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Band structure and interband optical transitions in the sawtooth superlattice
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The band structure and interband matrix elements of the Al Ga& As sawtooth superlattice are

analyzed. We have shown that the envelope wave functions may be expressed as integrals of ele-

mentary functions. Numerical results are given for a superlattice with maximal mole fraction

x,„=0.3, and period equal to 14 nm. A comparison of our results with those obtained via the
pseudopotential method is given. Also, the possibility of determining the conduction-band off'set

hE, from optical measurements, based on strong dependence of the transition matrix elements on

EE„is discussed.

Multilayer graded-gap sawtooth superlattices have re-
cently attracted great attention. In Ref. 1 F. Capasso et
al. proposed a photodetector comprising this structure,
making use of the fact that electrons and holes are spa-
tially separated. Such a photodetector would have a
transient photoinduced voltage response of about 10 mV
and a decay time of 200 ps.

Treatment of sawtooth-superlattice band structures
has been presented in a few papers, based both on the
effective-mass approximation and the pseudopotential
approach. In Refs. 2 —4 the sawtooth-superlattice band
structure was calculated via the pseudopotential method,
for transverse wave vector k, =0 only. Brum et al. ' used
the effective-mass approximation (with the effective-mass
variation itself neglected) to find the band structure and
the photovoltaic response of a sawtooth superlattice.

In this paper we shall extend the effective-mass-
approximation treatment to include the effects of the
effective-mass variation, and proceed to analyze the in-
terband optical absorption in sawtooth superlattice.

The Al Ga& As sawtooth superlattice is a structure
with linear variation of Al mole fraction
x (z)=x,„(z/d) within period d. The graded Al con-
centration creates a potential which is similar to an
external electric field potential, with the difference that it
concentrates the carriers on the same side of the
h etc rointerface in both the valence and conduction
bands (Fig. l). Within the effective-mass approximation
the envelope-wave-function Schrodinger equation for
electrons (and holes) is

m ] (x ) =m G,p„+ ( m /]~, —m /, A, )x, (2)

and another that supposes a linear Kane's-matrix ele-
ment squared versus composition dependence:

[m2(x)J '=(l —x)(mG, /, ) '+x(mp]A, )
'—:B+» .

(2')

Assuming the second expression (2'), and after a
lengthy calculation we find that (l) does have a particu-
lar solution in analytic form:

Ue(2)

in Al Ga& As varies linearly with x, thus U, varies as
az. As for the m*(x) dependence, there are two expres-
sions currently used in the literature, the more familiar
of which relies on the supposition of a linear effective
mass versus alloy composition dependence:

A' d 1 d% Ak,
+ U, (z)+

2 dz m *(z) dz 2m *(z)
0 =E+,

IT(2)

where E is the total electron energy and k, the trans-
verse wave vector. For x,„(0.4, the direct energy gap

FIG. 1. Conduction- and valence-band profiles in sawtooth
superlattice for the transverse wave vector k, =0 (solid lines)
and k, &0 (dashed lines).
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the U,z becomes position independent. However, in
case of Al Ga, As sawtooth superlattices, k, o from (4)
has too high a value to make this effect significant in op-
tical absorption not too far from threshold or carrier-
concentration evaluation. On the other hand, if one
could find a semiconductor alloy having a low a value
and strong m ' versus composition dependence, the
above effect would be strongly pronounced. We also
note that this effect is analogous to well-barrier reversal
in rectangular superlattices with increasing k, (Refs. 10,
11, and 12).

The fundamental solutions of (1) y, and yz and partic-
ular solutions (3) 4~, and 4~& are linearly related to each
other uniquely. Applying the Bloch boundary condi-
tions, we get the dispersion relation E(k):1, m*(d+)

cos(k, d) = —y, (d )+y2(d )
2 m*(d )

(5)

where m *(d+ ) and m *(d ) are effective masses in

GaAs and Al„Ga& As.
Numerical calculations were done for a Al„Ga& As

sawtooth superlat tice with maximal mole fraction
x,„=0.3 and the superlattice period d =14 nm, as in
Ref. 3. The spatial dependence of conduction- and
valence-band edges are given by

UD, (eV) = 1.247Q, x

Uot, ( eV ):1.247( 1 Q )x (6)

where Q, is the ratio of the conduction-band discon-
tinuity and the energy-gap difference at the
GaAs/Al Ga] As interface. As for the choice of the
effective-mass versus mole-fraction dependence [(2) or

where m0 is the free-electron mass, and we also intro-
duce the new variable y

—= [mz (x (z))/m„] '. The
second linearly independent particular solution 4~2(z), is
to be determined by a standard method. If we use ex-
pression (2), however, it is not possible to find a particu-
lar solution in analytic form, and the problem may be
solved only numerically.

It is interesting to note that due to the effective poten-
tial energy

U, tr [U, tr
—U, (z ) + fi k, /( 2m "

) ]

dependence on k, caused by effective-mass variation, the
U,z shape changes and may even reverse the sign of its
slope with increasing k, (Ref. 10). Specifically, if (2')
holds, we find that at a definite value

(2')], our calculations for a Al Ga~ As sawtooth su-
perlattice over a wide range of its parameters show that
the results obtained when using (2) or (2') disagree by no
more than a few percent relative to each other, so either
expression may be used as convenient. The results given
here were obtained using (2') for effective mass versus
mole-fraction dependence.

The data on Q, vary considerably in the existing
literature. In our calculations we took values in the
range 0.60—0.85 as reliable, although even the values of
0.57 or 0.97 may be found. We got the best agreement
between our results and those obtained via the pseudo-
potential method for Q, =0.85 (for both electrons and
holes). Our calculations of superlattice states at the
center of the Brillouin zone give the conduction-band
(electron) energies 125, 222, and 307 meV, as compared
to 140-, 270-, and 310-meV pseudopotential values. For
heavy holes (hh) and light holes (lh) we got the following
energies (listed by increasing order): 19 meV (hh), 28
meV (lh), 35 meV (hh), and 60 meV (lh). The pseudopo-
tential calculation gives 9, 29, 34, and 50 meV. By
comparing the two, one can see that the agreement is
fairly good as well. We do not know whether the first
and the third level of Ref. 3 is predominantly heavy-
hole-like, and the other two light-hole-like, but compar-
ison indicates that this may be the case.

Therefore, it is interesting to note that this earlier
value Q„=0.85, when used in the effective-mass
Schrodinger equation, results in better agreement with
the pseudopotential method than the more recently mea-
sured values of Q, .

Furthemore, we also analyzed the influence of the
effective-mass spatial variation by comparing our results
with those obtained with constant effective-mass model ~

The agreement between these two models is generally
very good except for the first electron minizone, where a
difference of approximately 10% appears.

Next we calculated the envelope-matrix elements for
interband transitions, given by

M,„„(k)=I V, 4„*dz, (7)
0

with the envelope wave functions %', and %z normalized
to unity within the superlattice period. By comparing
the envelope wave functions obtained via the effective-
mass model (this work) and the pseudopotential method
(Ref. 3), we found that the agreement is approximately
as good for energies, so we believe that the former may
be fairly reliably used in calculation of optical-transition
matrix elements. The dependence of

~
M,„, ~

for k=0
on Q, is given in Fig. 2 for (e-hh) transitions. For higher
values of Q, (-0.85) the transition matrix elements be-
tween minizones with the same indices are nearly equal
to unity, because electron hole wave functions have very
similar forms. With decreasing Q, these matrix ele-
ments also decrease, e.g. ,

~
M,„„~ =0. 18 (Q, =0.6) for

the (3-3) transition. In case of transitions between min-
izones having different indices, however, the opposite is
true:

~
M,„„~ increase with decreasing Q, . The transi-

tion matrix element between the third electron and the
first heavy-hole minizone is considerably less than the
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FIG. 2. The electron —heavy-hole transition envelope-matrix
elements at k=O for sawtooth superlattice with period d =14
nm and maximal Al mole fraction x,„=0.3. The first number
in parentheses is the electron minizone index, and the second is

the hole minizone index.

others (
~
M,„„~ &0.04 for all Q, ).

For the electron —light-hole transitions (Fig. 3), the
matrix elements connecting minizones of the same index
increase with decreasing Q„and for Q, & 0.65 they are
very close to unity, while those for minizones having
different indices follow no simple rules. Certainly, be-
cause of the lack of inversion symmetry in sawtooth su-
perlattices, there are no parity-forbidden transitions
here, as can be seen from Figs. 2 and 3.

Due to the effective-masses position dependence, the
wave functions and envelope-matrix elements depend on
the transverse wave vector k, (of electron and hole to be
generated by photon absorption). However, for k, «ktp
(4), corresponding to photon energies not too far from
the absorption threshold, this dependence is only slight,
e.g. , for (2,2) e-hh transition (x,„=0.4, d =14 nm) the
matrix element is constant within 2% for a photon ener-
gy range of 50 meV. The matrix elements vary as k,
varies over the first Brillouin minizone as well. This
dependence is very pronounced only for transitions be-
tween levels with different indices (matrix elements may
change up to 2 orders of magnitude in such cases).

It is well known that the excitonic effects highly
inhuence the absorption spectra of superlattices, espe-
cially at threshold. ' ' To get more realistic values for

FIG. 3. The electron —light-hole transition envelope-matrix
elements at k=O for sawtooth superlattice with parameters as
in Fig. 2.

absorption, the envelope-matrix elements obtained here
should be multiplied by I9,h(0), where the full excitonic
wave function N is written as

N(z„zq, r) =%(z, )0'z(zh )H,h (r)

and 0,&(r) is to be obtained by variational method. ' '
These calculations will be performed and presented sub-
sequently. However, the calculated envelope-matrix ele-
ments do characterize the superlattice absorption away
from the excitonic peaks.

Furthermore, we note that the matrix elements for
dominant transitions —(l, l), (2,2), etc. in sawtooth su-
perlattices are rather sensitive functions of Q, contrary
to the case of the conventional "rectangular" superlat-
tices. However, one may expect that the excitonic
effects will somewhat decrease their sensitivity on Q, .
Also, the calculated wave functions may be used to
determine oscillator strengths of forbidden exciton lines.
In conclusion, we may add that the relative oscillator
strengths may be used for determination of Q„ i.e., bE,
(those for forbidden exciton lines may prove to be an
even better indicator of hE, than interband transitions
matrix elements).

The authors would like to thank Professor D. S. Mitri-
novic for helpful discussions concerning some mathemat-
ical aspects of Eq. (1).
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