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Analytic solutions for bunched two4luxon states in Josephson transmission lines

S. Sakai
Electrotechnical Laboratory, 1-J -4 Umezono, Sakura-mura, Niihari-gun, Ibaraki 305, Japan
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Analytic solutions for bunched two-fluxon states in Josephson transmission lines in the presence

of surface losses are described. The theory is based on assuming a triangular current-phase rela-

tion. Multiple solutions are found when the velocity is larger than some critical values. The sta-

bility of these solutions is also discussed using numerical simulations with a finite-diff'erence

method.

Analytic solutions for a single fluxon in a long Joseph-
son junction with surface impedance losses (p term) were
recently obtained by assuming a triangular current-phase
relation. ' The results provide much significant insight on
single-fluxon properties. As for bunched fluxons, much
attention has also been paid to them. It is known from
phase-plane analyses that, if the junction is infinitely long
and if P =0, there are no bunched states of permanent
profile. 2 In the presence of P, bunched states were shown

by Scott and Johnson in their pioneering work by means
of simulations using a hybrid computer. Numerical ex-
periments using a finite diA'erence method have also
shown that the bunching may take place in junctions with

P on the open or periodic boundary condition. By such
numerical methods, however, it is hard to justify whether
bunched line shapes have permanently a fixed shape and a
constant velocity even if the computation time is very
long.

In this paper we present an analytical method for

bunched two-fluxon states. The theory is based on assurn-
ing a triangular current-phase relation and extending the
single-Auxon analysis' to the bunched two-fluxon states.
If solutions are found by this theory, they give decisive
evidence of the bunching.

Fluxon dynamics in the long Josephson junction with
uniform bias current g is assumed to be described by

Axx+Ptr+f(P) ri rr4t+Pgxxt

Here f(p) is the current-phase relation and normally
f(p) =sing is assumed. The term Pp„«describes the sur-
face losses, and ap, describes the shunt losses. The nor-
malizations may be found in Ref. 5.

Here we are interested in traveling-wave solutions of
the form p=p(g) with (=x —ut. Equation (1) is
transformed into an ordinary diff'erential equation
(ODE). ' As found in Ref. 1, we assume the following
triangular current-phase relation in order to solve the
ODE analytically:

, k(P —2nn), for —n/2+ 2nrr (p & rr/2+ 2nz,
—k(P —z —2nrr), for rr/2+2nrr(p & 3x/2+2nz.f( )-'

In Fig. 1 a schematic drawing of two solitons is shown. As
seen in the figure, region I corresponds to the leading edge
of the first fluxon, region III to the trailing edge of the
first fluxon and the leading edge of the second one, and re-
gion V to the trailing edge of the second. The joining be-
tween regions i and i+1 happens at (=g;, where
i =I-IV, as indicated in the figure. In each region a
linear ODE of the third order is solved:

3

g a;Je ' + (i —n1)+ri/k (i =1,3,5),
j 1

(3)
g b;J.e"' +rr(i —1) —ri/k (i =2,4),
j~1

where p; indicates the solution in the region i (i =I-V),
and q~ and r~ (j =1-3) are the roots of the following poly-
nomial P+ and P, respectively: '

(4) —=4'+p24'+pi(~ po=o, (4)

where p~ = —(1 —u )/Pu, pl = —a/P, and po =k/Pu
Because of the form of P ~, for P+, q1 is always a nega-
tive real root and q2 and q3 are either two positive real
roots or a couple of complex-conjugate roots with positive
real part. For P —,r3 is always a positive root, and r1 and
r2 are either two negative roots or a couple of complex-
conjugate roots with negative real part. Since the solu-
tions must satisfy the boundary conditions pl ri/k for

~ in region I and pq ri/k+4m for ( —~ in re-
gion V, we get a12 =a13 =a 51 =0. The remaining
coefficients in Eq. (3) together with g; (i =1-4) and ri are
determined by coupled equations obtained by joining p, p&

and P~~ at P(gi) =rr/2, P(g2) =3rr/2, P(g3) =5m/2 and

p(g4) =7rr/2. After laborious rearranging treatment of
these equations, we get appropriate expressions for nu-
merical calculations. Since the results have systematic
forms, the theory is extendable to n-fluxon states (n )3).

The procedure is as follows. First, with a and P as pa-
rameters and u as the independent variable, the roots q1,
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Next, the bias q is given by
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FIG. 1. Schematic drawing of a bunched two-fluxon state.
Finally the coefficients in Eq. (3) are calculated by

q2, q3 and r 1, r2, r3 to Eq. (4) are determined. Next, (12,
f23 and (34 are determined from

—
V, 41a = ———e (13)

3

g [Q(g23)~R(g„)8];,= i, [R(g, )8], , (1 -i-3), (14)

3 3

g [R(434)BQ(423)~R(412)8]i 1 g [R(412)8]il i

x
a3i = [Q((2)AR((12)81;1 (i =1-3), (is)

b4; = —— [R((3)BQ((23)AR((12)B]~'1 (i 1-3),

[&R(&34)BQ(&23)&R(&12)8]11=0,

where g;;~1 (=g; —g;4. 1) is the length of region i+1.
The matrices Q, R, A, and 8 have 3X 3 dimensions and
[. . . ];~ is the ij component of the corresponding matrix.
The matrices Q and R are diagonal and

r;(r; —q3)
a52 =

4i
, q2(q2 —q3)

r;(r, —q, )aS3=+ ' '
b4; .

, q(q —q)

(i7)

[Q(g)];,=. "'b;, ,

[ R(g) l;, = e "'&;, .
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FIG. 2. Line shape of a two-fluxon bunch with a P 0.02,
and u 0.98 giving q 0.353.

For Eqs. (17) and (18), (4=0 is assumed. This is allowed
because the solution has the translational symmetry on g
axis. In general, we get multiple sets of these roots to Eqs.
(5)-(7). The following conditions are required to obtain
the roots: (i) All roots must be positive. (ii) The obtained
line shapes must be consistent with the assumption; mean-
ing that, as shown in Fig. 1, p; in region i cannot exceed
the range of their own.

A mathematical routine, DNDLBR, is used to get the
roots of Eqs. (5)-(7). For the initial values of (12 and
(34 the length of the core region of the one-fluxon solution
of the same velocity is used, and the initial value of (23 is
changed as a parameter.

The result is summarized as follows: (i) We found the
solution of bunched two-fluxon states at high-velocity re-
gions. The range of u where the bunching takes place is
included in the range of u where the single-fluxon solu-
tions have an oscillatory tail. ' So, the relation
P & 4a /27k, being the necessary condition' for the os-
cillation of the single fluxon, is also the necessary condi-
tion for the bunching. (ii) At a fixed u, we found multiple
solutions depending on the initial value of (23 to solve Eqs.
(5)-(7). The solution with a smaller bias ri has a smaller
distance between two fluxons.

Figure 2 shows the line shape ( —p~) of the solution
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FIG. 3. Bias vs velocity curves of bunched two-fIuxon states
(solid curves) and one-fluxon states (dashed curve), when

a P 0.1. The lower (higher) branch of the solid curves corre-
sponds to the first- (second-) nearest bunching state.

when two fluxons are bunched in the nearest way on the
condition of a =P =0.02 and u =0.98 giving rl =0.353. In
the present paper, k is chosen to be 8/tr, under which the
analytic results of single-fluxon cases are very close to the
numerical ones for the original sing system. 7

In Fig. 3, the lower (higher) branch of the solid curves
shows the relation of g vs u where two fluxons take the
first- (second-) nearest configuration on the condition of
a =p =0.1, and the dashed curve shows the relation of the
single-fluxon solutions. Although not shown in Fig. 3,
there are higher mode curve-s in the small gap between
the higher branch of the solid curves and the dashed
curve, where the higher mode means such a state that two
Iluxons take the nth nearest configuration (n ~ 3). In or-
der to see this clearly, —logto(tb —ri) is computed. Here
g, and g are used, respectively, as the biases giving the
single-fluxon states and the bunched two-fluxon states. In
Fig. 4, the third- and fourth-nearest bunching modes are
shown by the solid curves (3) and (4), respectively, to-
gether with the first nearest mode [curve (1)] and the
second one [curve (2)]. The length of region III, f23 cor-
responding roughly to the distance between two fiuxons is
also shown by dashed curves denoted similarly by (i). At
some critical value of u the first- and second-nearest
bunching modes are merged together, and below this
value the solution cannot be found. Similarly, the third
and fourth modes are merged at some critical value.

To investigate stability of the solutions, numerical

FIG. 4. —log~o(rt, —tt) and f23 as a function of u with
a P 0. 1. The curves denoted by (i) represent the ith nearest
bunching state, where i 1-4.

simulations of Eq. (1) are performed by means of a finite
diff'erence method. The same current-phase relation as
Eq. (2) and the 4tr periodic boundary condition are im-
posed. The periodic length I is chosen to be much larger
than the Iluxon size (l =16). The first method for check-
ing the stability is to observe how each mode responds to
the abrupt changes of the bias (i.e. , rl =rlt for t =0 and
rl=rl2 for t )0). Analytic solutions obtained by this
theory are used for the initial conditions at t 0. The re-
sults after giving rl2 are summarized as follows: (i) The
first- and third-nearest bunching states approach the solu-
tions given by rl2 on the same modes, respectively. (ii)
The second-nearest bunching mode shifts to the first or
the third mode. These two possibilities are governed by
the value of rl2. (iii) The fourth mode does not remain in

its own mode, but it is difficult to see the final state in spite
of lengthy computation (t —10 ), because the distance
between the two fluxons is very large, i.e., the interaction
is very weak. The second method is to put some distur-
bance in the bias term. We found that the first and third
modes are stable after adding a sinusoidal bias distur-
bance. From the above we conclude that the second and
the fourth modes are unstable, and we strongly believe
that the first and the third modes are stable.
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