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A unified theoretical picture has emerged to explain the fluctuations in the conductance of
disordered, one-dimensional resistors. At zero temperature T, and if the localization length g is
shorter than the sample length L, current is carried by resonant tunneling which gives rise to ex-
ponentially large conductance fluctuations as the Fermi energy is varied. On the other hand, if
g&L, the fluctuations are always of size e'/h. As T is raised, the fiuctuations at first remain ex-
ponentially large for L & g, but are the result of one-dimensional phonon-assisted hopping. At still
higher T, the inelastic diffusion length L;„plays the role of sample length, and when L;„becomes
as short as the localization length the states become delocalized. For temperatures above this
localized-to-extended transition, the fluctuations of conductance are always of order e /h in a
sample of length L;„.We present the results of experiments on narrow (-70 nm) inversion layers
in Si metal-oxide-semiconductor field-effect transistors. At low T there are exponentially large
fluctuations at low conductance and e'/h fluctuations at high conductance. It is shown that the
dependence of current on Fermi energy, temperature, and source-drain voltage for low conduc-
tance can be explained by one-dimensional phonon-assisted hopping. The samples are too long to
observe resonant tunneling. It is pointed out, however, that several predicted features are not ob-
served in the limited temperature range studied. At high conductance the fluctuations are of size
e /h in a sample of length L,„.An estimate is made of the value of the conductance at which the
localized-to-extended transition occurs: That is, the value at which the conductance and its fluc-
tuations are both -e /h in a sample of length L;„.

I. INTRODUCTION

In 1977 Thouless' began a revolution in the way we
think about conduction in metals. He used a scaling ar-
gument to show that all wires, no matter what their
cross-sectional area, would become insulators at T =0 if
they were made long enough to have resistance greater
than h /e, about 30000 A. Thouless's predictions were
confirmed by experiments on narrow wires (for reviews
see Refs. 2 and 3). His scaling ideas led to spectacular
theoretical progress ' which has recently been re-
viewed. This, in turn, stimulated experiments on two-
dimensional (2D) conductors, showing that in 2D, as in
one, all states are localized at zero temperature.

Central to the scaling theory is the idea that there is
only one parameter in the problem: the conductance G
itself. It was, therefore, devices in which G could be
varied in the midst of an experiment that provided the
clearest test of the theory. The experiments on metal-
oxide-semiconductor field-elf'ect transistors (MOSFET's)
showed the logarithmic temperature dependence predict-
ed for 2D and its dependence on resistance.

It was clear to several groups that much could be
learned by using MOSFET's to study conduction in 1D
as well as 2D. Conventional MOSFET's have subbands

arising from the quantization of electronic motion nor-
mal to the Si surface. Each of these 2D bands has a
constant density of states. However, if the motion in a
MOSFET were quantized for two directions but still
free-electron-like in the third, there would be square-root
singularities in the density of electronic states. In addi-
tion to such ideal behavior, the efFects of disorder could
be explored and the predictions of the scaling theories
tested. However, as is the case for recent work on small
metal wires, the most exciting results to come out of ex-
periments on narrow MOSFET's were completely unex-
pected.

A variety of devices have been fabricated to probe 1D
behavior in MOSFET's. The first was reported by
Fowler, Hartstein, and Webb. ' It consists of a lightly
doped n-type Si substrate, n + source and drain contacts,
and an Al gate over the thermal oxide. What would be
a standard accumulation-mode device is modified by im-
plantation of p+ regions on each side of the channel.
The depletion regions between these p + contacts and the
substrate are then used to constrict the conducting chan-
nel. Fowler, Hartstein, and Webb' and Pepper and
Uren" reported that at low T such devices displayed ex-
ponentially large fluctuations as a function of gate volt-
age, VG, that is, the Fermi energy of the electron gas.
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Almost simultaneously, Wheeler et al. ' reported mea-
surements on inversion-layer devices which are produced
using fairly conventional photolithography but with gate
electrodes as narrow as 300 nm. Their technique
preserved the high mobility of these devices ( —20000
cm /V s). These workers found small fluctuations in the
conductance with V& in their high-conductance inver-
sion layers. Skocpol et al. ' used electron beam litho-
graphy to produce an extremely narrow gate electrode.
Then, using the narrow nichrome gate wire as a mask,
the oxide and Si adjacent to the device were removed by
reactive-ion etching, forming a mesa structure. These
devices revealed small fluctuations in conductance with
VG at relatively high conductance G, similar to the re-
sults of Wheeler et al. They also displayed fascinating
time-dependent phenomena which will be discussed
later. Using techniques described in Sec. III based on
the wire-fabrication techniques of Giordano and Prober
and White and Flanders, ' Kwasnick et al. fabricated'
MOSFET's with gate wires as narrow as 50 nm. In
these devices the electrostatic field, alone, is used to
confine the electrons in the narrow inversion layer.
These devices display exponentially large fluctuations of
conductance with VG near threshold and smaller fluctua-
tions at higher VG. Warren, Antoniadis, and Smith '

have produced an array of 250 parallel one-dimensional
inversion layers using a dua1-gate structure in which the
lower gate was a grating of 200-nm period. These de-
vices also display small fluctuations in the conductance
as a function of VG for large G.

Each of these devices has strengths and weaknesses.
The Pepper/IBM device requires no sophisticated lithog-
raphy, apparently results in very narrow confinement,
and shows none of the history-dependent eff'ects charac-
teristic of some other devices, but the geometry is poorly
defined. The device of Wheeler et al. also uses conven-
tional lithography and therefore preserves the high mo-
bility, but the dimensions cannot be made very small.
The devices of Skocpol et al. have very well-defined
geometry and are the narrowest MOSFET's made to
date, but the creation of a mesa which accurately deter-
mines the geometry also introduces surface states, and
the electron beam lithography causes a deterioration of
the mobility. In the devices to be discussed in this paper
the high mobility of the Si(100) surface seems to be fairly
well preserved. In principle, since the confinement re-
sults from the electrostatic field, the geometry can be
modeled quite accurately. However, there are history-
dependent effects which are not, as yet, well understood.
The devices of Warren et al. may result in narrower in-
version layers than those of Kwasnick et al. but the in-
terpretation of the results for an array of conductors is
less straightforward than for a single inversion layer.

The amazing fact is, however, that despite the great
diff'erences in the devices used, the results are qualita-
tively similar. The devices all show small fluctuations at
high conductance G and, for those cases which have
been carefully studied, exponentially large fluctuations at
small G. In this paper we review what is known about
the origin of the conductance fluctuations in Si
MOSFET's. In Sec. II we outline the theoretical ideas

which explain in a unified way the fluctuations in the
limits of low and high G. Section III discusses the tech-
niques we have used for fabrication of 10 MOSFET's.
In Sec. IV we discuss the modeling of the confinement of
the narrow inversion layer, which has been done with
varying degrees of sophistication. In Sec. V we report
the results of a detailed study of the exponentially large
fluctuations in the low G regime. We include there, also,
a discussion of history-dependent and switching phe-
nomena similar to the telegraph noise observed by Rails
et al. ' Finally, in Sec. VI we compare the results of ex-
periments on the exponentially large fluctuations with
theoretical predictions and point out the issues which
are still unresolved. In particular, we use the conduc-
tance fluctuations to tentatively identify the transition
from localized to extended states.

II. THEORETICAL BACKGROUND

For a truly one-dimensional conductor, in which the
electrons are in a single quantum state for motion in
both transverse directions, Mott and Twose' argued
that any disorder causes all states to become localized.
The localization length, the mean distance an electron
moves before being backscattered, in this case is of the
order of the mean free path for elastic collisions l.
Thouless' explained that in wires of finite cross sectional
area 3, disorder would still give rise to localization but
that the localization length g would, in general, be
longer than I. Because of the increased phase space for
scattering transverse to the length of the conductor,
g-lN, where N, is the number of transverse eigenstates
occupied at the Fermi energy EF (the number of trans-
verse scattering channels). For large A, N, —k~3 where
kF is the Fermi wave vector.

Consider, first, the T =0 conductance of a sample of a
quasi-one-dimensional disordered metal between ideal
metal contacts. Following the pioneering work of
Lifshitz and Kirpichenkov, ' Azbel examined the case
in which the length I. of the quasi-one-dimensional sam-
ple is much longer than g, as depicted in Fig. l. In the
limit of zero voltage, the T =0 conductance is limited by
tunneling from one contact to the other. Azbel
identified three cases. (i) The Fermi energy EF is not de-

FIG. 1. Sketch of a disordered one-dimensional conductor
between ideal contacts. The decay length g of the localized
states is much less than the sample length L. States near the
middle of the sample which have T*—1 are shaded. Path 3
depicts resonant tunneling, path B phonon-assisted tunneling.
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generate with any of the localized states in the sample,
and the tunneling transmission T-e . (ii) EF is de-
generate with a state at the center of the sample, and, by
symmetry, T —l. (iii) EF is degenerate with a state
closer to one contact than the other, and T-e
where x is the distance of the state from the center of
the sample. The latter two cases are those of resonant
tunneling. The transmission as a function of E„,there-
fore, has a spectrum consisting of peaks with exponen-
tially varying amplitude above a background level
—e ~. For the resonances with T —1, the Landauer
formula ' gives peak conductance G =e /h. Azbel
pointed out, also, that the widths of the peaks vary as
e ~ ~ ~ because the width of a resonance is deter-
mined, through the uncertainty principle, by the time to
tunnel to the closest contact. A sketch of the conduc-
tance versus EF is given in Fig. 2(a).

Consider, now, what happens when the sample length

Ioo

-I
IO

CU

QJ lo-2

w lo
C)
Z'.
O
~I0

FERMI ENERGY

is decreased or g is increased. In the limit L &g every
state gives T —I because every state is within g of the
center of the sample. Furthermore, the states are no
longer exponentially narrow relative to their spacing.
Rather the resonances are broader than their energy
spacing and overlap. Such a situation is sketched in Fig.
2(b). Since the conductance at any single value of EF
has contributions from many overlapping resonances,
one has

G= e'6EdN
h dE

where dN/dE is the density of levels and 6E is the level
width. In other words, 6EdN/dE is the number of reso-
nances embraced by a single resonance. Equation (l) is,
of course, just the result obtained by Thouless. ' In his
presentation, 6E is replaced by h /t, and the Einstein re-
lation is used to show that t is the time to diffuse to the
contacts, i.e., 6E =hD/L .

Thouless realized that the transition from localized to
extended states occurs when the resonances just begin to
overlap, i.e., when 6 =e /h. As pointed out by Azbel,
one expects exponentially large conductance fluctuations
with EF on the localized side of the transition [Fig. 2(a)].
It is clear from Fig. 2(b) that the fluctuations will be
much smaller on the extended side.

Lee and Stone and Altshuler used diagrammatic
techniques to show that the conductance in metals fluc-
tuates from one sample to another, one Fermi level to
another, or one magnetic field to another, and that the
magnitude of the fluctuations is always -e /h indepen-
dent of geometry or sample size at T =0. This result is
surprising in the context of the overlapping-resonance
picture of Fig. 2(b). If the resonances were distributed in
energy according to Poisson statistics, one would expect
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FICx. 2. (a) Sketch of logarithm of conductance G as a func-
tion of Fermi energy from resonant-tunneling model of Azbel.
The resonances that are exponentially large are also exponen-
tially narrow. (b) Sketch of overlapping-resonance picture of
Thouless. Note that the measured conductance is the sum of
the contributions from the individual resonances sketched in

(b), whereas in (a) the total G, itself, is plotted.

which is, in general, larger than e /h. This result,
which is a consequence of Campbell's theorem, can be
comfortably appreciated by analogy with shot noise.

Altshuler and Shklovskii explained how correlations
in the energies of the resonances reduce the fluctuations
from the size of Eq. (2). They relied on the Wigner-
Dyson theory of random matrices which was
developed to solve the similar problem of the distribu-
tion of energies of resonances observed in nuclear
scattering. The theory of random matrices is quite so-
phisticated. However, the results confirm a very simple
suggestion of Wigner. This "Wigner surmise" was
that, given a level at E, the probability of finding the
next level at E +S is proportional to S for small S. This
probability can be written P (S)~ S = exp( —lnS ' ).
The interaction of particles in a two-dimensional
Coulomb gas is proportional to lnr ', so the statistics of
the level distribution is the same as that of the spatial
distribution of the particles in a d =2 Coulomb gas with
kT =1. The logarithmic dependence on the energy sep-
aration of the levels (or of the particle separation in the
Coulomb gas) leads to the result that the fluctuations in
the number of levels in an energy range E, (or particle
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([5N(E, )] ) ~ln(E, /oE), (4)

where E, is the energy correlation range of the Auctua-
tions. It is clear, however, that for the case of overlap-
ping resonances, E, -6E giving Auctuations that are in-
dependent of N(E) and 5E.

Stated simply, level repulsion tends to keep the levels
equally spaced in energy. This dramatically reduces the
Auctuations from the size expected for Poisson-
distributed levels. The level-repulsion becomes more
effective as 6E, the level width, increases, because the
matrix elements between levels are 1arger. As a result,
the fluctuations remain constant rather than growing
with G. The Auctuations in the density of states turns
out to be only one of two components. The second
comes from Auctuations in D or, equivalently, 6E.
Imry and Lee have provided alternative intuitive ar-
guments based on the generalized Landauer formu-
la ' ' and using properties of random matrices. We
have here emphasized the approach of Altshuler and
Shklovskii because it ties together the simple pictures of
Azbel, for the localized regime, and Thouless, for the ex-
tended regime.

We thus have a unified theoretical picture of conduc-
tance fluctuations at T =0. In the limit. that L &g the
states are localized and the Auctuations should be ex-
ponentially large. On the other hand, when L &g the
states are extended because of their quantum-mechanical
coupling to the eigenstates of the ideal metal contacts,
and the Auctuations should have magnitude e /h. In
the delocalized regime the effect of increasing tempera-
ture is the same as that of reducing the sample length.
An electron loses temporal phase coherence after
suffering inelastic collisions, so the length over which the
conductance is to be computed quantum mechanically
(using the Landauer formula) is reduced from L to
L;„(T),the inelastic length. This results in a gradual
reduction of the conductance Auctuations when L;„is
shorter than both g and L. More dramatic, however, is
the prediction that decreasing temperature should cause
a transition from extended to localized states when
L;„=g'.This happens when the sample of length L;„has
Auctuations AG -G -e /h.

Increasing temperature is also expected to alter the
Azbel resonant-tunneling mechanism in a fundamental
way. Azbel developed the model to explain the large
Auctuations seen by Fowler, Hartstein, and Webb' and
by Pepper and Uren. " But there were both experimen-
tal and theoretical difficulties with this interpretation.
The model predicts that the peaks in the conductance
should be quenched with increasing temperature because
inelastic scattering interferes with the coherent

density) follows

( [5N (E, )]') ~ ln(N(E, ) ),
which is clearly much smaller than the result ( ~N' )

for Poisson-distributed levels given in Eq. (2).
Altshuler and Shklovskii pointed out that the energy

range used for calculating N(E, ) is only defined to
within +6E for levels of width 6E so that

resonant-tunneling process. This was never observed.
Instead, the conductance increases with T even at the
maxima. Furthermore, the disordered samples were all,
at that time, much too long to expect resonant tunneling
from one contact to another.

Stone and Lee ' have explained why resonant tunnel-
ing is not the conduction mechanism observed in long
quasi-one-dimensional MOSFET's at currently accessible
temperatures. Recall that the highest conductance reso-
nances are extremely narrow because the tunneling time
for these is exponentially long. As a result of this long
tunneling time, electron-phonon collisions occur before
the electron can utilize the high resonant conductance.
As a result, thermally activated hopping is the dominant
conductance mechanism. This is depicted in Fig. l. It
is still true, however, that resonant tunneling wi11 dom-
inate at sufficiently low T or in sufficiently short conduc-
tors as has recently been demonstrated by Fowler
et al.

Following the experiments of Fowler et al. ' and
Kwasnick et al. ' ' which provided a fairly complete
characterization of the Auctuations in the strong locali-
zation regime, Lee proposed a new model based on
thermally activated hopping. Using numerical calcula-
tions for a one-dimensional chain of uniformly spaced
sites with random energies, Lee showed that the major
features observed in the experiments could arise from
variable-range hopping. His calculations showed that
the average conductance increased with T as
exp[ —(To/T)' ] as expected from the usual Mott ar-
gument. However, the resistance displayed exponential-
ly large fluctuations with the chemical potential (Fermi
level) of the electron gas. The fluctuations arise because,
for any given value of EF, the electron must encounter
each one of a particular sequence of hops to traverse the
one-dimensional sample. The resistance of a hop is an
exponential function of the site separation and energy
difference, both of which are random variables. The re-
sulting distribution of hopping resistances is enormously
broad (it is log-normal). At low T it becomes very like-
ly, therefore, that a single hop, somewhere in the sample,
limits the entire current.

This picture leads to several specific predictions. (i)
At fixed EF the temperature dependence of the resis-
tance should be piecewise activated. The activation en-
ergy is fixed as long as a given hop limits the current.
But when the temperature is lowered enough, the resis-
tance of that hop becomes sufficiently high that the elec-
tron will hop to a more distant site with smaller activa-
tion energy. This mechanism is, of course, the origin of
variable-range hopping itself, and the activation energy,
on average, decreases in the way predicted by the
exp[ —(To/T)' J dependence. But because of the one
dimensionality, the activation energy should decrease in
steps as T is lowered since a single hop will always limit
the current.

(ii) The resistance R as a function of EF is predicted to
consist of regions in which R increases or decreases ex-
ponentially with EF. This behavior is also easily under-
stood in the model in which the current is limited by a
single hop. From the work of Miller and Abrahams



36 CONDUCTANCE FLUCTUATIONS NEAR THE LOCALIZED-TO-. . . 8019

and Ambegaokar, Halperin, and Langer we know that
the highest resistance hops occur when the activation
energy is 1arge because the initial or final state has an en-
ergy far from EF or because the energy difference be-
tween the two sites (if on opposite sides of EF ) is unusu-
ally large. The first case gives a resistance which is ex-
ponential in EF!kT; in the second case the resistance is
independent of EF. Whether the latter situation (which
gave plateaus in R versus EF in the calculations of Lee)
can be important had been earlier called into question by
Thouless. Since the predicted plateaus have not been
seen we wi11 not discuss this case in what follows.

(iii) One expects the dependence of the current on the
voltage to be exponential and rectifying. Because one
hop limits the current, the entire voltage drop occurs at
that hop. In the limit of small voltage (eV & kT) the oc-
cupancy of the limiting site with energy E, determines
the current and is given by a Boltzmann factor
exp[ —(E, Ez)lkT]—. This situation is changed, howev-
er, when the voltage drop exceeds kT/e. For higher
voltages the activation energy is expected to decrease
linearly with the applied voltage for the following
reasons: in the nonequilibriurn situation, eV&kT, the
current is limited by the rate at which electrons reach
the highest-energy state rather than by its occupancy.
(As noted above, we ignore the case of initial and final
states on opposite sides of EF )Since .the entire voltage
(electrochemical potential) difference falls across the
small region near the limiting state, the energy of that
state relative to EF changes by a fraction which we call
f of eV, and f is of order one. This linear decrease of
the activation energy results in an exponential depen-
dence of current on voltage at fixed T. The fraction f
will be different, in general, for the two directions of
current flow. Therefore, the nonohmic behavior will
give rise to rectification because of the microscopic prop-
erties of the hopping system, even though the sample is
macroscopically symmetric.

Shklovskii has discussed the effects of high fields in
the three-dimensional hopping. His arguments for the
percolation backbone in d =3 are even more appropriate
to a one-dimensional system. He pointed out that, be-
ginning at very low applied voltage, the entire voltage
falls across a single hopping resistance. However, as the
voltage is increased, that resistance decreases exponen-
tially until it is equal to that of the second-largest resis-
tor in the chain. For higher voltages still, the voltage in-
crement is shared equally by the two resistors until their
resistances are reduced to that of the third largest and so
on. One, therefore, predicts that the current will be
piecewise exponential in voltage with a slope (on a loga-
rithmic plot) that decreases in steps as more hops share
the voltage drop.

As we will show, the experiments in the strong-
localization regime are, in most aspects, in qualitative
agreement with the one-dimensional-hopping model of
Lee. However, several features, like the piecewise
change in the exponent of the current-voltage curve,
have not yet been observed.

We summarize the theoretical predictions for a wire
long enough that its resistance is greater than h/e as

III. FABRICATION PROCEDURE

Figure 3 shows an overview of the method used to fa-
bricate the gate wire. A photoresist (PR) step is used as
a mask for reactive-ion etching (RIE), which creates a
50-nm step in the 100-nm thick thermally grown Si02.
After removal of the photoresist, metal is evaporated at
a glancing angle into the step creating the -50-nm wide
gate wire.

The MOSFET's were produced on (100) p-type Si
wafers of 3-0, cm resistivity. First, a -0.5-pm-thick
("field" ) oxide was grown. Holes were etched in this ox-
ide and the n+ regions were produced by phosphorus
diffusion, after which the top (-50 nm) P-doped oxide
was etched away. The remaining oxide is left as an insu-
lator over noncritical parts of the wafer. In a rectangu-
lar region overlapping each pair of n+ contacts the ox-
ide was completely removed and the 100-nm gate oxide
was grown in dry 02 at 1100'C. The wafers were then

NARROW GATF FABR ICATION

SiOp
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FIG. 3. Photoresist (labeled PR) is used as a mask for high-
ly anisotropic reactive-ion etching (RIB) of thermal Si02.
When half of the SiO& is removed, a 50-nm step is created in
the oxide. Metal is evaporated into the step at a glancing angle
to the surface to create the narrow gate wire.

follows: at zero temperature the current will be limited
by resonant tunneling from one contact to the other. At
some finite temperature the rate for phonon-assisted tun-
neling will exceed that for resonant tunneling and
variable-range hopping will become the dominant con-
ductance mechanism. For these two low-temperature re-
gimes, the conductance fluctuations will be exponentially
large. At a still higher temperature, the inelastic length
L;„will become as short as the localization length. At
this temperature the states become delocalized, and at
all higher temperatures the fluctuations in each subsam-
ple, of length L;„,will be of order e lb.
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Figure 9 shows a schematic of the n + contacts and
the gate wire with its large-area contacts. Using this
geometry we create a device in which contact to the nar-
row inversion layer under the gate wire is made by wide
inversion layers at each end. This should minimize the
size of space-charge regions at the contacts.

It is always difficult to determine the width of a sub-
micron device. We have compared the transconduc-
tance at 77 and 4 K of narrow and wide devices
prepared on the same wafer and find that the inversion
layer is, like the gate wire, —100-nm wide. This is con-
sistent with models to be discussed next.

IV. MODELING OF THE POTENTIAL
AND SUBBAND ENERGIES IN IDEAL 1D MOSFET'S

A question which must be addressed is whether the
fluctuation phenomena observed in narrow MOSFET's
are a consequence of quantum size effects or of disorder.
To see if quantum size effects are possible, one must esti-
mate the subband-energy spacings by modeling the po-
tential in which the electrons move. An ideal narrow
MOSFET can be modeled with various levels of sophisti-

0.43 pm

FIG. 7. Scanning electron micrograph of tungsten wire.

POD nrem

FIG. 6. Expanded region of the left side of the transmission
electron microscopy (TEM) photograph of Fig. 5. Note that
the individual grains of the Al wire have sizes comparable to
the wires themselves. Note also that, because of the large
grain size, breaks in the wire are not uncommon.

0.1 prt&

FIG. 8. Scanning electron micrograph of aluminum wire.
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FIG. 9. Schematic of (above) top view of narrow-gate MOS-
FET. The width of the narrow gate (labeled NCs) is exaggerat-
ed for clarity. The wide Al gates overlap the narrow (W or Al)
wire. The contact to the narrow inversion layer is, therefore,
made by wide inversion layers, minimizing contact eftects.
Also sho~n (below) is a schematic of a cross section through
the device along the plane denoted by the dashed line (above) ~

This indicates that the narrow inversion layer (INV) has about
the same width as the narrow gate wire (in this case Al), but
that the depletion region (DEP) is much wider.

proximating the device geometry, and uses Fermi-Dirac
statistics to calculate the charge density. It does not, of
course, account for changes in the electronic wave func-
tions and charge densities caused by the confining poten-
tial.

The results of such a simulation are shown in Fig. 10
in which the potential is plotted as a function of distance
transverse to the 70-nm-wide gate. Despite the
shortcomings of the simulation, several reasonable re-
sults emerge. The width of the bottom of the potential
well is less than —100 nm from the threshold Vz- —1.5 V
up to about 3 V. Of course, the width grows with V&
because, for a one-dimensional gate, the electric field is
not perfectly screened by the inversion layer, as it is for
a two-dimensional gate. Using the simulation we find
that the charge density in the inversion layer drops ofT'

very sharply beyond a specific transverse distance for
each VG. This defines the width of the inversion layer
W which is plotted against VG in Fig. 11. Notice that
the width grows very slowly for VG —VT ~1 V.

Plotted also in Fig. 11 is the charge per unit length.
The charge is quite linear with voltage for VG —VT ~ 1 V
so we can determine the capacitance to be C =0. 8
pF/cm. Describing the MOSFET as a parallel-plate
capacitor of width 70 nm gives C =0.5 pF/cm. On the
other hand, assuming that it is half of a cylindrical capa-
citor gives C —1 pF/cm. It is likely, therefore, that this
value of the capacitance is reasonably accurate.

Note, in Fig. 10, that the potential energy has a very
flat minimum. This results from the metallic screening

cation. One might argue that the narrow MOSFET is
simply a 2D MOSFET with a one-dimensional square-
well confining potential. This may be a reasonable ap-
proximation for relatively wide inversion layers. Cer-
tainly, if the width W is much wider than both the gate
oxide thickness t,„and the dep1etion width LD (severaj
100 nm), such an approximation would not be unreason-
able. %'heeler et al. ' have used this approach to esti-
mate one-dimensional subband spacings for devices with
t,„=40nm and W-800 nm. On the other hand, for de-
vices like ours, in which t,„—W —50 nm, such a
square-well model is certainly inadequate.

Another rough estimate of the subband spacing may
be obtained by assuming that the depletion region is
semicylindrical and centered on the inversion layer. The
potential of the depletion charge is then parabolic near
the inversion layer. If the gate wire were narrow com-
pared with t,„and, of course, t,„~&LD,the depletion
depth, then the total potential felt by the inversion-layer
electrons would be quadratic, to lowest approximation,
and the subband energies for such a model are easily cal-
culated.

The next level of sophistication uses classical comput-
er simulations of the semiconductor. Programs to carry
out such simulations are now widely available for use by
the engineering community. We used a program '

which solves Poisson s equation on a discrete grid ap-

I.QY

l.5V

cf

LLJ

C3
CL

.Ov

I i i i i I

0.0 l.Q 2.0
DISTANCE (gm)

FIG. 10. Results of classical simulation of potential at the
Si-Si02 interface in the direction transverse to the gate wire of
the narrow MOSFET. The center of the wire is at 1.0 pm.
The width of the bottom of the well is less than 100 nm up to
VG —3 V.
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Laux and Stern have carried out the first realistic
calculations of subband spacings for one-dimensional
MOSFET's. They predict subband spacings of -5—10
meV for devices with inversion layers somewhat nar-
rower than ours. Thus all simulations predict subband
spacings larger than kT at 4 K. One would expect vari-
ations in the density of states as a result of this subband
structure and concomitant conductance fluctuations if
the one-dimensional MOSFET were ideal. However, the
device is far from ideal. In analogy with the criterion
for observation of Landau levels, we expect to detect
subband structure only if A/~ is less than the subband
spacing, where ~ is the elastic scattering time. From the
mobility we find r- 10 ' s so R/r is about the same
size as the subband spacing, and the structure in the
density of states might be barely observable. As we
show below, however, in our devices there is strong evi-
dence that disorder, rather than quantum size effects, is
the origin of the conductance fluctuations.

0
0

!
I

VG-VT ( voits)

of the inversion layer. Therefore, a square well should
be a reasonable approximation to the potential for the
lowest subbands. In any event, all of the three semiclas-
sical approaches discussed above give energy spacings
for the lowest subbands of —1 meV.

FIG. 11. Width 8'(circles) and total charge per unit length
(crosses) of the inversion layer extracted from classical simula-

tion. Curves are guides to the eye. Notice that n is quite
linear with VG —VT above -0.8 V giving a constant capaci-
tance -0.8 pF/cm.

V. RESULTS

A. Overview

We have measured the conductance of our narrow
MQSFET's as a function of gate voltage VG, drain-
source voltage VDz, and temperature. To obtain an
overview of the fluctuation phenomena, look first at Fig.
12. This shows [Fig. 12(a)j the conductance as a func-
tion of gate voltage for a wide MOSFET fabricated on
the same wafer as the narrow one. One sees the usual
increase in mobility as T is lowered. The mobility at 4
K is —8000 cm /Vs, not as high as the values -20000
cm /V s reported by Wheeler, ' but reasonably high con-
sidering the high-energy radiation (from reactive-ion
etching, electron-beam evaporation) to which this device,
like our narrow MOSFET's, was subjected.

I

VDS/ L -O. I V/cm
!

VDS/L —2 V/cm

LLI

Z'.

C)

O

0

Z'.

O

IO 0-I I06

0.5 I.O
VG (vo It s)

(o)

I. 5
I I

2.0 2.5
VG ( voIts)

(b)

!

3.0

FIG. 12. Comparison of wide (a) and narrow (b) MOSFET's on the same Si wafer. The conductance is plotted as a function of
gate voltage. Note that the zero of conductance is offset for each temperature and that the scale of conductance is 10 ' 0 ' for

the wide MOSFET but 10 A ' for the narrow one. Source-drain fields indicated were small enough to ensure linearity in VDz.

In general, the threshold in 1D devices is higher than in 2D devices as seen here.
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Turning to Fig. 12(b), one sees the same qualitative be-
havior for the narrow device as for the wide one, but
with the development of noiselike, but reproducible, fluc-
tuations of the conductance with gate voltage. It is im-
portant to understand that these fluctuations, which are
largest near threshold, are variations with VG not with
time. We postpone until the end of this section the dis-
cussion of just how reproducible the structure is. Figure
13 shows an expanded view of the structure near thresh-
old at 4.2 K and Fig. 14 shows how dramatic such a
structure becomes at very low temperature. The peaks
in Fig. 14 appear triangular in contrast with other re-
ports. Although the peak shape appears inconsistent
with the predictions of Lee, we believe that such a con-
clusion must await experiments specifically designed to
explore this question.

80—

O—60—
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~40—
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c) 20—

VD 0.5 mV

T —0.08 K

3.3 3.5
vG (v)

3.7

B. Temperature dependence at fixed V& and VD&

To understand how the structure develops as T is
lowered, we measured (Fig. 15) the temperature depen-
dence of the current at fixed VDz for several specific
values of VG. These are the maximum (PK) and minima
(Vl and V2) indicated in Fig. 13. The current is
thermally activated at all three gate voltages, but the ac-
tivation energy varies from —1 meV for the largest peak
to —3 meV for the deep minimum. From this we con-
clude, first, that the current is thermally activated at all
values of VG in the region of strong structure, even at
the peaks, and, second, that the structure emerges at low
T because the activation energy is a nonmonotonic func-
tion of V&.

It is natural to ask whether the temperature depen-
dence seen in Fig. 15 is a result of the shift of the struc-
ture to different VG when T is changed. Figure 16
shows that this is not the case. The maxima and minima
remain at fixed values of Vz up to the temperature at
which the structure disappears.

FIG. 14. Conductance vs gate voltage. The sample is held
on a cold stage of a dilution refrigerator. The cold-stage tem-
perature was 80 mK. However, the drain voltage is too large
to be in the linear regime. The large voltage is required be-
cause the currents are so small.
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FIG. 13. Current vs gate voltage near threshold for —70-
nm-wide inversion layer. In the expanded (by 10) view a peak
(PK) and two valleys (Vl and V2) are indicated by arrows for
later reference.

FIG. 15. Temperature dependence of current at fixed VDz

for the three values of VG indicated by arrows in Fig. 13, the
deepest minimum Vl, a nearby peak PK, and a subsidiary
minimum V2. The current is activated at all three points but
the activation energy is -0.7 meV for PK, 1.4 meV for V2,
and 2.5 meV for Vl. It then becomes smaller again at higher
VG.
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Fowler, Hartstein, and Webb' argued that the tem-
perature dependence of the conductance of their devices
was not simply activated but rather followed the
exp[ —( To /T) ' ] dependence expected for variable-

range hopping in a one-dimensional, but constant, densi-
ty of states. In Fig. 17 we plot the current at the
minimum Vl against T ' to show that this depen-
dence can fit our data, too. However, we do not believe
that, for such a limited range of current, one can ascer-
tain which temperature dependence is the correct one.

Notice that we see no evidence in Fig. 15 for the step-
wise change in activation energy predicted by Lee.
Perhaps this, too, is just a result of the limited range of
current. The reason that the current range is so limited
is that, despite the high resistance of our narrow inver-
sion layers, we must apply extremely low source-drain
voltages VDz ( &kT/e) to be certain that the current is
proportional to VD~. Of course, parallel conductance
channels would probably eliminate the piecewise-
activated behavior. However, as we discuss in Sec. V C,
the drain-voltage dependence militates against this ex-
planation.

C. Dependence of'current on V»

4K

Our observation of a gate-voltage-dependent activa-
tion energy was not the first. Fowler, Hartstein, and
Webb' had evidence that this was the way in which the
exponentially large fluctuations developed. However, we
were the first to report the dramatic dependence of the
current on VD&. Figure 18 shows the temperature
dependence for the value of VG corresponding to the
deep minimum in Fig. 13, for various values of VD&.
The curve labeled VD& ——1 mV is the same as that labeled
Vl in Fig. 15. As VD& is increased the activation energy
decreases dramatically. There is also evidence for a
departure from the simple activated behavior at the
lowest temperatures.

In Fig. 19 we have plotted the activation energy E~ as
a function of VD& for the two polarities. The activation

l0
VG = 2.585V

c—-«+
IO

-IQ

2K

I I

2.6 2.7
v, (v)

—l2
IO

1m V

FIG. 16. Lowest-gate-voltage peaks at temperatures between
2 and 12 K. The structure does not shift to different positions
in V&, but the minima grow faster with increasing T than the
maxima so that the structure disappears above -25 K. Two
scans of V& are shown at each T showing that, for this small

range of VG, there is little hysteresis.
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FIG. 17. Plot of log current vs T ' for V~ =2.58S V cor-
responding to the deep minimum (V1) in Fig. 13. The depen-
dence on VDz is discussed later.
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energy decreases, roughly linearly with drain-source
voltage. Thus

E~ =Eo feVDs

where Eo is the zero-voltage limit of the activation ener-

gy, and f is a fraction of order 0.3—0.4. Equation (5) re-
quires that the current be exponential in VDz for
efVDs ~kT. Figure 20 shows that this is, indeed, the
case.

At still higher VDz the current begins to vary more
slowly. The inset of Fig. 20 shows that

1

I
1

varies
linearly with

1
VDs

1

in this regime with the same
differential resistance as observed at all

1
VDs

1

at high T
where there is no nonlinearity at all.

The two sets of data in Fig. 20 are for opposite polari-
ties of VD~. This shows, quite dramatically, that there is
rectification in this device which is macroscopically sym-
metric. The rectification varies nonmonotonically with
gate voltage. This is one of the features explained by
Lee's model. Such nonlinearities and rectification have
also been seen by Webb et al. Because the
rectification is so large, it may be that the current is lim-
ited by different hops for the two polarities. Further
measurements are needed to explore this question.
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FIG. 19. Activation energy vs source-drain voltage from the
data of Fig. 18 (solid circles), and for the opposite polarity of
VDz (open circles).
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FICx. 18. T dependence of the current at the deep minimum

(VI) in Fig. 13 for various values of V».

FIG. 20. Logarithm of current as a function of
~

VDs
1

for
the two polarities at the deep minimum (V1) in Fig. 13.

VDs1 is greater than kT/e for all the data presented here.
The current is accurately exponential over more than two de-
cades. Although the current varies more slowly at high

1
VDs ~, the stepwise decrease in the slope is not seen. The in-

set shows that this high-voltage regime corresponds to a con-
stant differential resistance equal to the value measured at all

1
VDs

1

at high T The large asymmetry in the .current for the
two polarities (almost a decade at -4 mV) shows rectification
in this macroscopically symmetric device.
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The exponential dependence of I on VDz does not, of
course, extend to VDz ——0. When feVDs &kT the I V-
characteristic must become linear as discussed in Sec. II.
We cannot measure the extremely small current for
feVDz &kT at 2 K for the deepest minimum in Fig. 13.
However, by raising the temperature to 4.2 K one sees
the crossover from linear to exponential behavior (Fig.
21). The crossover occurs at eVD+-0. 5 meV. Using

f =0.3 from Fig. 19 we find that the crossover happens
when feVDs is of order kT at 4 K.

The hopping model predicts that the I-V characteris-
tic should be piecewise exponential before becoming
linear at the highest VDz. We observe the predicted ex-
ponential behavior at low VDz and the predicted linear
behavior at high VDz. We do not, however, observe the
piecewise decrease in the exponential slope. This may be
the result of the high temperature of our experiments.
We hope to explore this issue in the future.

Figure 22 shows how some of the structure near
threshold evolves with increasing VD~. The apparent
shift of the peaks results from the increasing average
conductance at higher VG. Comparing this with Fig. 16
makes it clear that the effect of VD~ is qualitatively simi-
lar to that of increasing temperature. This led us to
worry a great deal about whether the nonlinear I- V
characteristics were the result of heating of the electron
gas. Such effects have been observed in MOSFET's at
fields comparable to those we are employing. However,
several arguments have convinced us that the exponen-
tial I-V characteristic cannot arise from electron heat-
ing.

First, the temperature dependence for various VDz is
not that expected for electron heating. The heating of
the electrons by the field would be negligible at high T,

lO mv
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2.5mV

VG = 2.585V
T = 4. 2K
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FICs. 21. Current vs source-drain voltage at the deep
minimum (V1) in Fig. 13. By raising the temperature to 4 K
the linear part of the I Vcharacteristic is see-n at low

~
V»

and the crossover to exponential behavior occurs at
~
V»

~

0.5 meg.

FIG. 22. Structure in the conductance vs gate voltage near
threshold at various source-drain voltages. Comparison with
Fig. 16 shows that the effect of increasing VD~ is qualitatively
similar to that of increasing T. However, the quantitative
dependence of current on V» cannot be explained by electron
heating.
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but would become dominant at low T. Therefore, the
curves for different VD& would be identical at high T and
independent of T at low T. It is clear from Fig. 18 that,
although there is evidence for flattening of the curves at
the lowest temperatures, there is a strong voltage depen-
dence at the high temperatures as well.

Second, the mobility of the electrons is too low to give
substantial heating. The Joule heating of the gas of elec-
trons is proportional to the conductivity, and the heat-
ing per electron is therefore proportional to the mobility.
Because of the strong localization, the average mobility
of the electrons at the deep minimum in Fig. 13 is —10
smaller than in two-dimensional MOSFET's. For the
latter, the temperature rise at the highest fields employed
in Figs. 17—22 ( —10 V/cm) is 10 K. Therefore, the
heating in the narrow devices should give rise to a tem-
perature rise of only 10 K, assuming that the heat dis-
sipation rate by electron-phonon scattering is compara-
ble for wide and narrow devices.

Last, heating would result in thermal runaway which
is not observed. The temperature dependence of the
conductance is thermally activated, and for activated
conductance G, an increase in electron temperature ade-
quate to cause an increase of G by a factor of —3 would
cause runaway. The conductance would switch to a
high value and the current would be limited only by the
external load resistor. Such thermal switching was never
observed for our narrow MOSFET's. The evidence is
compelling, therefore, for a nonthermal mechanism for
the highly nonlinear dependence of current on VDz.

D. History-dependent phenomena

As mentioned earlier, several history-dependent effects
have been observed in our narrow MOSFET's. When
the temperature is cycled to above -200 K the structure
near threshold is changed. The new pattern is qualita-
tively similar to the old, but the positions of maxima and
minima like those in Fig. 13 are completely different.

One does not need to cycle the temperature to alter
the structure. It also changes when the gate is raised to
a potential well above threshold. For small variations in

Vz, the pattern of fluctuations remains unaltered. This
can be seen in Fig. 16, for example. However, for larger
excursions of V&, it changes dramatically. The careful
reader wi11 have observed that the expanded version of
the structure in Fig. 13 is not exactly the same as the
unexpanded curve. That is because the trace for the
larger range of V& was taken first.

These history-dependent effects are, of course, very
disconcerting. In order to make measurements like
those in Figs. 15—22 we were forced to equilibrate the
sample at fixed VG (or nearly fixed if VG is to be varied)
for several hours. On the other hand, the mutability of
the pattern of fluctuations is evidence that the structure
is a result of disorder. At relatively high temperatures,
either ionic motion or electron trapping in the oxide can
alter the random potential sampled by the electrons in
the inversion layers. However, since variation of VG at
low T also changes the structure, electron trapping may
be the most important cause of the variability of the ran-

dom potential.
Rails et al. ' were the first to provide direct evidence

that certain history-dependent effects result from trap-
ping of the electrons in the oxide. They observed "tele-
graph" noise, switching between two discrete values of
the conductance, for VG well above threshold. From the
dependence of the noise on Fermi energy (or VG) and
temperature they showed that it arises from the capture
and release of a single electron by a specific trap.

In the regime explored by Rails et al. ' the fluctua-
tions in conductance caused by trapping are small, of or-
der a few percent. They are, in fact, of the size pre-
dicted by the theory of Lee and Stone. In the strong
localization regime, the fluctuations resulting from such
trapping events can be exponentially large. Figure 23
shows the dependence of current on VDz at fixed VG.
The current repeatedly switches between two curves
each of which displays the nonlinear dependence on VDz
as well as the rectification discussed above. For other
minima we have observed that, at small VDz, the change
of conductance can be exponentially large. Figure 24
shows another example. In this case a peak in the plot
of current versus VG is clearly present when VG is raised
above threshold, but disappears when VG is lowered
again. Presumably, this is simply an example of a trap
with an extremely long release time at the low tempera-
ture of the experiment.

VI. DISCUSSION AND CONCLUSIONS

As we have already emphasized, the variable-range-
hopping model of Lee is adequate to describe most of
the behavior of the exponentially large fluctuations in
the conductance near threshold in narrow MOSFET's:
The activated temperature dependence is the result of lo-
calization; the nonmonotonic dependence of the conduc-
tance on Fermi energy which gives rise to the exponen-
tial fluctuations comes about because a small fraction of
the hopping resistances limit the current in these one-
dimensional devices; the exponential dependence on
source-drain voltage has the same origin.

Some features of Lee's model have not been observed.
One is the plateaus in conductance versus Fermi energy.
These arise in the model from hopping between states on
opposite sides of the Fermi energy, and, as pointed out
by Thouless, may not carry much current. Another is
the piecewise activated behavior of the conductance at
fixed Fermi energy leading, on average, to the
exp[ —(r& /T)' ] dependence. This will be evident only
at temperatures su%ciently low that variable-range hop-
ping can compete with nearest-neighbor hopping. The
latter corresponds to hopping between spatially overlap-
ping localized states. In other words, the activation en-
ergy can never exceed the energy spacing of levels locat-
ed within g of each other. The last missing feature is the
piecewise exponential dependence of current on source-
drain voltage. This may be hidden because differences in
slope of less than kT/e cannot be resolved. These effects
wi11 be sought in future experiments.

We have not yet discussed the universal conductance
fluctuations seen at high VG. These were first reported
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FIG. 23. Bistability in dependence of current on source-drain voltage at a minimum in the dependence of I on V~. Two scans of
I vs VDz are shown to demonstrate the very large telegraph noise. The small steplike structure seen at positive V» is an experi-
mental artifact.

by Webb et al. for small wires and rings. Licini et al.
were the first to report such fluctuations in the magne-
toresistance of MOSFET's and to show that fluctuations
of similar size were seen when the Fermi energy is
varied. Subsequently, Skocpol et al. showed that the
magnetoresistance fluctuations scaled in the expected
way with the inelastic diffusion length and sample di-
mensions. Kaplan and Hartstein showed that, as ex-
pected, the fluctuations depend only on the perpendicu-
lar component of the field.

The scaling theory of Thouless' predicts that as the
sample length is increased (at T =0) the transition from
extended to localized states will occur when the sample
length equals the localization length, that is, when the
conductance decreases to e /h. The theory of Lee and
Stone predicts fluctuations of magnitude e /h on the
extended side of this transition. The theories of Azbel
and Lee predict exponentially larger fluctuations on
the localized side. One therefore expects that at the

extended-to-localized transition the fluctuations are
about the same size as the conductance itself.

As usual in the localization problem, we follow
Thouless's suggestion' that finite temperature effects can
be incorporated by taking L,„(T)as the sample length.
At fixed T, both L;„and the localization length depend
on the conductance per unit length, the 1D conductivity.
It may be, however, that in a one-dimensional system
the localization length increases more rapidly with con-
ductivity than L;„does. This point is discussed below.
Therefore, we expect that at some value of VG, in Fig.
13 for example, the system crosses over from the local-
ized to extended regime as VG and, therefore, the con-
ductance is increased.

We now estimate the critical conductance 6, at which
the transition occurs for our device. We have

z L.
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FICx. 24. Hysteresis in conductance vs VG near threshold.
One peak is completely absent for one direction of scan (note
arrows) but not the other.

FIG. 25. Fractional fluctuations in conductance as a func-
tion of average conductance. The solid curve is (Gh /e')' '.
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because, at the transition, the sample consists of L/L;„
segments in series, each with conductance e /h. In ad-
dition, we use the result that the fluctuations for the
L/L;„resistors in series add incoherently. Converting
resistance fluctuations to conductance fluctuations gives

3/2
2

hG, = (7)

and eliminating L;„/Lfrom Eqs. (6) and (7) yields
1/2

AG h

G c

One sees from Fig. 13 that near V&
——3 V, G =10

and b,G/G-0. 2, which satisfies Eq. (8) quite well. We,
therefore, identify 10 0 ' as the value of G at which
the localized-to-extended transition occurs at 4 K. The
data of Fig. 14 do not extend to high enough values of
V& to reach the transition at 80 mK.

To make the comparison more dramatic we plot in
Fig. 25 the fluctuations in G against the average value of
G. The average G is determined by a polynomial least-
squares fit. Plotted also is (Gh/e )'r . One sees that the
fluctuations increase rapidly once they exceed
(Gh/e )'

Using G, = 10 fl ' in Eq. (6) gives L;„(and the o-
calization length, as well) of the order of 100 nm.
Wheeler et al. ' found the inelastic length to be -200
nm at 4 K for devices with mobilities -2 times larger
than ours. We conclude, therefore, that the value of 100
nm is quite reasonable. We plan experiments to explore

the localized-to-extended transition for a wide range of
temperatures in the near future.

This indication of the localized-to-extended transition
at finite T raises some interesting questions. It is usually
found" that L;„is proportional to the conductance per
unit length G/L. Since the localization length g is also
proportional to G/L, one might have expected to have
localized states at all values of VG or extended states at
all VG. That is, the transition would be seen as T is
varied but not as 6 is varied. The observation of the
transition suggests that either L;„increases more slowly
than linear with G or g increases more rapidly than
linear. Either of these may happen when kF ' ap-
proaches the elastic scattering length, for then the per-
turbation theory used to calculate these quantities is no
longer valid.
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