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Damping of helicon waves propagating in a sinusoidally modulated structure is treated on the
basis of linear-response theory. Numerical application to the charge-density-wave state of potassi-
um shows that damping has a deleterious effect on the high-frequency helicon modes predicted
earlier.

I. INTRODUCTION

In a previous paper' the dispersion relations were de-
rived for helicon waves propagating in a periodic struc-
ture with a charge density which is modulated along one
dimension, but which is essentially free-electron-like
along the remaining two. The derivation was carried out
on the basis of linear-response theory by generalizing the
standard formulation for a free-electron gas ' to the
case of periodic structures. Numerical application was
made to the so-called charge-density-wave (CDW) state
of potassium, in which there is a sinusoidal modulation
of charge density. The dispersion relations so calculated
were in basic agreement with the earlier results of
McGroddy et al. The dispersion curve showed a max-
imum and a sharp drop, and the helicon-wave propaga-
tion was restricted to a very small part of the Brillouin
zone. In addition, a band of high-frequency helicons
with frequencies very near the cyclotron frequency co, ,
but well below it, were found. These high-frequency hel-
icon modes had their origin in the one-dimensional band
structure induced by the CDW and in the resonant na-
ture of the dielectric tensor. The exact nature of these
modes was not clear, but it was thought that these
modes would provide, if confirmed experimentally, addi-
tional evidence for the CDW state. It was further noted
that more theoretical work regarding the damping of
these modes was required before the existence of these
modes could be firmly established. It is the purpose of
this Brief Report to present the results of a theoretical
study of the damping of helicon waves in a periodic
structure, with numerical applications to the CDW state
of potassium. The study is carried out within the frame-
work of linear-response theory by including an imagi-
nary part for the frequency in the response functions.
Expressions are given for the real and imaginary parts of
the complex frequency of the helicon modes. Numerical

Consider a system with an electronic structure which
is free-electron-like along the x and the y directions, but
is periodic along the z direction. Applied along the z
direction is a static magnetic field Bp, described by a vec-
tor potential Ap whose components in the Landau
gauge are (O, BOX,O). There is also an electromagnetic
disturbance that varies as exp(iq r icot).. —The wave
vector q is also taken to be along the z direction.
A, (r, t) is taken to be the vector potential for the self-
consistent field produced by the disturbance. SI units
are used throughout.

We assume that the medium is nonmagnetic. The
electric and the magnetic fields associated with the wave
are related through the Maxwell's equations. Using the
notation of Ref. 1, it can be shown that the frequencies
of the helicon waves are determined from

e+(q, co)co~ =c q
2 2 2 (2.1)

Here e+(q, co ) are the wave-vector- and frequency-
dependent components of the dielectric tensor in the po-
larization representation and are given in terms of the
corresponding Cartesian components by

e~(q, co) =e„„(q,co)+i e„~(q, co), (2.2)

and c is the speed of light.
The dielectric tensor is related to the conductivity ten-

sor o.(q, co ) according to

l CT

E(q, co) =e,I+
COG p

(2.3)

application to the CDW state of potassium shows that
damping has a deleterious effect on the high-frequency
helicon modes.

II. LINEAR-RESPONSE THEORY
FOR HELICON DAMPING

IN A PERIODIC STRUCTURE
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Here e& is the dielectric constant of the lattice and I is
the unit tensor. As has been described in Ref. 1, an ex-

pression for the conductivity tensor on the basis of
linear-response theory can be obtained as

2l COp Epo+= 1+(Rcp, /1V) g A(nk~k, ll') g bI" (k, +q+K)bI(k, +K)bf (k, +K')b~ (k, +q+K')
n, ky, kz K~K

(2.4)

where

[fp(E(n+ l, k, +q, k, l')) fp(E—(n, k„k, l ))]
A(nk k, ll')=(n +1)E(n + 1,k, +q, k, I') —E(n, k„k~, l ) fi(co—+co, )

(2.5)

Here co~ is the plasma frequency, co, the cyclotron fre-
quency, and N the number of electrons. The other quan-
tities entering Eqs. (2.4) and (2.5) refer to the energy ei-
genvalue

E(n, k„k, I ) =(n + —,
' )A'co, +el(k, )

associated with the eigenstate

~
nk, k~l ) =e ' U„(x+lHk~) g bI(k, +K)e

K

(2.6)

(2.7)

of the unperturbed Hamiltonian

Hp ——(P —e Ap) /2m+ V(z), (2.8)

where V(z) is the periodic potential along z.
The fp's refer to the Fermi factors, U„are the har-

monic oscillator wave functions, and IH ——(A'/mes, )' is

the magnetic length. The bi(k, +K) are the expansion
coefficients associated with a set of plane-wave basis
functions as described in Ref. 1.

Damping effects can be considered by replacing the
frequency cp in Eq. (2.5) by a complex quantity co i/ , r-
as a result of which the dielectric tensor becomes a com-
plex quantity:

sion of co' is shown in Fig. 1 for several values of the col-
lision parameter w. Figure 2 shows the variation of co

'

with the wave vector q for the same values of ~.
As can be seen, there is no significant change in the

dispersion of the low-frequency helicon branch due to
collision damping and, in fact, the dispersion curve, say
for co,~=10, is practically identical to the one given in
Ref. 1. The big difference, however, is that there are no
high-frequency helicon modes when collision damping is
included.

In Ref. 1, the dispersion relation was determined in
the following way. First a value of q was chosen, and
the dielectric tensor e+(q, cp) was calculated as a func-
tion of the frequency co, by carrying out the sum in Eq.
(2.4) in the Brillouin zone. The particular value of co for
which the value of the product co e+(q, co) equals the

) 011

~cT
1.q05
sx104

------- --- 3.3x10

e+(q, cp) =eg(q, cp)+i e'+(q, cp) . (2.9)

We choose to work with a real wave vector q and a com-
plex frequency in the dispersion relation given by Eq.
(2.1). Furthermore, we focus on the mode associated
with the positive sign and henceforth drop the subscript
and the arguments (q, cp). The real part cp' and the imag-
inary part co" of the helicon-mode frequency are then
given by

Q7 —co =c q e/(e +e ),
2''co"= —c q e" /(e' +e" ) .

(2.10)

(2.1 1)

08

III. RESULTS AND DISCUSSION

The variation of both the real and the imaginary parts
of the helicon-mode frequency as a function of the wave
vector have been calculated for the CDW model of po-
tassium using Eqs. (2.10) and (2.11) and the same values
of the model parameters as those in Ref. 1. The disper-

co'
0 1.0 2.ox10 5

FIG. 1. Real part of the helicon-mode frequency vs wave
vector q.
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FIG. 2. Imaginary part of the helicon-mode frequency vs
wave vector q.

value of the product c q (within the accuracy of eight
significant digits) would then give the frequency of the
helicon wave of wave vector q. This is illustrated
graphically in Fig. 2 for the high-frequency modes,
where co e+(q, co) is plotted as a function of co for a given
value of q. The helicon-mode frequencies correspond to
the intersections of this curve, with the straight line cor-
responding to c q . The high-frequency modes really
correspond to those regions when e+ (q, co ) is increasing
sharply, as indicated by the dashed lines. However,
when collision damping is included, co e+(q, co) does not
go to oo, but its variation is shown by the thick line in
Fig. 3, which does not intersect the horizontal line corre-
sponding to c q . Thus there are no high-frequency hel-
icon modes for any real value of q.

For smaller values of the collision damping term ~,z,
there is little qualitative difference in the dispersion
curve, but quantitatively, the frequency becomes some-
what smaller and the range of wave-vector values in the
Brillouin zone where helicon propagation is possible is
further reduced.

As far as the imaginary part of the frequency is con-
cerned, one can discern two distinctly different patterns.
For the part which corresponds to the region where the
real part of the frequency increases with q, the damping
is small, and co" increases slightly with q. In the other
part, where the real part of the frequency decreases with
q, the damping is larger by several orders of magnitude
and co" decreases with increasing q.

It may be noted that one could have studied the spa-

FIG. 3. Graphical solution of the characteristic equation.

tial damping by considering the frequency to be real and
the wave vector to be complex in Eq. (2.1). However, in
view of the reasons mentioned earlier, it was not con-
sidered likely to find actual roots for the dispersion in
the high-frequency region.

The dispersion relation in Eq. (2.1) has solutions
which exist in a fourfold space spanned by the real and
the imaginary parts of the frequency co' and ~" and the
real and the imaginary parts of the wave vector q' and
q". When the choice of an entirely real wave vector is
made, only a part of the fourfold space is considered and
no roots are found for the dispersion in the high-
frequency region. Similarly, the choice of an entirely
real frequency but complex wave vector would result in
sampling a different region of the fourfold space.
Whether or not actual roots are found for the dispersion
relation in the high-frequency region with either of the
two restricted choices considered above, the dielectric
tensor still has a resonant character in the region of the
high-frequency modes. It appears likely, therefore, that
there may be maxima in the absorption of energy at
these high-frequency mode positions. These absorption
maxima, if observed experimentally, could be considered
as evidence of the existence of the high-frequency modes
and hence of the CDW state in potassium. It is worth
mentioning that the possible existence of these modes as
a probe of the CDW state in potassium has acquired ad-
ditional significance in view of the very recent negative
results obtained in neutron-diffraction experiments and
in synchrotron x-ray experiments.
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