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Transmission coefficient of an electron through a saddle-point potential in a magnetic field
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We study the motion of a charged particle in two dimensions in a quadratic saddle-point poten-
tial Vsp(x, y) = U y —U x + Vo, in the presence of a perpendicular magnetic field. A simple, ana-

lytic expression is obtained for the transmission coefficient through the saddle point. We also cal-
culate the transmission coefficient in the Wentzel-Kramers-Brillouin approximation, and find that
this agrees well with the exact result, provided that the distance of the closest approach of the
classical trajectory of the electron to the saddle point is not too small. Our analysis makes use of
the fact that the Hamiltonian for this system can be expressed as a sum of two commuting Hamil-

tonians, one involving only the cyclotron coordinates, and the other involving only the guiding-

center coordinates. The former has the form of a one-dimensional particle in a confining harmon-
ic potential and describes the oscillations of the electron about the guiding-center position. The
latter has the form of a one-dimensional particle in an inverted harmonic potential.

I. INTRODUCTION

In recent years there has been a substantial interest in
the use of semiclassical techniques to describe the quan-
tum mechanics of electrons in strong magnetic fields. '

In particular, there have been applications of these tech-
niques to gain insight into the integral quantized Hall
effect and the associated localization problem for a two-
dimensional electron in a random potential and a strong
magnetic field. ' There have also been applications to the
cooperative motion of electrons in the fractional quan-
tized Hall effect and to the three-dimensional motion of
electrons in a disordered potential and a strong magnetic
field.

One of the simplest situations to consider is the
motion of an electron in two dimensions when there is a
uniform magnetic field B perpendicular to the plane, and
a weak potential V(r) that varies slowly on the scale of
the magnetic length lo ——

~

eB /Pic
~

'~ . According to
the semiclassical analysis of the situation, the motion is
described by a circular motion of radius =ho at the cy-
clotron frequency co, =eB /mc, where m is the electron
mass, about a guiding center R(t) which drifts slowly
along an equipotential contour of V(r), with drift veloci-
ty

c VV(r) XB
VD =

eB
The equipotential contours of V(r) are a family of
curves, which in most instances are closed on them-
selves. The allowed quantum-mechanical orbits, in the
semiclassical approximation, are a discrete set which
satisfy the quantization condition for the action around
the orbit.

The semiclassical approximation is an accurate and
unambiguous description of the electronic motion, pro-
vided that the orbit in question is never close to a saddle
point of the potential. In the vicinity of a saddle point,
the semiclassical analysis breaks down, as one must take

T= 1

1+ exp( —m.e)
(1.2)

where T is the transmission probability in the x direc-
tion, and e is a dimensionless measure of the energy of
the guiding-center motion relative to the potential Vo at

i, y

FIG. 1. Classical trajectories of an electron confined to two
dimensions in a perpendicular magnetic field and the saddle-
point potential given in Eq. (1 ~ 1) for energies below the saddle-
point energy. The trajectories lie on contours of constant po-
tential. The quantum-mechanical wave functions of the elec-
trons are only significant within several magnetic lengths of
such contours for strong magnetic fields. Dashed lines denote
the asymptotes of the potential.

into account the finite amplitude for tunneling across the
saddle point, from one classical trajectory to another (see
Fig. 1).

The purpose of this article is to study this quantum
amplitude in the simplest possible case, a purely quadra-
tic potential, of the form

Vsp(x, y)= —U, x + U~y + Vo .

We find that there is a simple analytic expression for the
transmission probability in this case,
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the saddle point. Specifically, we have

(1.3)
1/2 U„

T exp
U

1/2 '2
Xo

(1.10)

dence on the parameter xo, which is given for the case
a&0 by

CO
C (1.4)

EG E ——(n +——,
' )E2,

where E is the total energy of the electron, n is a non-
negative integer, and E2 is the oscillator frequency,

1/2

and E& is the energy of the motion of the guiding
center. If the electron is placed in a pure state of quan-
tum number n for its oscillations about the guiding
center, then

The results of the present paper have implications for
the splitting of energy levels in a double well potential
which we plan to discuss in a subsequent work.

This article is organized as follows. In Sec. II we cal-
culate the exact transmission coefficient T of an electron
in the potential Vsp(x, y) and an arbitrary uniform per-
pendicular magnetic field. In Sec. III we show how the
transmission coefficient may be calculated in the strong
magnetic field limit by an alternative complex coordinate
technique, which we illustrate for the case Vsp(x, y)
= U„(y —x ). We conclude with a summary in Sec. IV.

E =' +CO +
4 m

II. EXACT CALCULATION
OF THE TRANSMISSION COEFFICIENT

+ +
m

1/2

(1.6)

(We have set fi= 1 in all of these formulas. ) In the limit
where U and U are small compared to mes, these for-
mulas simplify further to

In this section we will find an exact expression for the
transmission coefficient T of an electron confined to two
dimensions in a perpendicular magnetic field 8 and in
the potential Vsp(x, y) = U y —U x + V]]. In the sym-
metric gauge, the vector potential is given by
A=(B/2)( —y, x, 0). The Hamiltonian for this system is

E2 =co

( U„Uy)'"
APE CO

(1.7)

(1.8)

2

H = —V+ —A + Vs@(x,y) .
1 1 e

2m I

We can express this in the form

T —vie) (1.9a)

for e &0, and

while the quantum number n specifies the Landau level
for the electron motion.

Our definition of the transmission coefficient T is such
that it corresponds to quantum tunneling through the
saddle point for energies EG & Vo, while it corresponds
to the classical motion around the saddle point for "pos-
itive" energies EG & Vo. Note that transmission in the x
direction is equivalent to reQection in the y direction, as
is evident in Fig. l. In the limit of

~

e
~

&&1, we have

H=Q(a]a]+aqa2+1)+ (a]a2 —a2a])
2l

+y[(ay+a 2
)' —(a] +a ] )']+ Vo,

where

II =( —,'co, +2U /m )'~

U = —,](Uy —U ), y=U+/2mB, U+ = —,'(U +U„),and
the operators a, and a2 are given by

1 1 aa, = i/mQx+v'2 &mn ~~
T= 1 —e (1.9b)

for a ~0.
As we shall see below, these asymptotic formulas may

also be derived from a semiclassical WKB (Wentzel-
Kramers-Brillouin) approximation, which one would ex-
pect to be valid for

~

e
~

&&1. If the cyclotron frequency
is large compared to (U„/m)' and (U /m)'~, the con-
dition

~

e
~

&&1 is equivalent to the requirement that the
spatial separation xo between the saddle point and the
closest point on the classical trajectory is large compared
to the magnetic length lo. The asymptotic form of the
tunneling probability then has a simple Gaussian depen-

aa, = — &may+u'2 v'mn &y

a,
a2

i cosP sing
—sing —i cosP

b,
b2

with tan(2$) = —co, /4y, we find H =H]+H2, where

so that [a, ,a] ]=[a2,az]=1 and [a],a2]=[a],a2]=0.
We introduce a Bogoliubov transformation to decou-

ple the Hamiltonian into a sum of two commuting Ham-
iltonians. Setting
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H, =(b, b, )

C—'A — y +2 4

2 1/2

C+
4

b1
2 1/2

U1

H2=(b2 b2)

2+ y +
r 2 1/2

—,'Q+ y +
'2 1/2

b2
bf +~o

2

T

b2

b2

cosh 02 sinh02
C2

sinh02 cosh02 c 2

with

tanh(282) =
+y+ 4

2 1/2

For this transformation, [c2,c2]=1, and we have

Our form of the Bogoliubov transformation guaran-
tees [b„b2]=[b„b2]=0,and [b„b,]=[b2,b2]=1.
We can diagonalize H2 with a second Bogoliubov trans-
formation of the form

2 C

E1 —— y —' —'0 — y +2 4

2 1/2 2' 1/2

(2.3)

X= — (c, —c, ),1

&2i
(2.4a)

Our full Hamiltonian may thus be written

H =E,(c, +c, )+E2c2c2+ —,E2+ Vo,f2

with [c&,c2]=[c&,c2]=0, and [c&,c&]=[c2,c2]=1. We
now need a method by which we can extract the
transmission coefficient from this form.

To do this, it is convenient to define the following
operators:

H2 ——E2c2c2+ —,E2+ Vo ~

1 P= —(c, +c, },1

v'2 (2.4b)

where

E, =2 —,'0+ y'+
2 i1/2 2

2—y

1/2

(2.1)

1
S = —(C2+C2 )v'2

1
P = —.(c2 c2) .

&2i

(2.4c)

(2.4d)

H, =E, ( f+cc, ) .g2

If we write

(2.2)

b1
bf

cosh 0, sinhO,

sinh01 cosht91
C1

C1

with

tanh(28& ) =
C—'0 — y +2 4

2 1/2

we obtain exactly the form in Eq. (2.2) for H&, with

We see that H2 has the form of a harmonic oscillator
Hamiltonian. Since [H „H2]=0, we know that the
eigenfunctions of the full Hamiltonian can simultaneous-
ly diagonalize H and H2, so it is possible for us to diago-
nalize the Hamiltonian within a single oscillator level.

Unlike H2 H1 cannot be written in the form
E,c 1c1+—,'E, if we wish to preserve the commutation re-
lation [c&,c &

]=l. A convenient form for H, turns out
to be

In terms of these operators, the Hamiltonians H, and
H2 may be written as

H, =E, (P X), —

H2= ,'E2(P +s }+V—o

and we note [X,P]=i, [s,p]=i, and [s,X]=[s,P]
=[p,X]=[p,P]=0. The full Hamiltonian is the sum of
two commuting Hamiltonians, the first (H, ) being
equivalent to that of a one-dimensional particle in an in-
verted harmonic potential, and the other (H2) represent-
ing a one-dimensional particle in a con6ning harmonic
potential. Physically, we associate the coordinate s with
the cyclotron motion of the electron, and the coordinate
X with the guiding-center motion, in rescaled units [see
Eqs. (2.7)]. One can show that if U„,U ~0, the quanti-
ty E,~0, so that X and P become conserved quantities
when the external potential vanishes; this is consistent
with the interpretation of X as a guiding-center coordi-
nate.

If we choose a representation in which X and s are di-
agonal, we may write any wave function of this system
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in the form P(X,s), where X and s are real numbers.
Since Hz —Vo is the Hamiltonian of a one-dimensional
harmonic oscillator, we may choose the form of g(X, s)
to be |/„(s)p(X),where Hzp„(s)= I (n + —,

' )Ez+ V0]g„(s),
and we take |/r„(s) to be normalized to unity
( f I

1(r„(s)
I

ds =1). This represents a wave func-
tion that lies purely in the nth oscillator level; we note
that in the limit co, ~ oo, the nth oscillator level becomes
equivalent to the nth Landau level. Schrodinger's equa-
tion for wave functions of this form may be written as

H, p(X) =E, (P—X)r/r—(X)= (EG —V0 )p(X), (2.5)

where EG E —(n ——+ —,')Ez is the guiding-center energy
of the electron.

We can characterize the Hamiltonian H
& by a

transmission coefficient which we denote by T,D. This
quantity is defined in the following fashion. Let us con-
struct a wave packet

I P&) that at time t =0 is centered
well to the left of the origin ((X ) &0) with an average
momentum directed to the right ((P) &0). We assign
to this wave packet a mean energy (H, ) =EG —V0 and
an energy variance hE which we may choose to be as
small as we like. After a long time t, the wave packet
has scattered o8' of the potential maximum at the origin,
after which we have two wave packets of unequal ampli-
tude, one a reflected wave packet located to
the left of the origin and traveling to the left
((X) &0, (P) &0), and the other a transmitted wave
packet, located to the right of the origin and traveling to
the right ((X)&0, (P) &0). If we wait long enough,
the two wave packets become well separated in space, so
that it becomes possible for us to construct a state

I Pz )
that coincides with the wave packet on the right, and
has no significant overlap with the wave packet on the
left. If we normalize our states as (Pl I P, )
= ( Pz I Pz ) = 1, we can write the transmission coefficient
in the form

7 1D(EO) ™hE0 I (42 I
e (2.6)

1x = (a,X —Pzs ),&mQ
1

y = (/3, P+azp ),
&mQ

(2.7a)

(2.7b)

where

a; = cosP( cosh8, —sin»8, ),
/3; = —sing( coshg; + sinhg, ),

(2.8a)

(2.8b)

To relate this to the transmission coefficient of the
two-dimensional system, we need to examine the form of
the wave functions

I P& ) =f„(s)
I P& ) and

I
r/rz)

=P„(s)
I Pz ) in real space; these represent wave packets

that lie purely in the nth oscillator level. To do this, we
need to know the relationship of the operators X, P, s,
and p to the coordinates x and y. One can show from
Eq. (2.4) and from the definitions of the operators
c, , c&, cz, and cz in terms of the operators a, , a, , az,
and az that

for i =1,2. It is easy to show a;, P; &0 for both values
of i.

Let us suppose that for the initial wave packet
I P, ),

(X ) = ( P ) . (For a fixed value of EG, we can always
guarantee this by placing the center of the wave packet
sufficiently far to the left. ) Since 1fr„(s)is a harmonic os-
cillator wave function, we must have (p ) = (x ) =0. We
thus have for

I f~ ), (x ) =(1/v'm Q)a&(X) and
(y) =(1 /&mQ)P, (P). In real space, then, the wave
function

I
1(r, ) is centered in the upper left quadrant of

Fig. 1. By similar reasoning, one can show that the
wave function

I Pz) is centered in the upper right qua-
drant of Fig. 1.

We note that in the limit of strong magnetic fields
(co, »U„/m, U /rn), /3&/a&=(U /U )'r, so that
U„(x) = U y ) for both

I P, ) and
I
gz). This

means that if the wave packets are far enough from the
origin, they must be centered near the asymptotes of the
saddle-point potential Vsp(x, y). We can see that the
semiclassical picture of the eigenfunctions of an electron
in a strong magnetic field and a slowly varying potential
is consistent with this by the following argument. If the
energy variance of the wave packets is small, and the
harmonic oscillator state n has been specified, then when
the wave packets

I
r/r, ) and

I
r/rz) are expanded in eigen-

functions of the full Hamiltonian H, the weight for a
particular eigenfunction will be significant only if its
guiding-center energy is close to the value EG. Accord-
ing to the semiclassical picture, far from the saddle
point, such wave functions only have a significant ampli-
tude near the contours satisfying Vsp(x, y)=EG. It fol-
lows then that the wave packets

I f, ) and
I
1(z) must be

localized somewhere along these contours. Since any
contour of constant Vsp approaches the asymptotes
defined by U x = U y for values of x and y sufficiently
far from the origin, we see that the semiclassical picture
does indeed predict that the wave packets

I g& ) and

I |/rz) should be localized near the asymptotes of Vsp if
they are far enough from the saddle point.

To calculate the transmission coefficient for the full
two-dimensional system, we use

I f, ) as an incoming
wave packet with average guiding-center energy EG.
The wave packet

I
gz) is located in the first quadrant, so

that if EG ( Vo, we associate this with the transmitted
wave packet of the two-dimensional scattering event,
since the electron had to cross a classically forbidden re-
gion to travel from the upper left quadrant to the upper
right quadrant. Conversely, for "positive" guiding-
center energies EG —Vo) 0, the classical trajectory con-
nects the upper left and right quadrants, so that one
might identify

I
1(rz) as a refiected wave packet in this

case. We adopt a convention, however, in which
I Pz)

is called the transmitted wave packet for all energies, so
that if we have an incoming electron wave packet locat-
ed in the upper left quadrant, the transmission coefficient
is the probability that the electron scatters into the
upper right quadrant. With this convention, the
transmission coefficient may be written as

(2.9)
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Using
~ f, ) =p„(s)

~ p, ), H =H, +H2, and [H),H2]
=0, one can easily show

T(EG)=T,D(EG —Vo) . (2.10)

Thus if we can calculate the transmission coefficient as-
sociated with H„we can use Eq. (2.10) to find the
transmission of the full two-dimensional system.

The transition amplitude of a one-dimensional particle
passing through an inverted parabolic barrier has been
studied by Connor in the context of resonance tunneling
reactions. Although his results are closely related to
ours, he does not explicitly solve for the transmission
coefficient of this system. We therefore include a few de-
tails of the calculation below.

To find T,D(EO —Vo), we explicitly solve H, (I)(X)
=(EG —Vo)P(X). Writing P =(1/i )(dldX) and
e = ( EG —Vo ) /E

„

this equation becomes

P, (X)=e ' F( ,'+ 4)—ie
~

—,
' ~iX ),

$0(X)=Xe ' F( ,'+ )i—e
~

—,
' ~iX ) .

(2.12a)

(2.12b)

We now examine the solutions to Eq. (2.11) for large
values of

~

X
~

. Writing u =
~

u
~

e', one can show

~

a —b ((a —b)() u I (b)
I (a)

+
~ ~

—a ia(vr ())—
I (b —a)

(2.13)

Equation (2.11) is discussed in detail by Morse and
Feshbach. The solutions are called parabolic cylindrical
functions. For every value of e, there is an even and an
odd solution, which we denote respectively as P, (X) and
$0(X). These may be expressed in terms of confiuent hy-
pergeometric functions F (a

~

b
~

u ) as

d2

dX
+X +e P(X)=0. (2.1 1) for large

~

u
~

and 0&(9&m, wher. e I is the gamma
function. Substituting into Eqs. (2.12), we find

(X) —(X /2
r( —,

'
) —2[(1/4) —()/4)iE] iX

r(-,')
(

) + ]
)

~

X
~

2[(1/4)+( I/4)iE] (2.14a)

(X) X —(x /2
r(-', )

I ( —,'+ ,'i e)—(
3 ) .

~)
~

X
~

2[(3/4) —()/4)i E]eiX'
4 4

r(-, )

exp i( —,'+ 'ie) —
~

X
~

' '+" (2.14b)

We see that Po and P, each has one term that is propor-
tional to exp(iX /2) and another that is proportional to
exp( iX /2) for—large values of

~

X
~

. We wish to as-
sociate one of these terms with the incoming current and
the other with the outgoing current. Noting that
Pe —' =+Xe —', we see that the current associated

iX /2with the term proportional to e' is directed away
from the origin, and the current associated with the
term proportional to e ' is directed toward the ori-
gin. We thus associate the former with the outgoing
current, and the latter with the incoming current.

We proceed by forming an eigenstate of the form
P(X) = A P, (X)+BPO(X), where the coefficients A and B
are chosen such that for large positive values of X the
coefficient of the exp( iX l2 ) term vanishes—. The
physical picture of this situation is that well to the right
of X =0 there is only an outgoing current, while on the
left side of the origin there is both an incoming and an
outgoing current. For large values of

~

X
~

we denote
the asymptotic forms of the wave function associated
with the incoming and outgoing current as P;„(u)and

P „,(u), respectively. The transmission coefficient may
be written as

T,D = lim
X ~P,„(—X) ~2

(2.15)

I ( —,') r(, )e'"/ +B, e' a =() . (2.]6)
I ( —,

' —,'i@)—r(,' ——,'(~)

For large values of X ~ 0, one finds P(X)~P,„,(X), with

(Xi ] X ]
—2[(1/4)+(1/4jiel —~e/8 iX /2e e

r(,' ) —i n/8
I ( —,'+ (iE)

r(-,' ) —i 3m/8

I ( —,'+ —,'ie) (2.17)

For large negative X, one finds

In accordance with the above discussion, we now
choose A and 8 to satisfy the equation
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r ~i ( ~ (
—2[(1/4)+(1/4)ie] —~e/8 —ig /2e e

(2.18)

Substituting Eq. (2.16) into Eqs. (2.17) and (2.18), and us-

ing Eq. (2.15), we find

1T1D 4 I ( —,'+ ,'i e)—I( —,'+ ,'i e)—
(2.19)

I

-5
This form can be greatly simplified using the identities

I (x +iy ) =I *(x —iy),

and

vr~ZI ( ,'+iy )—I ( ,' iy) —=-
cosh(7ry)+i sinh(~y)

where x and y are arbitrary real numbers. We find

1
T(EG ) = T,~(EG —Vo ) = 1+ exp( —~e)

(2.20)

In the strong-field limit, one can show E2=~, and

E, =Io(U„U)', so that

CO

E — —Vp
2

i~(U U )»~ (2.21)

Notice that this implicitly assumes that the classical
motion of the electron is confined either to the left or the
right of the saddle point; this is always the case if e &0.
For xp ~~lp, we have

r 1/2
Xp

j' 2

U„
T exp —7T (2.22)

U

This result may also be obtained for @ &0 by applying
the WKB approximation to the Hamiltonian H, .
Specifically, we find

where

160
(48'+ 1)' (2.23)

Xo0= exp (Xo —X )'r dX—:exp—Xo

m.Xp2

2

and Xp ———e. Note that with the relation
(x ) =(I/&mII)a, (X), one can show in the strong-
field limit that the distance of the turning points from
the origin in the one-dimensional problem (Xo) corre-

If we wish to parametrize the energy in terms of the dis-
tance of closest approach of the electron to the origin,
we write EG —Vp ———U, xp. In the strong-field limit, we
then have

1/2
Xp

U

FIG. 2. Transmission coefficient of an electron through a
saddle-point potential in a strong magnetic field as a function
of the dimensionless parameter e, defined by Eqs. (1.3)—(1.6).
Dashed line shows WKB approximation of the transmission
coefficient, solid line shows exact result.

sponds to the distance of closest approach of the elec-
tron to the saddle point (xo) in the two-dimensional
problem. We see that in the limit

~

e
~

&&1, TwKB is ap-
proximately exp( —m

~

e
~

). It follows that in terms of
xo, TwKB has precisely the same form as T in Eq. (2.22)
for xp/lp ~&1 in the strong magnetic field limit.

In Fig. 2 we plot TwKB and the exact transmission
coefficient T in the strong-field limit as a function of the
parameter c. For —c. ~~1, TwKB and T agree quite well.
As E~0, we find TwKB 25

~ In contrast, the e~act
transmission coefficient equals —,

' for E =0. (One can
show by symmetry considerations that this must be the
case. ) That the WKB approximation breaks down for
small values of

~

E
~

is not surprising: this represents the
situation in which the classical turning points of the
one-dimensional problem are close to one another; the
WKB approximation often does poorly when this
occurs. Although the approximations in the WKB
method do poorly for small values of xp, we expect that
for large values of xp it should give us a good represen-
tation of the exact transmission coefficient. This gives us
a limit in which we check the correctness of our exact
evaluation of T. As we see in Fig. 2, the agreement in
this limit is quite good.

III. COMPLEX COORDINATE METHOD

In this section we describe an alternate approach to
the saddle-point problem which uses the complex coordi-
nate method appropriate to an electron in the lowest
Landau level. ' This technique allows one to estimate
the transmission coefficient in the strong magnetic field
limit without working through the Bogoliubov transfor-
mations described in Sec. II. For simplicity, we will
only consider the case Vsp ——U„(y —x ). Writing
z =x —iy, and defining

a 1z
b = — 21p

&2 Bz* 2 I
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the Hamiltonian may be written as

H =co, (b b+ —,')— (z +z" )+ Vo .

The operator b is the Landau-level lowering operator.
We introduce our first approximation by projecting this
Hamiltonian into the lowest Landau level. To do this,
we consider only wave functions of the form
P(z, z*)=f(z) exp( —zz'/410), where f is an analytic
function of z, which is the most general form for a func-
tion in the lowest Landau level. We may then set b =0
and replace z* with 210(B/Bz) in the Hamiltonian. '

The projected Hamiltonian now acts only on the func-
tion f (z). With this procedure, Schrodinger s equation
becomes

a2
4lo 2 +z + Vo E+—,'c—o, f(z)=0 . (3.1)

f (z) =e~",
and expand P(z) in powers of 10,

(3.2)

)(z)
P(z) =

~ +go(z)+P, (z)lo+ (3.3)

In the limit B~~, Io~0, so that for strong fields it
is only necessary to keep the first two terms in the ex-
pansion. Substituting Eqs. (3.2) and (3.3) into Eq. (3.1),
one finds for the lowest-order contribution to P(z),

,(z)=+—,
' f (a —g )' dg,

where zo is an arbitrary constant, and

a =——2(E —Vo ——,'co, )/U„.

The form of this equation is similar to that of Eq. (2.11),
Schrodinger s equation for a one-dimensional particle in
an inverted harmonic oscillator potential. The equa-
tions, however, are not identical. We will find, in partic-
ular, that the classical turning points for Eq. (3.1) are
not equivalent to the points of closest approach of the
classical trajectories to the origin, as they are for Eq.
(2.11). The coefficient of the a'/az term and the turn-
ing point separation, however, combine in such a way
that the action integral for the present calculation is pre-
cisely the same as that of Sec. II. Thus in the strong-
field limit, the transmission coefficient we calculate
below is the same as the result of Sec. II.

The solution to Eq. (3.1) may be expressed in terms of
parabolic cylindrical functions, as discussed in Sec. II.
For our present calculation, however, we will present the
solutions in the WKB approximation. In this context,
the WKB approximation may be written in the following
'manner. Write the function f (z) as

dP, (z)
Po(z) = ——' ln

dz

f (z)= 2

(a 2 g2)1/2

X exp +
2 f (a —g }' dg

210 zo

The above approximation breaks down near z =+a.
This is not surprising because if z were a real variab1e,
these would represent the classical turning points of a
one-dimensional particle in an inverted harmonic poten-
tial. We note that these turning points are related to the
distance of closest approach of the electron to the origin
by a =v'2x, .

To gain some insight into what the wave functions
look like, it is useful to examine f (z) in the large

~

z
~

limit. In doing this, we must define our branch cuts for
the function (a —g )'; we will choose them in such a
way that f+(z) —exp(iz /410) for Rez »a, and
f+(z) —exp( iz /410—) for Rez « —a. If we stay with
this convention, it follows that f (z)- exp( iz /—4lo)
for Rez »a, and f (z) —exp(iz /410) for Rez « —a.
If we now take P(z, z*)=f+(z) exp( —

~

z
~

/41O) and
write z =re ', we see that for large r along the direc-
tions 0=m/4 and 0=3~/4, the wave-function amplitude
falls off only as I/V'r, rather than as a gaussian, as it
does in other directions. Similarly, for

P(z, z*)=f (z) exp( —
~

z
~

/4lo),

the wave function falls off as I/v'r along 8=5m. /4 and
9=7~/4. If we draw rays from the origin along these
directions, the resulting lines coincide precisely with
the asymptotes of the saddle-point potential Vo
+ U„(y —x ). This means that for large r an eigenfunc-
tion of the Hamiltonian has its largest amplitude near
some or all of the asymptotes of the potential; along a
direction perpendicular to these asymptotes, the wave
function falls off as a Gaussian with a characteristic
length scale of Io. Referring to Fig. I, and noting that
the current density can only be significant where the
wave-function amplitude is significant, it is clear that
one can identify the solutions f +(z) with an outgoing
current (i.e., with a current that at large distances is
directed away from the origin) for Rez & a, and with an
incoming current for Rez & —a. Similarly, the solutions
f (z) may be identified with an incoming current for
Rez & a, and with an outgoing current for Rez & —a.

We now write the most general form of the wave func-
tion for a given parameter a as

The WKB approximation thus gives two linearly in-
dependent solutions, which may be written as

1/2

En the following analysis, we only consider energies for
which a is positive. For the zeroth-order term, one
finds

f(z,z' )=f(z) exp( —
i
z

i
/41 o )

with f (z) given by the following. For Rez & —a,
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f (z)= 3 exp j ( —a +g )'/ dg)
2l o2

+Bexp —a + ' d
2l o

1/2
2

X
( 2+ gZ)1/2

for —a &Rez &a,

f(z) = C exp J (a —g~)'/zdg
2lo

+D-p
2lo

2
X

(
2 g2)1/2

and for Rez &a,

]/2

f (z)= F exp J ( —a +(~)'/ dg
2lo

6 exp a2+ 2 1/2

2lo
1/2

2

( 2+ g2)1/2

where

fF [
160

(48'+ 1)' (3.4)

2 2 1/2 ma 2

(9= exp a —x ' dx:—exp—a 4l

Substituting a =2x o, we find 9= exp(irx o /21 o ). This
is precisely the result we found for the WKB approxima-

Once we have specified the coefficients 2 and B, then
the remaining coefficients C, D, F, and 6 are determined
by the WKB matching formulas. If we restrict our at-
tention to values of z that are on the real line (y =0),
these matching conditions become precisely those of a
one-dimensional WKB problem, for which we can carry
over standard results. Setting 6=0, so that there is no
incoming current from the right, we follow Merzbacher
to find

tion to the transmission coefficient in the strong-field
limit in Sec. II for U = U and xo/lo ~&1.

IV. SUMMARY

We have calculated the transmission coefficient T for
an electron in an arbitrary magnetic field and a saddle-
point Vsp(x y) = U~y —U x + Vo. The result agrees
well with the WKB approximation for this quantity
when the classical turning points are not too close to one
another. We derive the WKB approximation to T, for
the special case U, = U, in the strong-field limit with a
complex coordinate technique.

In our exact calculation, we have expressed the Ham-
iltonian as a sum of two Hamiltonians, one involving
only the cyclotron coordinates s and p, the other involv-
ing only the guiding-center coordinates X and P. The
former Hamiltonian is that of a one-dimensional particle
in a confining harmonic potential, so that an eigenfunc-
tion of the Hamiltonian has an oscillator index n. In the
limit that the magnetic field B~ oo, a wave function in
the nth oscillator level becomes equivalent to a wave
function in the nth Landau level. The guiding-center
Hamiltonian is that of a one-dimensional particle in an
inverted harmonic potential. For any fixed energy, a
wave packet sufficiently far from the saddle point will be
localized near one of the asymptotes of Vsp. The motion
of the wave packet is consistent with the semiclassical
picture of the eigenfunctions of an electron in a strong
magnetic field and a slowly varying potential. The prob-
ability that the particle in two dimensions will tunnel
through the saddle-point barrier is equivalent to the
probability that the one-dimensional particle will be
transmitted through the inverted harmonic-oscillator po-
tential.

Note added in proof Professor Ma. rk Azbel has kindly
pointed out that problems mathematically similar to the
current one were studied in the 1950's, in the context of
the semiclassical electron orbits in a metal with a com-
plicated Fermi surface, where the magnetic length lo is
much larger than the size of the crystal unit cell. See,
for example, G. E. Zil'berman, Zh. Eksp. Teor. Fiz. 33,
387 (1958) [Sov. Phys. —JETP 6, 299 (1958)]; M. Ya.
Azbel, ibid 39, 1272 .(1961) [12, 891 (1961)] and refer-
ences therein.
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