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Properties of a magnetopolaron at the interface of polar-polar crystals
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The effective Hamiltonian of an interface magnetopolaron is derived and its properties are dis-

cussed by using Larsen's perturbational method. The results show that in the case of a repulsive

image potential, a "dead" layer of magnetopolarons is formed, the thickness of which decreases
when the strength of the magnetic field increases. In the case of an attractive image potential,
there is a stable magnetopolaron near the interface. However, its ground-state energy increases
with the increase of the magnetic field. The reduction of its binding energy and the increase of the
distance between the polaron and the interface are both as expected.

I. INTRODUCTION

With the development of solid device science and
technique, the interest in the properties of a surface or
an interface polaron in crystals is aroused, especially re-
garding the inhuence on its properties from a magnetic
field.

The mass of a polaron is usually determined by means
of cyclotron resonance experiments. ' In a polar semi-
conductor or an ionic crystal, the cyclotron resonance
frequency co,*=eB/m*c is affected by the interaction of
the electron with modulus of longitudinal-optical (LO)
vibration. The mass of a polaron m and the band mass
of an electron mb are also inAuenced by the electron-
phonon interactions. Thus the cyclotron resonance fre-
quency is certainly related to magnetic field.

Generally Rayleigh-Schrodinger perturbation theory,
(RSPT) Wigner-Brillouin perturbation theory (WBPT) or
improved Wigner-Brillouin perturbation theory (IMBPT)
is applied to obtain the relation between the mass of a
magnetopolaron and the strength of the magnetic field
by calculating the effect of the electron-phonon interac-
tions on Landau energy levels.

Devreese and Peeters exactly calculated the effective
mass of a magnetopolaron on the basis of the extended
Feynman polaron model. Interest is not restricted only
to the cyclotron resonance; the properties of a bound
magnetopolaron also attract attention. The first studies
of the properties of a hydrogenlike impurity were made
by Yafet, Keyes, and Adams (YKA). After that, many
authors improved on YKA's observations. All these
studies not only enlarged the magnetic field, but also ob-
tained very exact results. " Hollox and co-workers'
calculated the ground-state and bound energies of a con-
ductive electron in a magnetic field. The conductive
electron was attracted by a positive electric impurity in
the heteroside of a heterostructure.

There have been many scientists who studied the cy-
clotron resonance of a two-dimensional (2D) polaron.
Usually, one first applies a perturbational theory to

second order, ' ' then a more exact method. '

Indeed, the electron gas in an inverse layer of a metal-
oxide-semiconductor field-effect transistor (MOSFET) or
a thin quantum well with a high-energy barrier can be
considered to be a 2D case. However, for an electron
moving near an interface or a surface, we cannot de-
scribe its behavior as that in a real 2D case. There exists
an image potential, so the electron is not completely lim-
ited near the interface or the surface sometimes. Gu
et al. ' investigated this problem and learned that the
properties of an electron near a surface are tremendously
influenced by the electron-phonon interactions. Their
results show that when it is far away from the surface
only the electron —bulk-longitudinal-optical-phonon in-
teraction needs consideration; but the electron —surface-
optical- (SO) phonon interaction does not. When the
distance between the electron and the surface is much
less than the radius of the polaron, the electron —SO-
phonon interaction has to be taken into account; when
the distance is comparable with the radius of the pola-
ron, both electron —SO-phonon and electron —LO-phonon
interactions must be considered.

Following the previous studies, ' Larsen further
studied the 2D magnetopolaron and obtained a pithy ex-
pression of ground and lower excited states energies of a
polaron in a free magnetic field.

In this paper we use Larsen's method to discuss sur-
face and interface magnetopolarons in polar crystals,
considering that an electron interacts not only with the
image potential, which is from the polar electron cloud
of the ions on the surface or the interface, but also with
both bulk LO and SO phonons. Under different cir-
cumstances, we analyze the influence of a magnetic field
on the thickness of the "dead" layer of an interface mag-
netopolaron and on the ground-state and binding ener-
gies of a stable interface magnetopolaron, respectively.

II. HAMILTONIAN

Now we discuss an interface magnetopolaron in
polar-polar crystals. There are polar crystals 1 and 2 in
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the z )0 and z (0 semispace, respectively. The x-y
plane is their interface. The static uniform magnetic
field 8 is along the z direction. An electron moves in
crystal I, i.e., the z )0 side, so there is a barrier from
crystal 2 to it. Without loss of universality, we suppose
that the barrier is infinitely high; therefore, the electron
is restricted within crystal 1. In this paper we simul-
taneously take the interactions from bulk LO and SO
phonons into account. In addition, we consider an im-
age potential which is from polarizing the electron cloud
of interface ions. For the sake of easiness, we suppose
that the band mass of the electron is of the same numeri-
cal value in spite of the direction of its moving. Under
the isotropic effective-mass approximation, the Hamil-
tonian of this system can be written as

and (ld) express the energy of electron —bulk-LO- and
—bulk-SO-phonon interactions, respectively. V and 3 in
(lf) and (lg) are the volume of crystal 1 and the interface
area, respectively. e„, (e„z) and eo& (eoz) are the optical
and static dielectric constants of crystal 1 (crystal 2), re-
spectively.

The relation between the frequency of bulk
transverse-optical phonons ~T and the one of bulk LO
phonons col is determined by the equation
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and the frequencies of bulk LO and SO phonons satisfy
the equahty
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The coupling constant of the electron with bulk LO pho-
n ons is
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and that of the electron with SO phonons is
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The cyclotron resonance frequency of a free electron in a
magnetic field is
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After the introduction of the well-known 1D harmonic-
oscillator operators

g . p
p — y —i p + xx 4 4

where x, y, and z are the position coordinates of the elec-
tron, p=(x, y, O) is the projection of the electron position
vector on the x-y plane. p=(p„,p, p, ) is the momen-

tum of the electron. k=(k, k, k, ) is the wave vector of
the bulk LO phonon, k~~

——(k, , k, O) is the projection of
k on the x-y plane. q is the 2D wave vector of SO pho-
nons. a 1, (a |, ) and b ( b ) are the creation (annihilation)

q
operators of bulk LO and SO phonons, respectively. coL

is the frequency of bulk LO phonons, sos is the frequen-

cy of SO phonons.
The first two terms in (lb) are the kinetic energy of

2D motion of the electron in the x-y plane, which form
Landau energy levels. The third is the kinetic energy of
the electron in the z direction. The fourth is the image
potential energy. The fifth and sixth are the energies of
bulk LO and SO phonons, respectively. Equations (lc)

B = A i ——(x +iy),2&a

which satisfy the following commutation relations:

[A, A ]=[B,Bt]=1, [A,B]=[A,B ]=0.
We can rewrite (lb), (lc), and (ld) as
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H so=+(Cqe qL M bq+H c. )

where
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III. EFFECTIVE HAMILTONIAN

The adiabatic approximation ' ' is applied to treat
the motion of the electron. We first seek the energy of
the part of Hamiltonian in the x-y plane that depends
on the parameter z. Then, add it to the part of Hamil-
tonian in the z direction to obtain the effective Hamil-
tonian.

The system Hamiltonian can be divided into two
parts:

H =HII+Hi,
where

e -ph e -LO+ ~e -SO

In the first step, we treat HII. When

a~ A,~ 0, a~A, ~ 0,
the perturbation calculation is a simple method. We
shall take (RP /2m', )( A A + —,

'
) as the unperturbed

Hamiltonian and H, ph as the perturbational one.
At zero temperature, the ground state of the phonons

can be thought as a vacuum state
I
0 & =

I
0 & z I

0 &q.
Having introduced the operators A and B, we can
represent the Landau levels as products of two indepen-
dent 1D harmonic oscillator states, which are

(n!) ' (A )"
I
0&„and (M~) ' (B )

I
0&~,

n is the Landau quantum number, M is the z angular
momentum quantum number.

Under 0 K condition, the unperturbed state can be re-
stricted to the n =0 Landau state. Thus, the unper-
turbed ground-state wave function is

Io&„ o&, Io& .

However, it is not possible to restrict the intermediate
states to the n =0 Landau levels. Therefore, we have
the intermediate wave functions as follows:
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I
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Then we obtain the perturbated ground-state expected value to the second order,
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From WBPT, we know that E~ =0, when we calculate the energy only to the second order. After a tedious calcula-
tion, one can obtain

gE(2) V + V (4)

where
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The unperturbed ground-state expected value

«
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In expression (6), the first term is the ground-state ener-

gy of Landau levels, the second is the kinetic ener fic energy o
the electron in the z direction, the third is the image po-
tential energy of the electron, which is represented with
V the 1last two terms are the energies from the
electron —bulk-LO-phonon ( V, i o ) and SO-phonon in-
teractions ( V, so).

The effective potential is

V.a = V + V.-LQ+ V. -sQ . (7)

Now we discuss the properties of an interface magneto-
polaron in the following three cases.

A. The outside is vacuum i.e., 6'p2=E' 2= 1

When the z &0 semispace is filled with polar crystal 1

and z &0 is vacuum, the image potential is repulsive.
For example, crystal 1 is GaAs, then the image potential
can be written as

= —,'%co, . (5)

Finally, we have the effective Hamiltonian, i.e., the sum-
mation of (4), (5), and Hi:

2 2
Pz e (e„,—e'„z)
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different z. From it we see that V,& ~ 0, when z & 69 A.
In this region the electron is repelled, so it hardly ap-
pears in it. This surface layer is ca11ed a polar free-
surface layer (PFSL) or "dead" layer.

In order to discuss the inhuence of the magnetic field
on a surface polaron, the potentials are evaluated when
B = 10, 10, 10, 10, 10 G. The curves of V;, V, „Q,
Ve sQ and V,~ for B = 10 and 10 G are shown in Fig.
2. They show that when B increases, the absolute values

LQ and V, sQ increase. It means that the
electron —bulk-LO- and SO-phonon interactions are both
strengthened with increasing magnetic field. Because

is independent of B, V ~ is weakened with increas
Thus, the thickness of the "dead" layer Dp will de-

crease in this case. For example, D p = 67 A when
B =10 G but Dp =61 A when equal to 10 G.

B. In the case of e„&& e„& and E

The image potential is weakly repulsive. For instance,
take GaAs as crystal 1 and Gai p 3Alp 3As as crystal 2,
then

e ( 10.9—10.7 ) )0.
4z && 10.9( 10.9+ 10.7 )

In Fig. 3 the curves of Vim Ve-LQ Ve-sQ and Vea are

conclusions given above due to e -e th "d d"
1

e eaoo

ayer of the interface magnetopolaron is very thin.
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FIG. 1. V VV Lo V $O and V,ff vs z for the magnetic field
B =0. Dp is the thickness of its dead layer. GaAs occupies
the z & 0 sernispace and z & 0 is vacuum.

FIG. 2. V Vim ~ e-Lo~ Ve-so and Veff vs z for B = 10 and 10
V is independent of B The solid lines are for B =10 G

The dotted lines are for B = 10' G.
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e (10.9—14.44)
4z X 10.9(10.9+ 14.44)

0E

We make the evaluations for B =10, 10, 10, 10, and
10 G. The curves of V, , V, Lo, V, so, and V,z are
drawn in Fig. 4. They show that the absolute values of
V, „o and V, so increase with increasing B. That implies
that the electron —bulk-LO- and SO-phonon interactions
are both strengthened with increasing B. V;, V, L~,
and V, so are all attractive. Therefore, the magnetopola-
ron is found to be bound near the interface, so that a
stable interface magnetopolaron is formed. In the next
section we shaH discuss it in detai1.

IV. INTERFACE MAGNKTQPDI. ARON

I
0 40 $0 120 )$0 200 2f&

Z (~)
FIG. 3. Same as Fig. 2, but the Ga& O,Alo3As occupies

z ~0 semispace. Here, however, is the case of the interface
magnetopolaron.

C. E 2) 6 ) i.e., the image potential is attractive

For instance, the GaAs is taken as crystal 1 and GaSb
as crystal 2. Then

Expression (6) shows that the effective Hamiltonian of
an interface magnetopolaron is a function of magnetic
field B and the coordinate z of the electron. Using varia-
tional method, we evaluate the ground-state and binding
energies. From V,z we know that the available trial
wave function is

P(z) =2/ ze

where g is the variational parameter.
The expected va1ue of H,z for the z-direction wave

function is
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g in the expression (9) is determined by the equation
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TABLE I. The ground-state energy, binding energy, and pa-
rameter g' of the interface magnetopolaron for the different
magnetic fields B.

8 (G)

10
10
104
10'

g (cm ')

27 234.11
27 234.10
27 234.00
27 233.56

E~ (me V)

—3.648
—3.571
—2.799

4.839

EG (meV)

3.442 881 && 10—'
3.442 878)& 10
3.442 847 &&

10-'
3.442 633 X 10

l

5 )

I

l

4o
l

QO
l

(20 200
Z (A]

240

FIG. 4. Same as Fig. 2, but the GaAs occupies z &0 sem-
ispace.

From Eq. (10) we can obtain the solution g=g(B) which
represents the reverse radius of the interface polaron.
Putting the numerical value of g in expression (9), we
can come to the ground-state energy FG. The binding
energy EG is defined as follows:

EG V,s(z~oo ) EG——. —

As an example, GaAs is taken as crystal 1 and GaSb as
crystal 2.

The results (when B = 10 G, g = 27 234. 1 cm ' and
when B =10 G, /=27233. 6 cm ' show that the value
of g decreases slightly when the magnetic field increases.
The values of g, EG, and EG are listed in Table I.

V. CONCLUSION AND DISCUSSION

'Using Larsen perturbational method, we obtained the
effective Hamiltonian of a magnetopolaron at the inter-
face of polar-polar crystals, which is available in the
weak-coupling and free-magnetic-field cases. We studied
the relation between the behavior of an interface magne-
topolaron and magnetic field.

When the dielectric constant of medium 2 is smaller
than that of polar crystal l, i.e., the electron at the inter-
face or surface comes to be repelled by the interface or
surface image potential, it is dificult for a polaron to ap-
pear near the interface or the surface, then the PFSL (or
called "dead" layer) is formed near the interface or the
surface. The thickness of the "dead" layer is dependent
of magnetic field of strength, and the stronger the mag-
netic field is, the thinner the thickness. If the dielectric
constant of medium 2 is larger than that of polar crystal
1, i.e., the electron comes to be attracted by the interface
image potential, the polaron will form a stable state near
the interface. The ground-state energies of the interface
magnetopolaron increase with the increase of the mag-
netic field, but the reduction of its binding energies and
the increase of the distances between the magnetopola-
ron and the interface are both not notable.

Larsen perturbational method applied in this paper is
available in the weak-coupling cases, but the magnetic
field can be free. The perturbational terms were only ex-
panded to the second order. Because GaAs is taken as
an example for numerical computation, whose coupling
constants (aL ——0.067, as ——0.044) are very small, it is

needless to calculate the higher-order terms.
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