrons in
localized states leads to a number of remarkable effects, of
which the best known is the Coulomb gap" ' in the densi-
ty of states (DOS). The density of one-particle excita-
tions is reduced in the vicinity of the Fermi energy EF, in
such a way that it tends to zero at EF, but it is nonzero
elsewhere. The original arguments in favor of this eA'ect,
as well as the computer simulations which subsequently
confirmed it, were formulated for the infinitely dilute re-
gime, in which the spatial overlap between localized states
is negligibly small. This is not, however, the regime in
which experimental studies are usually conducted. In
the experiments of Zabrodskii and Zabrodskii and
Zinov'eva, where the presence of a Coulomb gap is in-
ferred from the temperature dependence of the resistivity
in n-doped germanium, almost all the samples are very
close to the metal-insulator transition, and therefore the
overlap of wave functions is far from negligible. Quite
generally, overlap effects are now believed to be important
whenever the concentration of impurities exceeds, '& of
the critical Mott concentration. Other experiments
which have recently been interpreted as prime evidence
for the Coulomb gap are photoemission studies' of com-
pensated sodium tungsten bronzes. Here again the con-
centration of uncompensated electrons is much larger
than —,', of the critical concentration. It is therefore
relevant to undertake a study of the disordered insulator
under conditions in which the overlap between localized
wave functions is not negligible. This problem is ad-
dressed in the present Rapid Communication.

The method employed is an extension of the numerical
energy-minimization programs of Baranovskii, Efros, Gel-
mont, and Shklovskii (BEGS) and Davies, Lee, and
Rice3 (DLR). The crucial difference is that the electrons
are allowed to tunnel between neighboring impurities,
with a tunneling amplitude t. The two other parameters
characterizing the system are the disorder bandwidth 8
and the magnitude of the Coulomb interaction Eo—=B. It
will be shown that a Coulomb gap in the DOS persists up
to values of t/B at which the localization length becomes
comparable to the size of the sample. We shall then dis-
cuss the possibility of a glass-ordering transition occurring
at the absolute zero of temperature when t/B is varied; for
example, by doping or by compensation. The onset of

glasslike order is suggested by two different facts: (a) rise
of an order parameter which we define as a quantum
modification of the one of Edwards-Anderson, "and (b)
the rapid increase of the number of metastable "pseudo-
ground-states" of similar energy. The transition appears
to occur at t/B=0. 04 in three dimensions (3D) and
t/B =0.06 in 2D, which are both within the localized re-
gime.

A simplified Hamiltonian for localized interacting elec-
trons has the form (in dimensionless units)

H =HO+ 2 g (a;ta; —K)(a,~a~ —K),1

ij ij
lWJ

Ho=+ ip;a;la;+t g a;ta,
i (ij)

where a;t (a;) is the creation (annihilation) operator of an
electron at site i, p; is the random site energy, and K is the
compensating charge per site. To make comparison with
previous results for the classical version of the Hamiltoni-
an (t =0), we also choose to ignore spin. The tunneling
term can be formally eliminated, transforming to the basis
of the exact eigenstates ~a)=g;C; ~i) of the nonin-
teracting Hamiltonian Hp. The transformed Hamiltonian
has the form

H =+E,a, a, + —,
' g e,p (ar,sap Kb,p) (a„as KBrs)—. —

a,P, y, 8

(2)

E, are the exact eigenvalues of Hp. The matrix elements
of the Coulomb interaction are defined as

1
cap rs X Cai Cpi Cri Cs& (3)

i j iJi'
The many-body problem in Eq. (2) cannot be solved ex-

actly for a system of reasonable size. The present work is
based on the following approximation: We only keep the
components of the interaction in which the indices a,p, y, b'

are equal in pairs, i.e. , a=p and y=6, or a=6 and y=p.
This is equivalent to the Hartree-Fock (HF) approxima-
tion, with neglect of the off-diagonal elements g,p(asap)
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of the self-energy. In other words, we seek an approxi-
mate ground-state as a single Slater determinant of nonin-
teracting eigenstates. The treatment becomes rigorous in
the extremely localized (t 0) and in the extremely delo-
calized (t ee) limit. Among the neglected self-energy
terms, the most important are the off-diagonal Hartree
ones g,&=gp,~»n„(yea, P). These terms are consider-
ably smaller than typical differences of diagonal energies,
and their signs alternate randomly (at t/8 =0.04, the
variance is =0.018 and the average is =0). Therefore,
a complete solution of the HF equations is not expected to
change substantially the character of the one-electron
eigenstates. ' The present treatment does not take into
account the decay rate of excitations, which is due to
terms beyond the Hartree-Fock. This effect has been
shown' to be exponentially small in the insulating re-
gime. The effective Hamiltonian takes the form

H=QE, a, a, + & g(e„sp e,p—p, )(n, —K)(np E), —
a aItt

(4)
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FIG. 1. One-particle density of states for two- and three-
dimensional samples at compensation K —,'. Dashed curves:
t 0. Solid curves: t/B 0.083 in 3D and t/B 0.125 in 2D.

Coulomb gap, brought about by quantum effects. At
t/8 =0.083 the 3D quantum DOS in the region of the gap
is two to five times larger than the classical DOS. The
value of r/8=0. 083 was chosen because it is extremely
close to that obtained by Licciardello and Economou' for
the onset of localization in a tight-binding cubic lattice.
We have also directly checked that at this point the aver-
age extension of the one-electron wave function is about
90% of the limiting value it would reach in a perfectly or-
dered sample. Therefore, the fact that the DOS still has a
sharp two-peak structure strongly suggests that the
Coulomb gap persists up to the metal-insulator transition.
At larger values of t (i.e., in the metallic regime), the
Hartree-Fock calculation predicts a "correlation gap"'6
varying as (E —EF) '/ . Screening effects will modify this
result, leading to a finite DOS at the Fermi energy. Un-
fortunately, the closing of the Coulomb gap cannot be nu-
merically followed in systems of the size considered here.
The reason is that when the quantum bandwidth exceeds
the disorder bandwidth the noninteracting DOS begins to
look like a series of well-separated peaks. The Coulomb
two-peak structure is gradually washed out, but it is not
possible to obtain a continuous DOS curve.

The results discussed above are in qualitative agree-
ment with the predictions of an analytical theory, ' which
was developed for the t 0 limit, and which treats disor-
der in the coherent potential approximation. However,
the reduction of the width of the Cou1omb gap is more
pronounced in the present study. '

where n =ata . Since the n 's are constants of the
motion, this is effectively a classical problem, each eigen-
state being determined by one set of occupation numbers.
In the localized regime the direct interaction e,~~ remains
long ranged as the separation between the centers of
eigenstates a and P is increased. Thus, the Efros-
Shklovskii stability criterion, which now reads E E~-
—e«&&+ e~&&~ & 0 (E~ & EF,E& & E~) leads to a Coulomb
gap with the usual power-law behavior. ' At short range,
however, the quantum interaction is weaker than the clas-
sical one, due to the partial delocalization of the electronic,
charge. Therefore, one expects that the width of the
Coulomb gap should be reduced.

The method of solution of the Hamiltonian of Eq. (4) is
a straightforward extension of the energy-minimization
program employed by BEGS and DLR. The sites are put
on a square or simple cubic lattice of parameter a, and the
site energies p; are drawn from a rectangular distribution
of width 8 =e /xa =1. Periodic boundary conditions are
used as introduced by DLR. The noninteracting eigen-
states are determined by direct numerical diagonalization
of Ko. The electrons in the noninteracting eigenstates are
rearranged, starting from a random initial configuration,
until a self-consistent state is obtained, which is stable
with respect to all one- and two-particle excitations. Most
of the numerical effort goes into the evaluation of the
Coulomb matrix elements [Eq. (3)1, which involve huge
summations. This severely restricts the size of the sam-
ples which can be studied. The results presented here are
for 5 cubic and 11 square lattices. It is encouraging to
see that, in the limit t =0, they are not very different from
those obtained by DLR for larger samples.

The one-particle DOS is shown in Fig. 1 for two- and
three-dimensional samples with K=-

2 . A small size
effect is the excessive depression of the DOS, which be-
comes strictly zero in a region of width =1/1V'/ (W is the
number of sites) centered at EF. ' Apart from this, the
positions and widths of the peaks at t =0 are virtually in-
distinguishable from those of DLR. The striking feature
of Fig. 1 is the considerable reduction of the width of the
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Coming to the second topic of this Rapid Communica-
tion, we now discuss the evidence for the growth of glass-
like order as t is decreased at the absolute zero of temper-
ature. The analogy between the classical limit of the
Hamiltonian' of Eq. (1) (with E- —,

' ) and a classical
Ising-spin model, was first explored by DLR, at finite
temperature. The variable a;, (n; ——,

' ) was interpreted
as the z component of a spin. At very high temperature
all sites have equal probability of being empty or occu-
pied. As the temperature is lowered, this symmetry even-
tually breaks down: Some of the sites become preferen-
tially occupied, and others become preferentially empty.
In the classical model of a spin glass, " in the absence of
external fields, a measure of glasslike order can be ob-
tained from the Edwards-Anderson order parameter
«2cr;, )T&s, where T denotes the thermal average and S an
average over samples. In the present system, the random
potential breaks the equivalence of sites even in the ab-
sence of interactions. This led DLR to modify the
definition of the order parameter, subtracting from the
thermal average of a spin its value in the absence of in-
teractions: q (T) -2&[&a;,&T

—&cr;, &Tl &s.
In the quantum-mechanical situation, at zero tempera-

ture, a "freezing" of electrons on certain sites can be in-
duced by decreasing the overlap t The de.gree of "freez-
ing" can be measured by a quantum version of the order
parameter q, in which the thermal average is replaced by
a quantum average in a pseudo ground state. At finite
temperature one should define q with both a thermal and
a quantum average. The zero-temperature quantum ver-
sion of q reads

q (t) &g(n, —n, )f,p(np
—nI))s/[2K(1 —K)],

a,P
(5)

where n, are the occupation numbers in the noninteract-
ing ground state (i.e., the T 0 Fermi distribution in
noninteracting energies).

The calculated values of q (r) (averaged over various
samples, and various pseudo ground states for each sam-
ple) are plotted in Fig. 2 (solid curve). For large t the sys-
tem is a Fermi liquid (i.e., n n ) and q 0. With de-
creasing t, the order parameter rises gently, starting at
t/B =0.08 in 3D and t/B=0. 16 in 2D. It reaches a value
=0.4 at t 0. (This limit would be 1 if the ordering pro-
cess were controlled by interactions alone. ) From these
data, it is not possible to decide whether a glass transition
would occur above, below, or in concomitance of the
localization-delocalization transition. Clearly, the two
transitions would be related, but they need not be the
same.

A more eA'ective way to determine the onset of glasslike
order is based on the property of glasses of having a large
number of metastable pseudo ground states. These states
are local minima of the energy. In the present case they
are defined as configurations which are stable with respect
to all one- and two-particle excitations. For a given choice
of the random site energies a large number of such solu-
tions is found. One can directly count the number Nd of
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FIG. 2. Solid curve: quantum glass order parameter q (t),
from Eq. (5). Dashed curves: estimated numbers of pseudo-
ground states (scale on the right-hand side).

different solutions obtained by starting the computer pro-
gram at Np different configurations. From this, one can
estimate the most probable number of solutions, given by
N, =N pNd/(N p Nd ). —

The value of N„averaged over various samples, is plot-
ted in Fig. 2 (dashed curve) as a function of t. The strik-
ing feature of this curve is that it rises much more sharply
than q (t). A relation between q and N, can be antici-
pated by considering that Nq /2 is roughly a measure of
the number of states whose occupation number divers
from the Fermi distribution. The number of energy
configurations compatible with a given value of q is easi-
ly shown to increase exponentially with q . A config-
uration from this set will result in a pseudo-ground state,
only if it happens to have a "favorable" spatial arrange-
ment, the probability of this being presumably indepen-
dent of the energy configuration. Therefore, it is plausible
that the number of pseudo-ground states should also in-
crease with increasing q

From the behavior of N, in Fig. 2, it appears that a
glass transition would be taking place at t/B=0. 04 in 3D
and t/B=0. 06 in 2D. At these values of t the average ex-
tension of the wave function is, respectively, 60% and 45%
of the perfect-crystal limit. It appears, therefore, that the
glass transition is distinct from the localization-
delocalization transition, and occurs in the localized re-
gime.

In conclusion, we have performed a first numerical
study of localized interacting electrons in a quantum-
mechanical situation, i.e., near an insulator-metal transi-
tion. A Coulomb gap in the one-particle density of states
was found to persist throughout the localized regime. The
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rise of the quantum glass-order parameter q, and the in-
crease of the number of pseudo-ground states, were taken
as indications of a glass transition. It occurs when the
overlap parameter t/8 is varied, for example, by doping,
by compensation, or by a mechanical stress. This hy-
pothesis awaits experimental veri6cation.
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