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Resistance of a one-atom contact in the scanning tunneling microscope
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The resistance as a function of tip-sample separation in the scanning tunneling microscope is
calculated for distances in the transition region between tunneling and point contact. A resistance
plateau appears near point contact with value Axh/e, where A is of order unity, its exact value

depending on the identity of the tip atom. Good agreement is found with the recent experimental
data of Gimzewski and Moiler.

We consider here the region of transition from the tun-
neling to the point-contact regimes in the scanning tunnel-
ing microscope, where the initial contact takes place be-
tween a single tip atom and the sample surface. We
study the current that flows between two planar parallel
metallic electrodes, one of which has an adsorbed atom
(this electrode represents the tip), as a function of the dis-
tance between the electrodes, for the case of a small ap-
plied bias voltage. In this initial calculation, the atom will
not be allowed to move relative to its electrode as the tip-
sample separation is decreased, but will be kept at its
large-separation equilibrium distance.

As we have done in our earlier studies of the scanning
tunneling microscope, we will use the jellium model to
represent the metallic electrodes themselves. In contrast
with these earlier studies, however, we can no longer use a
tunneling-Hamiltonian formalism to compute the cur-
rent in terms of the wave functions determined separately
for each electrode in the absence of the other, because this
is only appropriate when the overlap of the wave functions
of the two electrodes is small, that is, when the separation
between the electrodes is large.

We proceed instead as follows. First, within the frame-
work of the density functional formalism, we find the
single-particle wave functions (we need only the
standing-wave solutions at this point) and self-consistent
density distribution for the pair of bare metallic elec-
trodes, assuming them for simplicity to be identical (r, =2
jellium model). This is the previously solved problem of
the bimetallic junction. Since our two bare electrodes
are identical and since we are interested only in the zero-
bias limit, however, we need not use the more general pro-
cedure of the authors of Ref. 5; the symmetry allows us
instead to use the method of Lang and Kohn that was
employed earlier for the single bare surface.

We next use the procedure of Lang and Williams to
find the self-consistent density distribution and single-
particle wave functions (again just standing-wave solu-
tions) for the total system consisting of the two bare elec-
trodes plus the atom. It will be recalled that this method
was originally used to study an atom adsorbed on a single
bare metallic surface, and proceeded by solving a
Lippmann-Schwinger equation that involved a Green's
function for the bare metal. The only significant differ-
ence in the present case is that the Green's function is the
one appropriate to the bimetallic junction, instead of the

single surface. This procedure provides us with the poten-
tial in which the electrons in our system will move in the
zero-bias limit.

We now consider current-carrying states of the bimetal-
lic junction without the atom. Deep in the left electrode
(to make a particular choice) each such state consists of a
plane wave moving to the right plus a reflected wave; deep
in the right electrode it consists of a transmitted plane
wave moving to the right. We consider all such waves
whose energy is equal to the Fermi energy, but whose oth-
er quantum labels are different (the azimuthal quantum
number m and parallel-momentum label x defined in Ref.
7). We weight all of these states (continuum normahzed
as in Ref. 7) equally, and choose an overall normalization
factor such that all of the plane waves moving to the right
deep in the left electrode, taken together, yield a unit
current density (atomic units).

We now solve the Lippmann-Schwinger equation again,
using the procedure of Lang and Williams, but this time
to obtain the current-carrying states at the Fermi level in
the presence of the atom, starting with the current-
carrying states of the bimetallic junction without the
atom. The potential that goes into this equation is the
difference between the self-consistently determined poten-
tials in the bimetallic junction with and without the
atom. '

For small bias V and zero temperature, the current den-
sity is given by (using atomic units, with

~
e

~

= It
=m =1)

j(r) =2V dp b(F.„—EF)Im+„*(r)V%'„(r),

where +„ is a current-carrying state with quantum labe1
p, which in our case represents energy E, azimuthal quan-
tum number m, and parallel momentum label x, and

fdic

is an integration over energy and a sum or integration over
the other state labels as well. The factor 2 is for spins,
which we do not include in our label p. We will be in-
terested in the additional current density due to the pres-
ence of the atom, bj(r) j(r) —jo, where jo is the current
density for the bimetallic junction in the absence of the
atom, and in the total additional current BI, which can be
obtained by integration of Bj over an appropriate surface.
We can define the additional conductance due to the
presence of the atom as BG bI/V, and it will be con-
venient to define an associated resistance R —= 1/bG.
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FIG. 1. Current density Bj for the case of Na tip atom with
tip-sample separation s S hohrs. The length (and thickness) of
each arrow is proportional to magnitude of 8'j evaluated at the
spatial position corresponding to the center of the arrow. Coor-
dinates p and z are parallel and perpendicular to surfaces, re-
spectively.

We consider here the simple case of a Na tip atom. The
current density Bj for this case is shown in Fig. 1, in the
instance in which the tip-sample separation s, measured
from the nucleus of the tip atom to the positive-
background edge of the sample, is 5 bohrs (the distance d
between the center of the Na atom and the positive-
background edge of the tip electrode is fixed at 3 bohrs,
the equilibrium value for s~ ee). The left edge of the
box corresponds to the positive-background edge of the tip
electrode, and the vertical line within the box corresponds
to the background edge of the sample (the right-hand
electrode). The presence of the Na atom is indicated
schematically by two dashed circles with a cross at the po-
sition of the nucleus. For computational convenience, we
only show results away from the immediate vicinity of the
atom. At each point of a grid, the additional current den-
sity b'j is represented by an arrow, with the length (and
thickness as well) of the arrow made proportional to the
magnitude of Bj. Note in particular the way in which the
current spreads out in the sample, becoming less sharply
peaked in planes parallel to the sample surface that are
further from the tip.

In Fig. 2, the resistance R defined above is shown as a
function of tip-sample separation s. At large separations,
R changes exponentially with s. As s is decreased toward
d, the resistance levels out at a value of 32000 Q. (For
s =d, the atom is midway between the two metal surfaces,
so this can in some sense be taken to define contact be-
tween the tip atom and the sample surface. ) If the same
calculation is done for a Ca atom, R is found to level out
at 18000 A. We can understand this leveling out, includ-

ing the order of magnitude of the resistance, from discus-
sions of Imry' and Landauer. " These authors point out
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FIG. 2. Resistance R = 1/SG as a function of tip-samp]e sepa-
ration 5 for a Na tip atom.

that there will be a "constriction" resistance xh/e
=12900 0 associated with an ideal conduction channel,
sufficiently narrow to be regarded as one dimensional,
which connects two large reservoirs. Our atom, in the in-
stance in which it is midway between the two electrodes,
contacting both, forms a rough approximation to this. '

Now Kalmeyer and Laughlin ' have studied the
diAerential conductance for a 3D square well within a
square barrier with 1D symmetry. ' At the energy corre-
sponding to the peak of a resonance of the well, they show
numerically, for barriers that are fairly thick on the scale
of interest here, and with the assumption that the extent
of the well is sma11, that the differential conductance is al-
most exactly equal to e /(xh) for two spin directions
when the well is at the center of the barrier (they actually
consider spinless electrons, and we have just doubled their
result). The well resonance thus acts like the spatially
narrow conduction channel envisioned in Refs. 10 and 11.
In the present study, however, we are considering atomic
potentials that are of similar spatial extent to the barrier
created by the bimetallic junction, and so the conditions
assumed in their study do not hold here. ' If we write our
limiting resistance values as Rbm Anh/e, then it is
presumably for this reason that the A values found in the
present study (e.g. , 2.5 for Na) are higher than unity. ' '

We now discuss the relation of this calculation to the
experiment of Gimzewski and Moiler using a Ag sample
surface and an Er tip (though the identity of the tip atom
itself was not determined). These authors fix the voltage
on the tip (at 20 mV) and start with the tip at a distance
from the surface at which the current has some particular
value (1 nA). (Thus the starting resistance is 20 MA. )
They then measure the current as a function of the dis-
tance M that the tip is moved toward the surface, starting
at this initial separation (which defines Az 0). A plot of
their experimental data is given in Fig. 3. For small Az
(large separations from the surface) the conductance
varies exponentially with distance. At larger M (smaller
separations) the curve starts to bend over, and reaches a
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FIG. 3. Tunneling current (log~ol) vs distance hz toward sur-
face measured from the point at which the resistance is 20 M 0,
for a clean Ir tip and polycrystalline Ag surface at constant bias
voltage of magnitude 20 mV. The results were obtained by
Gimzewski and Moiler as discussed in the experiment in Ref. 2,
but these data are selected to show the resistance plateau more
clearly. A high-gain electrometer was used to measure the
lower currents corresponding to Az & 3.5 A., while a low-gain
electrometer was used for the currents found at larger Az. The
high-gain data was digitized from a graph and replotted in pro-
ducing this figure. There was an ofrset between the two elec-
trometers so that the high-gain data should be shifted vertically
to produce more closely a (0,0) curve intercept (i.e. , I—1 nA at
az =0).

plateau, with the resistance at the plateau -35000 0
(corresponding to A —2.7).

At Az —5.5 A there is a jump in the current. For hz
smaller than this, the current versus distance characteris-
tics were found to be reversible, while for hz larger a
significant hysteresis was observed. These results suggest
that the current jump is associated with significant atom
motion and adhesion between the tip atom and the sam-
ple. Since we are not allowing atom motion in our calcu-
lation, we will be interested here only in the region before
the current jump.

We now replot the calculated curve of Fig. 2 so that it is
on the same type of scale as Fig. 3. That is, we find the
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FIG. 4. Tunneling current (log~obI) vs distance Az toward
surface measured from the point at which the resistance is 20
MA, calculated for a Na tip atom as described in the text (as-
suming a bias voltage of magnitude 20 mV).

separation so at which R =20 MQ and write hz =$0 s;
we then plot a current equal to V/R(s), with V=20 mV,
versus hz, in Fig. 4. The separation in our model at which
the atom is midway between the two electrodes corre-
sponds to Az =5.3 A. This would clearly define a region
of significant atom motion in the model, in that if the tip
electrode were retracted, the adatom would be equally
likely to stay on the sample surface as on the tip surface.
(There should be significant bistability a little before
this. ) This value of Az corresponds fairly well to that at
which the current jump occurs in the experiment. The
value of the current at the plateau and the general shape
of the curve agree rather well with the experimental data
in Fig. 3. This suggests that the model we have presented
gives an essentially correct picture of the transition from
the tunneling to the point-contact regimes in the scanning
tunneling microscope.

I am delighted to acknowledge helpful discussions with
J. K. Gimzewski, D. Pohl, R. Landauer, M. Buttiker, and
Y. Imry. I am very grateful to Dr. Gimzewski for sending
me the data used in Fig. 3.
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'sin fact, for the Na case actually studied, for s =d (atom rnid-

way between the electrodes), the self-consistent potential
along the z direction does not even present a tunneling barrier
to electrons at the Fermi level. Also, if we remove the atom in

this instance (s =d), the conductance over an eff'ective area of
one atom for just the pair of Hat electrodes is —20% of the
additional conductance BG due to the presence of the atom,
while the analysis of Ref. 13 is appropriate to the case in

which this residual conductance is negligible.
To make a comparison with the study of Ref. 13, the present
calculation was redone with a 3D exponential potential well,
instead of the self-consistent atom potential, embedded in the
bimetallic junction barrier, with parameters chosen to put a
resonance peak associated with the well at the Fermi level. It

was found that the A value as defined in the text was very
close to unity when the barrier was made thick enough by
moving the two electrodes apart (always keeping the atom
midway between the electrodes and the resonance peak at the
Fermi level), but that 2 increased to values similar to those
actually computed in the present study when this barrier
thickness was decreased so that it was comparable to the well

diameter.
' It might be thought that another reason that the A value

found for our atoms is higher than unity is that the peaks in

the density of states resonances might not be at the Fermi lev-

el, in view of the fact that Kalmeyer and Laughlin (Ref. 13)
have shown the differential conductance to be a Lorentzian
centered at the energy of the state-density peak. The m =0
state-density peak for Na, however, is very close to the Fermi
level when s =d.


