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We discuss the connection between the Careen's-function approach to nonlinear electronic trans-
port in semiconductors proposed recently by Lei and Ting [Phys. Rev. B 32, 1112 (1985)] and the
description of high-field transport based on the familiar nonlinear Boltzmann equation. We show
that their balance equations are identical to those one obtains from the Boltzmann equation by as-
suming that the carrier distribution function is a displaced Fermi-Dirac distribution at the elec-
tron temperature T, .

Recently Lei and Ting (Ref. 1, hereafter referred to as
I) proposed a description of steady-state high-field elec-
tronic transport in semiconductors. By separating the
center-of-mass motion from the relative motion of the
electrons and treating the electron-impurity and
electron-phonon interactions to lowest order in perturba-
tion theory, they obtained a set of macroscopic "balance
equations" for the average carrier energy in the relative
frame and the carrier drift velocity. The derivation is
carried out in the framework of a Green's-function for-
malism. The authors refer to the resulting description of
nonlinear transport as "non-Boltzmann" and argue that
their approach contains no assumptions on the form of
the carrier distribution function.

Here we discuss the connection between the method
proposed in I and the description of high-field electronic
transport based on the familiar nonlinear Boltzmann
equation. We show that the approach of Lei and Ting is
equivalent to a well-established semiphenomenological
description of high-field transport, which is sometimes
called in the literature the "drifted electron-temperature
model. " This model is obtained from the nonlinear
Boltzmann equation if one assumes that due to frequent
electron-electron collisions the electrons thermalize and
their distribution function is a displaced Fermi-Dirac
function containing as parameters a drift velocity, vd,
and an electron temperature, T, . With this assumption
on the form of the distribution function the balance
equations of I are immediately obtained by taking the
moments of the nonlinear Boltzmann equation in the
usual way. To obtain the precise balance equations of I
one needs to include wave-vector and frequency-
dependent free carrier screening, computed in the
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The terms on the right-hand side represent the contribu-
tion from electron-phonon (e-ph), electron-impurity
(e-i), and electron-electron (e-e) collisions. For instance,
the rate of change of f(k, t) due to e-ph collisions is
given by
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where f and f, denote the distribution function at k and
k„respectively. The rate for transitions from k to k, is

random-phase approximation (RPA), of the relevant in-
teractions appearing in the Boltzmann equation. In con-
trast to what was stated by Lei and Ting, their approach
contains therefore assumptions that are equivalent to the
introduction of a local equilibrium ansatz for the elec-
tron distribution function in the Boltzmann equation.

To see this connection in detail, we consider the
Boltzmann equation for a gas of electrons interacting
with impurities and phonons in an external static electric
field, E. The notation of I is used here. Neglecting spa-
tial inhomogeneities, the Boltzmann equation for the
electron distribution function, f(k, t ), is given by,
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Here M(q, Qq&) is the matrix element of the e-ph in-
teraction renormalized to include wave-vector and
frequency-dependent screening in the RPA,

M(q, Q z)= M(q, A, )

eRpA q& qA.

(4)
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with zk ——A k /2m and V the volume of the system. The
average electron energy density, E, (t), and the average
drift velocity, vd(t), are defined by

E, (t) = gs—Q(k, t ),2
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with n, the electron density. Finally, we will need the
average electron energy density in the relative frame,
i.e., the average internal energy density, given by

f2
e,'(t) =—g (k —kd )'f (k, t ),Vk2m
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with kd ( t) =m vd (t)/A
We now assume that due to frequent e-e collisions the

electron gas thermalizes and that the electron distribu-
tion function is a drifted Fermi-Dirac function at the
electron temperature T„di6'erent from the lattice tem-
perature, T, i.e.,

f(k, t)=f(E~g ),d(, )(, T, ), (8)

where f(E)„T,) is the Fermi function given in Eq. (60) of

The e-ph matrix element, M(q, A, ), depends on the
specific interaction considered and can be found in I.
Also, eRpA(q, co) is the RPA for the dielectric function,
given by

eR,A(q, ~)=1—
Vq 11p(q,~),

with V the Fourier transform of the Coulomb potential
and Ilp(q, co) the density-density correlation function of
the free electron gas, given by

I. The average energy density is then given by

c., (t) =s,'(t)+ —,'mn, vd(t) .

By multiplying the Boltzmann equation with A'k and
A' (k —kd ) /2m, respectively, and summing over k, one
obtains a set of two coupled nonlinear equations for the
average internal energy density, e,'(t), and the drift ve-
locity, vd(t), or equivalently for T, (t) and v„(t). The re-
sulting equations are

a 1m—n, vd(t)+en, E=—F(vd, T, ), (10a)

a,s,'—(t ) = —vd ( t) —F( vd, T, ) ——W(vd, T, ), (lob)

The right-hand side of Eqs. (10) represents the frictional
forces and the energy dissipation due to e-ph and e-i col-
lisions. The assumption on the form of f(k, t) allows
one to express these terms explicitly as nonlinear func-
tions of T, (t) and vd(t). The frictional force, F(vd, T, ),
is related to that introduced in I by
F(vd)=vd F(vd, T, ), where vd is a unit vector in the
direction of vd and F(vd ) is given in Eq. (64) of I. The
rate of energy loss, 8, is identical to that given in Eq.
(67) of I. In a steady state Eqs. (10) reduce to the bal-
ance equations (65) and (68) of I.

The derivation of Eqs. (10) is straightforward. For in-
stance, the rate of change of the electron momentum due
to e-ph collisions in given by

where to simplify the notation we have omitted the T,
dependence of the Fermi functions. By let ting
k'=k —kd and k', =k& —kd and then dropping for sim-
plicity the prime, after some straightforward algebra,
Eq. (11) can be written as
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The same change of variable in the wave-vector sum can be used in Eq. (6) to show that
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where II, and II2 are given in Eqs. (58) and (59) of I. Fi-
nally, by inserting Eq. (13) in Eqs. (4) and (5), making
use of Eq. (59) of I, and noticing that, in virtue of the
energy-conserving 5 function, the term in curly brackets
in Eq. (12) can be written as

I [n(Q ~/T) n—((& ~+q vd.)/&, )][f(ek)—f(e~ )]I,

it is easy to show that the right-hand side of Eq. (12) is
identical to the frictional force due to e-ph collisions, as
given by the second term in Eq. (64) of I, per unit
volume.

The equivalence of the present result and the ap-
proach of Lei and Ting is due to two assumptions that
are made in their derivation: (1) The approximation
contained in Eq. (36) of I replaces the microscopic
center-of-mass displacement of the electrons, AR, with
its macroscopic average value, vd(t)b, t. (2) The balance
equations of I are obtained by assuming that at t = —oo

the electrons and phonons are described by equilibrium
density matrices at the temperatures T, and T, respec-
tively, neglecting then all e-e and ph-ph interactions and
treating the e-ph interaction in perturbation theory. It
can be shown that if the same procedure is used to
derive a kinetic equation for the electrons one obtains

the familiar Boltzmann equation, with the electron dis-
tribution function everywhere replaced by a (drifted)
Fermi-Dirac distribution at T, .

While we do not dispute the value of the explicit cal-
culation of electron temperature and electron resistivity
in strong fields carried out in I, we think it is important
to clarify the connection of the work of Lei and Ting to
others and to emphasize that their results can be ob-
tained from the Boltzmann equation in a straightforward
way. The idea of separating center-of-mass motion and
relative motion of the carriers is certainly a useful one
and it can also be employed in the analysis of the
Boltzmann equation.

Finally, it was found in I that under certain conditions
the electron temperature T, can be lower than the lattice
or bath temperature, T. The same result is obtained
when the set of Eqs. (10) obtained from the Boltzmann
equation are solved for the case of a nonequilibrium
steady state. It is, however, important to emphasize
that the fact that T, & T does not imply that energy is
transferred from the bath to the carriers, since the total
average energy density of the electrons, c.„ is always
larger than the thermal energy of the bath.
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