PHYSICAL REVIEW B

VOLUME 36, NUMBER 15

15 NOVEMBER 1987-11

Effect of valence-band hybridization on the exciton spectra
in GaAs-Ga;_, Al, As quantum wells

Bangfen Zhu* and Kun Huang
Institute of Semiconductors, Academia Sinica, Beijing, China
(Received 24 April 1987)

An investigation is made into the effect of valence-band coupling on Wannier excitons in GaAs-
Ga,_,Al, As quantum wells with well widths ranging from 30 to 200 A. The results of our calcu-
lation show that the effect is twofold. On the one hand, hole-subband nonparabolicity due to mix-
ing of the heavy- (HH) and light-hole (LH) states causes an increase in the binding energies E**, of
both ground- and excited-state excitons; on the other hand, the different orbital behaviors of the
spinor components of the excitonic wave function result in a decreased E * of s-state excitons and
an increased E* of p- and d-state excitons. The former effect dominates in narrower wells and the
latter effect dominates in wider wells. The two-band model is a good approximation for calculat-
ing E*(HH1), but can cause a significant error in calculating E“(LH1) in wider wells because of
the stronger coupling between exciton states from different subbands.

I. INTRODUCTION

The free-electron and hole carrier states interact
through the screened Coulomb potential to form exci-
tons. The complex nature of the hole wave function has
an important effect on the exciton state. In a GaAs-
Ga;_,Al,As quantum well (QW), owing to different
effective masses along the axis of growth (referred to as
the z axis in this paper), the fourfold degeneracy at the
valence-band edge of GaAs is removed with the forma-
tion of the so-called heavy- (HH) and light-hole (LH)
subband. In the earlier models for the hole subbands,
the hole motion along the z axis was considered to be
decoupled from its motion in the xy plane and the sub-
bands were thus taken as parabolic. On the basis of
such a model, Greene and Bajaj' have calculated the ex-
citon binding energies in a QW with potential barrier of
finite height.

However, it has been shown?~> that the off-diagonal
terms of the Luttinger-Kohn Hamiltonian® mix the HH
and LH states away from k=0, where k is the wave vec-
tor in the plane of the well. This coupling results in
large nonparabolicities in the hole subbands. Recently,
Sanders and Chang,” Broido and Sham,? taking the hy-
bridization of the HH and LH states into account, have
evaluated the binding energy of the ground state of the
first HH exciton E{{(HH]1), and that of the first LH ex-
citon E§3(LH1). The exciton wave function ¥, in their
works was expressed in terms of a general linear com-
bination of direct products of QW electron and hole
eigenstates,
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u,vk k'
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Here spinor ¢, , is the wave function of the vth hole
subband for a given two-dimensional (2D) wave vector k,
expressed in cylindrical coordinates (py,z;), while ¢, ,,
k’, and (p,,z,) refer to similar quantities for the elec-
tron. F,, is the exciton envelope function. In the
second line of (1), the general form of the electron- and
hole-subband wave functions are explicitly displayed,
where U’ is the zone-center valence-band Bloch state for
spin component j(=3,1,—1,—3), and U, is the zone-
center conduction-band Bloch state. Both of the previ-
ous works put emphasis on the effect of the hole-
subband nonparabolicity on the effective reduced mass of
the excitonic state and obtained larger binding energies
as compared with the results of Greene and Bajaj.

In actual fact, the valence band coupling also affects
significantly the Coulomb interaction between the
electron-hole pair, because the different spinor com-
ponents of the hole-subband wave function correspond
to different in-plane angular momenta and lead to
characteristically different radial distributions in the ex-
citon structure. As we shall show, this effect is as im-
portant as the effect resulting from hole-subband nonpar-
abolicity. Apparently, it has not been properly dealt
with in the above cited works. Thus in Ref. 7, in calcu-
lating the Coulomb energy g’(k,z,) was approximated
by g/(0,z,), thereby the form of the exciton wave func-
tion reduced simply to that of Greene and Bajaj. In Ref.
8, g/(k,z,) was taken as g/(k,z,), the difference in the
angular momenta associated with the spinor components
of the exciton wave function was apparently overlooked.

In this paper we intend to evaluate the effect of
valence band coupling on the Coulomb energy of the ex-
citons. Since there are not, to our knowledge, any inves-
tigations about the binding energies of the excited-state
exciton based on the complex-hole subbands, we present
a variational calculation of E* of both ground and a few
low-lying states of excitons in QW of finite values of the
potential barrier heights. In Sec. II the electron- and
hole-subband structures and the character of the hole
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states in QW’s are reviewed. In Sec. III a method is
developed for determining E°*. The numerical results
are contained in Sec. IV. Finally, a comparison with ex-
periments and a discussion of various approximations
used in the present work are presented.

II. SUBBAND STRUCTURE

In the present work, the electron and hole subbands
and the exciton problem will be treated in the effective-
mass approximation. The effective mass m S of the elec-
tron is taken to be 0.0665m,. The Luttinger parameters
for the valence band are taken from Ref. 7, namely,
Y1=6.93, y,=2.15, and 7y3;=2.81. The band-gap
mismatch between GaAs and Ga;_, Al, As will be taken

N
1L’h,v(k’ph »Zh ):exp(ik'Ph ) 2

m=—Ni=1

where ¢,;(k,mK) are the usual HH and LH spinor wave
functions associated with k=k, +ik,=k exp(if) and
k,=mK, and a,,; are expansion coefficients to be deter-
mined by solving a [4(2N + 1)]th-order secular equation.
The superlattice wave number in the z direction has been
taken to be zero, which is immaterial for quantum wells
effectively decoupled. For simplicity, subband anisotro-
py has been neglected so that the energy dispersion E (k)
depends only on k. The solution ¥, can be written in
the following form:

E (meY)
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FIG. 1. Calculated are the topmost three hole subbands in a
quantum well of L =150 A. The solid curves are for the iso-
tropy approximation and the dashed curves include anisotropy.
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to be AE,=(1.115x +0.37x?) eV (Ref. 9) with barrier
height for electron V, equal to 0.6AE, and barrier
height for hole V), equal to 0.4AE,."°

The hole subbands are calculated by a method
developed by Tang and Huang,’> which parallels usual
pseudopotential energy band calculations in terms of
plane-wave basis functions. In the present instance, the
usual HH and LH plane wave solutions constitute the
basis functions, with a Kronig-Penny—type barrier po-
tential taking the place of the atomic pseudopotentials.
A very limited number of reciprocal superlattice vectors
mK need be used to obtain reasonable accuracy, where
K =27/(L +d) and L and d are the well and barrier
widths, respectively. In this formalism, the wave func-
tion of the vth hole subband has the following form:

4
> ami¢,~(k,mK)exp(iszh) R (2)

a,(k,z, )exp(—i6)
Bk,zy)

v k,z; Jexp(i@) ’
8,(k,z; )exp(i26)

Y (K, py,2zp ) =explik-p;)

(3)

where a,,y, are odd and S3,,5, are even in z,. Another
solution, which is degenerate with (3), is of the form

(8,exp(—i6),7.,,B.exp(i6),a exp(i20))T .

Two points should be noticed.

(1) 4, is a spinor with four components, which are
generally nonvanishing except at k =0. At k =0, how-
ever, only one component is nonvanishing, thus in our
designation, ¥, yy;(k =0) has only a —32 component
and ¢, 1 i;(k =0) has only a } compnent.

(2) In our model of isotropy approximation, although
the energy E (k) does not depend on 6, the wave func-
tion 1, depends on 6 and the different angular factors
exp(il@), as we shall see, will lead to different orbital an-
gular momenta in the exciton wave function.

Figure 1 shows a comparison of the subband disper-
sion curves calculated for a QW of L =150 A with and
without the isotropy approximation.

III. CONSTRUCTION OF EXCITON WAVE FUNCTION

The Hamiltonian of a Wannier exciton in a QW is
given by

Heszh +He+VOou1 4)
with
Veoou=—e*/elp*+(z, —z,)*]"/% . (5)
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Here p=p, —p, =p expligp) and € is the static dielectric
constant taken to be 12.5 in this paper.

For a stationary exciton with zero translational
momentum, the envelope function as defined in (1) has
the following form:
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The Coulomb interaction couples states from different
subbands. However, for sufficiently narrow wells such
that the subband energies are well separated and the
coupling is weak, we can adopt a two-band model keep-
ing only one valence and one conduction subband. In
view of Egs. (3) and (6), the exciton state derived from

F,(kk')=56(k+k")G,,(k) . (6) vth hole and uth electron subband can be written as
|
Y, 9,2,,2,)= 3, G ,,(k,0)exp[ikp cos(0 —)1f ,(z,)U(a, exp(—i0),B,,7,exp(i6),8,exp(i26))" , 7
k,6

where G, as a general function of k(k,6), periodic in 6, can be expressed generally as

G(k,0)= 3 G'(k)exp(il0) .
]

(8)

It can be shown that exciton states associated with different / in the envelope function are not coupled by the Hamil-
tonian (4), so, without any loss of generality, only one term in (8) need be retained. Integrating with respect to 6 in

(7), the exciton state can be expressed as

av(k,zh )ei(l—l)(¢+1r/2)‘]1*l(kp)

Bv(k7zh )eil(¢+rr/2ljl(kp)

\Pg:(p'q)’ze’zh )= 2 Gl(k)f,u(ze YWUo2m
k

Vv(k’zh )ei(1+l)(<p+rr/2)J1+l(kp)

Sv(k7zh )eitl +2)(‘P+”/2)JI +2(kp)

where J;(x) is the /th order Bessel function of argument
x and S is the spin function of the electron. The second
line of (9) is introduced merely to indicate the angular
momenta involved, where the first suffix denotes the in-
plane orbital angular momentum and the second suffix
denotes the j value for the spinor components.

For variational calculation, the total energy can be di-
vided into an effective kinetic energy term EX" and a
Coulomb term E €U

<\Pex‘Hex I \Pex> _ <\Vex\He+Hh ‘\I/ex>
(Wey | Wex) (Wer | W)

<\l/ex | VCoul | \Pex>
< Wex i qjex>

=Ekin+ECouI . (10)

As the electron- and hole-subband wave functions mak-
ing up the exciton wave function are eigenfunctions of
H,+H,, with eigenvalues given by the subband disper-
sion curves, the effective kinetic energy term EX" is
directly derived from the subband dispersion curves.
The Coulomb term depends, however, essentially on the
detailed spatial distribution of the exciton wave function.
Referring to the exciton wave function (9), clearly if a
component is associated with the Bessel function Jo(kp),
it will be most effective in lowering the Coulomb term.
However, even with free choice of /, (9) permits at best
only one of the four components to have a Jy(kp). Thus
for the ground state, we shall choose / so that the largest

(¥ _132Y 1Y, 21V 42, 232)8 9)

—

component, if such exists, has a Bessel function Jy(kp).
It turns out that, for a given subband, such a dominant
component does exist. As we know, the exciton wave
function is made up of electron and hole states within a
limited range of k around k£ =0 (which is correlated with
the spatial extension of the exciton). For a given sub-
band, at kK =0 the hole wave function reduces to a single
component, actual calculations show that this com-
ponent remains in fact the dominant component
throughout the relevant range of k involved in actual ex-
citons.

From (9), it is seen that if m, is the j value of the
dominant component, then with

that component will have a Bessel function Jy(kp).
Thus for the ground state of HHI1-CB1 exciton,
\I/S(I:IIIS—CBl, md=~%, and / =—2, for Wg‘::{lls_CBl, md=%,
and / =0.

The assignment of / by (11) is the analog of an s state.
For an excited state of exciton W ,,,, associated with
quantum numbers of 2D hydrogenic atom n,m, we
derive the / value from the angular momentum quantum
number m

l=—14+my+m . (12)

The exciton state thus obtained corresponds to a total
angular momentum quantum number given by

M,=m —m +s , (13)
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for the quasi-2D exciton. By analyzing the symmetry of
the exciton state constructed in this way, we find that
the factor (\P_3,3/2,W,2,1/2,\V_ 1, -1 /2,‘1’07 _‘3/2) contained

in YHHIL-CBI has r, symmetry and
, LH1-CBI
(W _1,3/2%,1/2¥1,-1/2¥3, _3,2) of ¥~ has ['g sym-

metry, whereas if we had left out the angular factors in
the hole wave function (7), the factor of
(\I’O,3/2,\l’0’1/2,\1}0'_1/2,‘[’0"3/2) would be a mixture of
two different representations I'q and I'; and could not be
assigned a quantum number M, .

For variational calculation of the exciton states, in
analogy to 2D hydrogenic radial function ®,,(p), the
envelope function of an nm-state exciton is assumed to
have the following form:

G (k)= [ pdp @, (p),(kp) . (14)
Thus
G”(k):a(a2+k2)”'5 ,
G¥(k)=alk?—a*)a?+k?)~ 25,
G¥(k)=kala*+k?) %5,
and
G¥(k)=k*a(a?+k?) >3,

where a will be taken as a variational parameter. In or-
der to obtain a more accurate value for E{;, an envelope
function of GY(k)=a(a’+k?)~? with two variational
parameters a and 3 are used.

As a check on the accuracy of the two-band model,
we have carried out variational calculations on the basis
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of combining the three lowest-lying excitonic series, i.e.,
HH1-CB1, LH1-CB1, and HH2-CB1 to form a varia-
tional wave function ¥, = 3; ¢;¥.,. It should be point-
ed out that, as apparently ignored in previous research,
coupling between different excitonic series occurs only
between exciton states with the same phase factor
expl(ilgp) for their corresponding spinor components.
Thus in order to investigate the effect of coupling to the
HH1 and HH2 excitonic series on the LHI1 exciton

%(LH1-CBI1), the variational function needs only to in-

clude the excitons WS, and WA ; there is no cou-

pling to the ground-state excitons.

IV. RESULTS

A. Binding energies of ground-state excitons

Figure 2 presents the results of theoretical calculations
designed to demonstrate the different effects of valence
band hybridization on the binding energies of the
ground-state HH1-CB1 and LH1-CBI1 excitons. The re-
sults were calculated for GaAs-Gay,75Alp.25As quantum
wells with well widths ranging from 30 A to 200 A (bar-
rier width is fixed at 150 A in this instance). In the
figure E{} calculated with three different models is
presented as a function of well widths. Approximation I
represents results calculated with the parabolic-hole-
subband model, similar to that of Greene and Bajaj. II
represents results calculated with a model, essentially
similar to Ref. 7 as explained earlier, which takes ac-
count of the nonparabolic subbands resulting from
valence band hybridization. The third set of results are
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FIG. 2. Exciton binding energies vs well widths in GaAs-Ga, ;sAly,sAs quantum well calculated in five different models: A
Approx. I; X, Approx. II; O, including both aspects of the effect of hole hybridization within two-band model; @ as O, but beyond

two-band model; B, as @, but the nonparabolicity of the CB electron is involved. (a)

is(HH1-CB1); (b) E{(LH1-CB1).

>
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calculated with the model which takes proper account of
thg e]ﬁ‘ect of valence band hybridization on both EX" and
E~°%,

A comparison between the results of I and II clearly
demonstrates that the nonparabolicity of the hole sub-
bands results in decreased EX" and increased E§X, al-
ready emphasized in Refs. 7 and 8. This enhancement of

$% is not sensitive to well width, because the hole
dispersion changes little relative to 1/m/. The only ex-
ception is E {;(LH1-CB1) for narrow well with L =30A,
where the LH1 effective mass near k =0 becomes posi-
tive showing up as a lesser enhancement of E ;.

From the figure, it is seen that the effect of the valence
band mixing through E " is to reduce the exciton bind-
ing energy. The reason is that while the dominant com-
ponent varies as Jo(kp) like an s state, the other com-
ponents behave like J,, (kp)(m=£0), which represents a
more extended radial distribution in the xy plane and
thus reduces the Coulomb energy. In Fig. 3 the wave
function square contributed by all four components of

0.1

NN

0,01

0.001
(¢}

d P (L/)

FIG. 3. Wave function square of the 1s state of LH1-CBl1
exciton as function of p at given z, in a QW of L =150 A.
Solid curves include all four components; dashed curves, only
the dominant component is involved.
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¥ (p.2)]

7, (A)

FIG. 4. Wave function square of the 1s state of LH1-CB1
exciton as function of z, for given p in a QW of L =100A
(taking the value at z,=0 as a unit). The vertical line
represents the position of the QW interface.

the 1s state LHI1 exciton and that contributed by only
the dominant component are shown as functions of p (at
a given z, ), for comparison.

The effect of complex subband on E“°Y manifests it-
self not only in the change of the excitonic in-plane dis-
tribution, but also in the interdependence between the
excitonic motion parallel and perpendicular to the xy
plane. Thus the farther the hole is away from the well
center, the more extended is the exciton in the xy plane
(Figs. 3 and 4); or, with the increase of p, the excitonic
distribution along z direction becomes more extended.
Such effects act to further reduce E §}.

In contrast to the effect of nonparabolicity, the effect
on E ! of hole hybridization is sensitive to well widths.
This is because the degree of valence band hybridization,
and hence the general magnitudes of the nondominant
spinor components of the exciton, depends essentially on
kL. So for thicker wells with larger L, these com-
ponents become relatively more important and modify
more strongly the Coulomb energy, especially for WEIL
which contains a larger component of ¥ _ 3 ;.

The results shown in Fig. 2 show clearly that the two
aspects of the effect of valence band hybridization on the
binding energy of the ground-state excitons act to cancel
each other. In narrower wells, the effect of subband
nonparabolicity dominates and in sufficiently wide wells,
the effect through E “°*! dominates.

B. Binding energies of excited state of excitons

Just as the case for E;, there is a critical value of well
width L. at which the binding energy of the exciton
reaches a maximum value. But L, of the excited state is
much larger than L, of the ground state and L, of the
2p state is larger than L, of the 2s state (cf. Fig. 5). The
common reason lies in the fact that the compression of
the excitonic wave function along the z-direction is less
effective in the enhancement of E* when the exciton is



36 EFFECT OF VALENCE-BAND HYBRIDIZATION ON THE . ..
T T T 3
— I
Py
wi
(&)
ﬁ 3 -
[ J
2 X
) o "
x
=2 ) &
a 2} A aN A .
= < o ¢ © &
@ % =
. -
1} _
L 1 | !
100 200

WELL WIDTH (A)

FIG. 5. Exciton binding energies of excited states as a func-
tion of well widths: @, E%’,‘,+(LH1-CB1); X, E§;7(LH1-CB1);

A, ES((LHI-CB1); ©, ES;(HH1-CB1); W, E$}(HHI1-CB1).

more extended in the xy plane. Another phenomenon
connected with the fact is E5; > ES;. We know that
E,,=E,; for 2D hydrogenic atoms. As the 2s state is
more concentrated near p~0 compared with 2p state,
clearly in going over from 2D hydrogen to 2D exciton in
QW, the reduction of Coulomb energy due to extension
in z direction will be pronounced in the case of 2s exci-
ton as compared with 2p exciton, resulting thus in a
lesser binding of the 2s exciton than Ef,. We predict
that with L narrowing the quasi-2D exciton becomes
more 2D-like and ES and E$, should become equal in
the limit if the spread of the wave function into the bar-
rier is negligible Our calculation suggests its validity.
For example, —E 1s of only 0.06 meV for HH1 ex-
citon in a well ofL -—30 A.

In contrast to the case of ground-state excitons, both
aspects of the effect due to valence band coupling act to
increase the binding energies of the p-state and d-state
excitons. The reason is simple. As in these excited
states, while the dominant component of the spinor
varies as J,(kp), such as J(kp) (taking p_ state as an
example), there exists another component behaving like
Jolkp), which is spatially less extended compared with
the dominant component and leads to stronger binding
(i.e., compared with models with effectively a single com-
ponent). The hybridization also results in a possible
splitting of 2p, and 2p_ state, if, for instance, the
¥y 3,, component of \Ili“,?zlp+ is much larger than ¥, _,,,

component of \l’i‘x]"‘zlp

. Since ¥, Ly contains a compara-
ble first component with the dominant part, E5, (LH1)
is obviously larger than E5; (LHI1). There is no such
splitting for 2p state of HH1 exciton as the third com-
ponent of ¥, 4y, is negligible.
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TABLE 1. Comparison of binding energies of the ls-state
exciton calculated within two-band model with that calculated
beyond two-band model.

Well owidth #(HH1) (meV) $(LH1) (meV)
(A) Two-band Beyond Two- band Beyond
200 6.23 6.31 5.76 6.64
150 7.19 7.25 7.10 7.47
100 8.42 8.44 8.86 9.03

C. Beyond two-band model

The effect on E§;(HH1-CB1) of coupling with 3d state
of LH1-CBI1 exciton is shown in Table I. The data indi-
cate that the two-band model is a good approximation
for the calculation of E{;(HH1).

In the case of the 1s state of LH1-CB1 exciton, the
effect of Fano resonance'! is neglected, only coupling be-
tween bound states from different excitonic series is con-
sidered. The table shows significant deviations in the
case of ESX(LH1) when L 2 150 A, which is due mainly

to the coupling between ng“]g and \l’g‘Hﬁ, . An interest-

ing instance about this coupling is the ground state of
LH1-CB1 exciton in a well of L =200 A. Using the
two-band model with energy zero taken at the HH1-CB1

free-carrier edge, the calculated excitonic level of
$Y(HH1-CB1) is at —0.63 meV, S(LHI1-
CB1)=—0.39 meV, and Ej5, (HH2-CB1)=4.5 meV.

+ . . .
(No Fano resonance for LH1 exciton occurs in this

case.) When couplings between these states are
turned on, the two lowest levels and wave functions
are found to be as follows: E;=—1.27 meV,
v, =0.82WHHl 1 0.49WHHY L0200l | E,=-0.43
meV, W, = —0.46W5ll +0.87¥ M, —0. 1SWEY, . It is

the coupling between WLF! and ngfﬁu

(LH1) down below E§;(HH1).

that pushes

V. DISCUSSION AND CONCLUSION

Since no adjustable parameters are involved in this
calculation, the only sources of inaccuracy are the fol-
lowing approximations: (1) the asumption of hole sub-
band isotropy, (2) the same effective mass parameter and
dielectric constant used for both the well and barrier
materials, (3) neglect of Fano resonance, and (4) parabol-
ic conduction band for the electron.

Since the subbands are nearly isotropic in the region
of interest near k =0 and the dispersion curves with
isotropy approximation seems to be the average of the
real dispersion curves along the [100] and [110] direc-
tions when k is large (cf. Fig. 1), the error due to isotro-
pic dispersion is 2% at most according to our estimates.
Since the physical parameters of GaAs and GaAlAs are
not too different and the exciton wave functions are pri-
marily confined within the well, the second approxima-
tion above should not cause large errors. A detailed in-
vestigation on the effect due to Fano resonance is still in
progress, but according to Ref. 8, it is not expected that
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our main conclusions will be affected. Finally, the para-
bolic band approximation for the conduction electron
may increase E{; by an amount of the order of meV for
narrower well widths. As following k-p perturbation
th?gry, the nonparabolic electron effective mass is given
by

mX*=(0.0665+0.0436E +0.236E>—0.147E *)m,

with E evaluated from the CB edge in units of eV. The
value of E; calculated on this basis as a function of L is
also depicted in Fig. 2.

The existing experimental data on E{; are indirect and
divergent. 3~ '® However, as the photoconductivity mea-
surements made by Rogers et al. were carried out in
steady magnetic fields down to 2.5 T, permitting thus a
more exact determination of E§; by linear extrapola-
tion, ! we have compared our results with their data (cf.
Table II). In view of the experimental uncertainty and
the approximations used in our calculations, the agree-
ment between experiments and theory is fairly good.

In conclusion, the complex nature of the hole sub-
bands due to intermixing of heavy and light holes affects
intricately the exciton spectra in quantum wells. The
effect of valence band hybridization on the Coulomb in-
teraction is generally comparable in magnitude with the
effect of hole-subband nonparabolicity on the effective
kinetic energy. The different orbital angular momenta

BANGFEN ZHU AND KUN HUANG 36

TABLE II. Calculated binding energies of the ls-state exci-
ton in quantum wells of GaAs-Gag ¢sAlg 3sAs compared with
experiments (Ref. 15).

Well owidth E{{(HH1) (meV) $$(LH1) (meV)
(A) Expt. Theory Expt. Theory

75 10 9.67 11 11.05

110 8 8.59 9 9.30

associated with the spinor components of the exciton
wave function have the effect of reducing the binding en-
ergies of the s states and of increasing the binding ener-
gies of the p and d states. While such effects dominate
in quantum wells of sufficient widths, the effect of sub-
band nonparabolicity on both hole and electron always
acts to increase the exciton binding energies and dom-
inates for sufficiently narrow quantum wells. The two-
band model is fairly good for calculating E{}(HH1), but
produces significant errors for E{{(LH1) in the wider
wells.
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