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The energy band gaps and substitutional deep impurity levels of metastable alloys Ge,Sn;_, are
predicted. As a function of decreasing alloy composition x the indirect band structure of semicon-
ducting Ge first becomes direct (indicating that Ge,Sn,;_, may have applications as an infrared
detector) and then metallic. Doping anomalies commonly occur as x decreases. Between x ~0.4

and x ~0.8, the Gunn effect should occur.

In this paper, we predict the band gaps and substitu-
tional defect levels for alloys of germanium and tin:
Ge,Sn;_,. These materials are normally immiscible for
most compositions when grown under equilibrium condi-
tions, but have been grown in substitutional, crystalline
metastable states for compositions x >0.78 using non-
equilibrium growth techniques.' ~® With increasingly so-
phisticated growth techniques, we anticipate that meta-
stable Ge,Sn;_, alloys will soon be available for a
greater range in x.* One purpose of this paper is to out-
line the electronic structure of these new alloys, and to
suggest that, for a restricted range of alloy compositions,
they should support Gunn-effect oscillations. Hence we
hope to stimulate efforts to grow these materials.

Germanium is an indirect-gap material, the fundamen-
tal energy band gap occurring at the L point of the Bril-
louin zone [k=(27/a;)({,1,1)], with a magnitude of
0.76 eV at low® temperature. Tin is a semimetal, a ma-
terial with no band gap; its valence and conduction
bands overlap at the I' point [k=(0,0,0)]. We predict
Ge,Sn,_, to have a fundamental band gap that varies
from zero to 0.76 eV as a function of composition x.

I. BAND STRUCTURES

The energy bands of Ge,Sn,_, alloys were predicted
using the virtual-crystal approximation and a second-
nearest-neighbor tight-binding model of the Koster-
Slater type.® The parameters, for a first-nearest-neighbor
tight-binding Hamiltonian, are taken to be those of Vogl
et al.’] which are known to reproduce valence-band
structures and the principal features of the lowest con-
duction bands for all zinc-blende and diamond covalent
semiconductors. An important and nontrivial feature of
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the Vogl parameters is that they incorporate chemical
trends, so changes in these parameters as the semicon-
ductor composition varies are rather well-behaved func-
tions of changes in atomic energies and bond lengths.
The Vogl model, in its published form, is lacking two in-
gredients essential to a proper treatment of Ge,Sn;_, al-
loys: (i) spin-orbit splitting (which is important for the
large-Z Sn atom), and (ii) second-nearest-neighbor pa-
rameters (which are needed to correctly simulate the rel-
ative conduction-band minimum near point L along A).
The spin-orbit effect has been incorporated by a number
of authors; we share common notation with Ref. 8.
Similarly, the second-neighbor interactions can be incor-
porated as they were for Si;_,Ge, alloys by Newman
and Dow.’ The resuiting Hamiltonian, in a basis of
tight-binding states of wave vector k, is

H, 0 H H]
t t
Ho(k)— 0 Hp HSP pr
o™~ |H, H, H, 0 |’
Hps pr 0 Hp
where H, is
[s*1) [s*1) [st) |sli)
[s*1) E « 0 0 0
[s*1) 0 Es* 0 0
[s1) 0 0 E, 0
|s1) 0 0 0 E,
and H, is
|4 —3) [37) =73
0 W,oges/V'6 —iV2W,g5/V3
iW,gs/V3 0 —W,g6/V2
W,ge/V'3 —Wg:/V2 0
E,+ A —iV2W,g5/V3 W,eg:/V'6
iV2W,.g¥ /V3 E,—2x 0
W,eg¥/V6 0 E, -2\

7994 ©1987 The American Physical Society



36 ELECTRONIC PROPERTIES OF METASTABLE Ge,Sn,_, ALLOYS 7995
Here H; is
[s*1) |s*L) |st)  |sl)
|s*1) 0 0 0 0
|S*l) 0 0 0 0 ’
|s1) 0 0 U,go 0
}Sl) 0 0 0 Usng
H, is
133 EEY 3= 13- 4.4) [4=1)
|s*1) iUxgi/V2 —V2U.g3/V3  iUqgs/Ve 0 Uwxg}/V3 —iUsgi/V3
|s*1) 0 iU g%/vV'6 —V2U,+ 83 /V3 iUnx,g3/V2 iU gi/V3 —Usgi/V3|,
|s1) iUy,gs/V2  —V2U,g}/V3 iUy,g3/V6 0  Ugygl/V3 —iU,g}/V3
|s1) 0 iU,g% /V'6 —V2U,g3 /V3  iU,gt/V2  iUy,gi/V3  —U,g}/V3
H, is
ps
[s*1) [s*1) |st) |sl)
| 3,3) iUS.pg;/\/E 0 iyj,,g;/x/i_ o
|3,1) V2U, .83 /V3 iU, g5/V6  V2U,g3/V3 iUy,g3/vV'6
|3, —1) iU,85/V6 V2U.. g3 /V3 iU,gs /V'6 V2U,gi/V3 | |
|3,—-3) 0 iUS*ng/\/é o iUygl /V2
| 5,4) —Ux,g3/V3 iU ,85/V3 —U,g3/V'3 iUgy,g5 /V'3
[, —3) —iUs 8% /V'3 Us+,83 /V'3 —iUg,gs /V3 U,g3/V3
and H,, is
pp
13:3) 13:4) 131 =3 43 4=
[3,3) U,.8% - xng/\/§ inyg§'/\/§ o nygZ/\/—G —i\/_2nyg§/_\_/§
|%’%) - xyggl/‘/i Uxxga 0 lnyg;/‘/} 0 _ - xyg: /‘/2
l%’—%) _inyg;(/‘/3 0 Uxxg(,; nygz/‘/3 - xyg;/\/z 0
| 3, —3) 0 —iUyg}/V3 Uygl/V3  Ungl  —iV2Uygi/V3  U,gi/vé
| 4,3) U,gt/vVe6 0 —U,g4/V2 iV2U,g}/V3 U.8§ 0
|4, —1) |iV2U,g3/V3 —U,g$/V2 0 U,gt/vV6 0 U884

We have used the notation of Kobayashi et al.? for all
nearest-neighbor parameters. The second-neighbor pa-
rameters are W,,=4(s,0,0|H,|p,0,d,), where d, is
the displacement vector of a second neighbor.'°

The first-neighbor parameters for Ge and Sn were
fitted to the band structures of Chelikowsky and Cohen’
using the method of Kobayashi et al.® The second-
neighbor parameters were fit to the conduction-band
edge at the L point using the same band structures. All
parameters are given in Table I.

By diagonalizing this Hamiltonian, we obtain the band
structures of Ge and Sn, which are in good agreement
with the pseudopotential band structures of Chelikowsky
and Cohen.’ (See Figs. 1 and 2.) To obtain the virtual-
crystal band structures of Ge,Sn,_, alloys, we first aver-

age the parameters of Ge and Sn as follows: on-site pa-
rameters, x[Ge]+(1—x)[Sn]; off-diagonal parameters,
(x[Gel{a(Ge)}?+(1—x)[Sn]{a (Sn)}?){a (x)} % where
[Ge] and [Sn] are typical bulk Hamiltonian parameters
of Ge and Sn, a(Ge) and a(Sn) are the lattice constants

for Ge and Sn, respectively, and we assume Vegard’s
law:

a(x)=xa(Ge)+(1—x)a(Sn) .

This averaging procedure is a virtual-crystal approxima-
tion, and is valid because the Onodera-Toyozawa ' ratio
for Ge,Sn,_, is considerably less than 0.1 for the con-
duction and valence bands. This ratio is the difference &
in on-site energies of the two constituent materials divid-
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TABLE I. Sn and Ge tight-binding parameters (in eV, ex-

cept d, which is in A).
rameters to fit the gap at the L point.

Kobayashi et al. (Ref. 8).

We have added second-neighbor pa-
The notation is that of

Ge Sn
E; —5.8800 —5.8800
E, 1.5533 1.1733
A 0.0967 0.2667
E + 6.3900 5.9000
U, —6.7800 —5.4600
U,, 1.6500 1.4400
U, 4.8416 3.9042
U, 4.9520 4.0172
U . 4.5030 3.6459
sTp
Wy 0.1352 0.1229
d 2.45 2.81
Additional second-neighbor matrix elements
(%’% [H | %7%):_Wps’g:/‘/§
(3, =3 1H | 3.9)=~iW,gi/V2
%’ZIH’%% ps'g:/‘/6y
2 Z | H J 7 ‘2‘ -IW 1/2/3
; [Hlf% ps'gﬂ"‘/‘/3
(3= IHii,%= W,gs /V2,
(3= ~|H11,~‘>—W gs/V3
(LYH |3, - D=—W, gt /V2
where

ge¢=sin(k,a /2)sin(k,a /2)+i sin(k,a /2)sin(k,a /2)
g, =sin(k,a /2)sin(k,a /2)—isin(k,a /2)sin(k,a /2)
gs=sin(k,a /2)sin(k,a /2)

ed by the bandwidth W of the associated band. For
Ge,Sn;_,, the larger of the differences 8 of s and p on-
site energies is 0.38 eV. The conduction- and valence-
band widths of Sn are 11.34 and 5.72 eV, respectively.
(The bandwidths of Ge are comparable.) In this case, for
Ge,Sn;_, we have §/W 50.02 for the valence band and

1 Ge

Energy (eV)
1

L r 2 X UK r

FIG. 1. Band structure of Ge using the present theory (solid
lines) compared to the pseudopotential results of Chelikowsky
and Cohen (Ref. 5) (dashed lines).
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FIG. 2. Band structure of Sn (solid lines) in comparison
with the results of Ref. 5 (dashed lines).

8/W £0.07 for the conduction band. These materials
satisfy the criterion as well as or better than alloys of
GaAs and GaP.

The resulting virtual-crystal-approximation band
structures of Ge, Sn,_, are displayed in Figs. 3, 4, and 5
for x =0.25, 0.5, and 0.75, respectively.

Figure 6 displays, as functions of alloy composition x,
the principal virtual-crystal band gaps at point I', point
L, and point X [k=(27/a)(1,0,0)], and A (A is the
wave vector of the local minimum in the conduction
band along the [100] direction; point L is a local
minimum).

Interesting features of Fig. 6 are (i) that a direct (I'")-
to-indirect (L) crossover is predicted near x ~0.8, (ii)
the alloy’s fundamental band gap is nonzero for x > 0.4,
and (iii) the level at T" is lower in energy than the level at
L for x <0.8. This means that Ge,Sn,_, will be semi-
metallic for x <0.4, a semiconductor with a direct gap
for 0.4 <x <0.8 (and hence a potential infrared detector
or light emitter), and a potential Gunn oscillator for
0.4 <x <0.8. (See below.) For x >0.8, Ge,Sn;_, is an
indirect-gap semiconductor.
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FIG. 3. Band structure of metastable Geg ,5Sng 7s.
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FIG. 4. Band structure of metastable Geg sSng s.

II. DEEP IMPURITY LEVELS

A. General

The deep impurity levels are computed following the
general approach of Hjalmarson et al.”'> Because of the
chemical trends in the matrix elements, a defect poten-
tial matrix can be constructed rather easily. For substi-
tutional defects that have the same bond length as the
host atoms they replace, the matrix in a basis of local-
ized orbitals centered at the defect site is

| Eg) | Eg) |E;)
|E¢) | €—e€ 0 0 ,
| Eg) 0 €2 —e)? 0
|E5) 0 0 €/l _¢el?

where € is the on-site energy!'? of the host (4) or impuri-
ty (i). Note that the E¢ state is s, ,,-like, the E; state is
P1,2-like, and the Eg state is p; ,-like.

The effects of lattice relaxation around the defect and
bond-length changes can be incorporated by noting that
the off-diagonal matrix elements of the Hamiltonian'3
scale as the inverse square of the bond length. Here we
neglect such lattice relaxation effects because (i) they are
small, of order 0.1 eV, on the energy scales of relevance

1 Snp .25Gep.75

\/

NZ40\
Y/

L r iXU,K r

FIG. 5. Band structure of metastable Geg 75Sng,»s.
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FIG. 6. Predicted lowest conduction bands at I', L, and X
(the valence band is shaded) vs alloy composition x for
Ge,Sn;_,. The band gap varies from zero for x =0.4 to 0.76
eV for pure germanium. This covers energies corresponding to
infrared light. The Gunn effect should occur for 0.4 <x <0.8
because the high-mobility low-effective-mass I' minimum lies
below the low-mobility L minimum. For x <0.4 the alloy is
predicted to have zero gap.

to the deep impurity problem-—namely, the ~10-eV
bandwidths, and the ~1-10-eV scale of the defect po-
tential, and (ii) we are exploring the global chemical
trends in the defect levels rather than attempting to pre-
dict with precision the energy levels of a specific defect
in a single host—while the physics of the unrelaxed
deep levels may exhibit well-defined trends, the lattice
relaxation may be governed by different chemistry which
might obscure the trends in the unrelaxed deep levels.
Introducing the Green’s-function operator

G(E)=(E —Hy)™ ",

where the energy E is to be interpreted as having an
infinitesimal positive imaginary part when it lies in a
host band, the Schrdodinger equation for the deep level
eigenvalues E is

(Hoy+V)WY=EY ,
and leads to the secular equation
det(1—-GV)=0 .

Here H, is the host-crystal Hamiltonian, V=H —H,, is
the defect matrix, and 1 is the unit matrix. Invoking the
diamond-crystal symmetry of virtual-crystal Ge,Sn,_,,
the secular equations reduce to the scalar equation

1/V,=G¢(E)

for the doubly degenerate s, /,-like E¢ level,
1/Vi,=G+(E)

for the doubly degenerate p, ,-like E, levels, and
1/V3,,=Gg(E)
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for the fourfold-degenerate p; ,-like Eg levels. Here G,
G,, and Gg are Green’s functions for E4, E;, and E,
symmetry, and are defined as follows:

’ ’ 2
(mmzzfdwigxmjhk”|

E —E,(k) ’

where E, (k) is the nth eigenvalue at wave vector k and
| ,k,n ) is the nth eigenvector at k with [ =s,,,, p3,2,
or p,,, for the E¢, Eg, or E; symmetry, respectively.
The matrix elements ¥V, are deduced from the chemical
trend:’

Vi=B1(W}imp—Wihost) »

where w;im, and w; ., are atomic energies for the im-
purity and host atoms, respectively, [ =s,,, p3,, or
Pi1,2, and 3,=0.8 for / =s,,,, and 0.6 for /=p,,, or
Pisn- Wehave Vi =V, ,,=V,.

B. Deep levels

The predicted substitutional-impurity deep-level ener-
gies E in the fundamental band gap obtained by solving
the secular equations for Ge,Sn;_, are given in Figs. 7
and 8 for levels of E¢, E;, and Eg symmetry, respective-
ly. The levels found for Ge are in generally good agree-
ment with what is known about deep impurities in that
material. The results of this model are comparable with
those of other theories,'*!® some of which are much
more complicated. For example, we calculate the vacan-
cy Ejg level to be 0.24 eV above the valence-band edge,
compared to a range from 0.04 to 0.66 eV for other
theories.” We estimate the uncertainty in our theory to
be a few tenths of an eV, comparable with the claimed
0.2-eV uncertainty for self-consistent pseudopotential
calculations.!> In Table II we compare the present

1.0

Gexsn1—x
Eg (51/2 -like)

Energy (eV)
o
n

0.0
0.0 1.0
Sn x Ge

FIG. 7. Predicted substitutional deep impurity levels in
Ge,Sn,_, of E¢ (s-like) symmetry as a function of composition
x. The zero of energy is the valence-band edge. The
conduction-band edges at I' and L are shown. Impurity levels
in the gap for pure Ge are driven into the conduction band as
x decreases. Occupancies of the neutral impurity states are
shown on the right; electrons are solid circles and holes are
open circles. An extra electron (denoted by +@®) would occu-
py a state near the conduction-band edge.
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FIG. 8. Predicted substitutional impurity deep levels in
Ge,Sn;_, of E; (pi,-like) and E; (p;,;-like) symmetry as
functions of composition x. The levels are plotted relative to
the valence-band edge. Occupancies of the states are shown;
electrons are solid circles and holes are open circles. The
conduction-band edges at I" and L are shown. Impurity levels
in the gap for pure germanium are driven into the conduction
band as x decreases.

theory with experiment. The deep energy levels for S,
Se, and Te, all from column VI of the Periodic Table,
show a definite trend to higher energies for the series S
to Se to Te. This trend is due to a reduction in the mag-
nitude of the atomic orbital energies’ for the valence
electrons of these impurities: hence the defect potential
weakens. The trend is present both in theory and in ex-
periment. While the predicted level for S precisely
matches experiment (accidentally good agreement for a
theory with an uncertainty of a few tenths of an eV), the
theory also agrees with the data for Se, and places the
Te deep level just above the conduction-band minimum,
while the data reveal a level of 0.1 eV below the band
edge (within the uncertainty).

C. Doping anomalies

As the band gap decreases with increasing Sn compo-
sition, the deep levels lying in the fundamental band gap
of Ge pass into either the conduction band or the
valence band of the alloy. When this happens, a doping

TABLE II. Comparison of our calculated deep levels (in eV)
in Ge with experimental values taken from W. W. Tyler, J.
Phys. Chem. Solids 8, 59 (1959). The Te deep level in our
theory is resonant with the conduction band so the ground
state of the Te impurity has its two extra electrons in the
effective-mass shallow levels.

Deep levels

Impurity Present theory Experiment
N 0.58 0.58
Se 0.69 0.62
Te resonant 0.65
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anomaly generally occurs. There are two types of com-
mon doping anomalies: (i) deep-shallow transitions,
which occur when a deep level crosses a band edge, and
(ii) false valences that result from a deep level crossing
the fundamental band gap.

For clarity of discussion, we shall assume that the pre-
dicted deep-level energies are precisely correct, while
cautioning the reader to make allowances for a few
tenths of an eV uncertainty in the theory due to neglect
of lattice relaxation and charge-state splitting of the lev-
els:'® for example, the Hg Ej; level, according to Fig. 8,
is both an electron and a hole trap, but might actually
lie below the valence-band maximum, donating its two
holes to the valence band and becoming a double accep-
tor. (The holes are then trapped by the long-ranged
Coulomb potential in shallow acceptor levels.)

1. Deep-shallow transitions

All impurities with deep levels in the gap for Ge un-
dergo a deep-shallow transition as the Sn composition
increases. For example, the p;,,-like Eg Hg level is
driven into the valence band (Fig. 8), while the other
deep levels are driven into the conduction band (Fig. 7.)

When the Cl, Br, and I deep E¢4 levels pass into the
conduction band with decreasing x, the electrons that
occupy the deep levels are autoionized, fall to the
conduction-band minimum, and then are trapped in
shallow levels. These impurities cease being deep hole
traps (plus single donors) and instead become triple

donors—the status they would hold in a naive effective-

mass theory which contained no deep levels.

Similarly S and Se are deep (double-hole) traps in Ge
but become double donors for smaller x (see Fig. 7). N
is a deep (electron and hole) trap in Ge, but becomes a
shallow donor for x <0.6. The Hg E; level traps two
electrons and two holes (if the theory is taken literally)
in Ge, but Hg becomes a double acceptor with increas-
ing Sn content. Finally the vacancy, which is a deep
trap in Ge capable of capturing four electrons or two
holes, becomes a double donor when both of its levels
enter the conduction band (but is only a hole trap when
the Ej level is in the conduction band and the E; level is
in the gap).

2. False valences

Substitutional oxygen displays a false valence of zero
with respect to Sn or Ge, instead of —2. To see how
this happens, consider Fig. 9, which displays the predic-
tions for substitutional impurities from row 2 of the
Periodic Table in Ge. The s-like and p-like levels in the
conduction band of Ge for a column-IV defect (C) move
down in energy as one moves to the right in the Periodic
Table. The s-like level lies in the gap for N, but crosses
the gap into the valence band for oxygen and F. Simi-
larly the p-like E; and Ej levels descend into the gap for
F. Because its s-like E4 deep level has crossed the gap
into the valence band and contains two electrons, neutral
oxygen produces neither a double donor (effective-mass
intuition) nor a deep trap. Instead neutral oxygen is in-
ert, neither trapping, nor donating, nor accepting elec-
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FIG. 9. Predicted deep levels for substitutional impurities
from row 2 of the Periodic Table in Ge. Impurities to the
right of C, namely N, O, and F, are not donors (counter to in-
tuition). N and F are traps, while O is inert. B and Be are ac-
ceptors, C is inert, and Li and the vacancy trap both electrons
and holes. Levels in the bands are not to scale.

trons. It has a false valence of zero with respect to Ge.

Similarly F has a false valence of —1 instead of —3,
and also has a deep level in the gap of Ge. There are no
false valences for impurities on the left side of the
Periodic Table, because the filled s- and p-like states in
the valence band move up in energy, and cross into the
gap for the vacancy levels (Fig. 9).

III. GUNN EFFECT

Gunn oscillations!”!® result when electrons can

transfer from a high-mobility region of the Brillouin
zone to a low-mobility region. The mobility is

p=le|r/m*,

where e is the electron’s charge, and m * is the electronic

1.0 Ge><sn1—x

o8

0S5 L

m¥/m

0.3

oo—o

0.0 0S5 1.0
Sn x Ge

FIG. 10. Predicted effective electron masses in the I' and L
valleys vs composition x. The mass in the I' valley is smaller
than the mass of the L valley, likely resulting in a larger mobil-
ity for electrons in the I' valley. The Gunn effect may be ob-
served for 0.4 <x <0.8. The minimum in the mass of the I'
valley occurs at the composition where the energy band gap
vanishes.
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effective mass, and 7 is the scattering time (due to pho-
non, impurity, and alloy scattering). In most semicon-
ductors the mobility of electrons in the I' valley of the
conduction band is considerably higher than that in the
L or X valleys, owing to the very light effective mass.
We find this to be the case for Ge,Sn,_, (see Fig. 7).
The effective masses produced by the current model may
be in error by as much as a factor of 10; nevertheless,
the model does give a good qualitative idea of how the
masses vary with composition: the mass of the I'
minimum becomes very light near x ~0.4, as the alloy
becomes metallic (see Fig. 10).

Gunn devices are also known to produce coherent ra-
diation.?>2! As the potential across the device increases,
it eventually causes transitions to the low-mobility state,
and then the electrons slow down and form a high-
resistivity domain that propagates along the device.
Most of the potential drop is over the small domain.
The resulting electric fields are large and can cause im-
pact ionization, generating electron-hole pairs. As the
domain passes through the material, the electron-hole
pairs are left behind. The electrons (holes) fall to the
conduction (valence) -band edge through phonon emis-
sion. The pairs undergo radiative recombination. Such

DAVID W. JENKINS AND JOHN D. DOW 36

radiation stimulates further recombination and light is
coherently produced. It is an unanswered experimental
question whether such effects occur in Ge,Sn;_,.

IV. SUMMARY

In summary, we have predicted the electronic struc-
ture of Ge,Sn,_, alloys, and find that these materials
should exhibit interesting properties for some ranges of
composition x, including direct band gaps in the infrared
and band structures compatible with the Gunn effect.
We hope that this work will stimulate further attempts
to produce electronic-grade Ge,Sn;_, materials.
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FIG. 9. Predicted deep levels for substitutional impurities
from row 2 of the Periodic Table in Ge. Impurities to the
right of C, namely N, O, and F, are not donors (counter to in-
tuition). N and F are traps, while O is inert. B and Be are ac-
ceptors, C is inert, and Li and the vacancy trap both electrons
and holes. Levels in the bands are not to scale.



