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Effect of correlation on conductivity and relaxation time
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The frequency-dependent conductivity and relaxation time of a correlated two-component plas-
ma is calculated. We take into account the short-range correlation effect of the electron-electron,
hole-hole, and electron-hole interactions by making use of the effective two-body interaction which
is related to the pair correlation function. Our result for the conductivity is given in terms of the
density Auctuation of the plasma. However, the present result depends on the dielectric response
beyond the random-phase approximation. We take into account the effects of short-range correla-
tions on the screening. Moreover, we consider the effect of the electron-hole short-range correla-
tion on the electron-hole scattering-matrix element. Here we take into account the electron-hole
attractive interaction during the scattering process, beyond the Born approximation, as it is com-
monly used.

I. INTRODUCTION

The problem of the absorption of electromagnetic
waves in plasmas was studied by many authors in the
1960s. ' It has become since then a well-understood
problem. Here one solves the response of the electron-
ion (-hole) system taking into account correctly the effect
of the self-consistent field generated via the fluctuations
of the charges while considering the electron-ion (-hole)
correlation effects only within the Born approximation.
This leads to a correct result of the absorption in the
limit when the plasma parameter r, approaches zero.
This plasma parameter r, is, in principle, given by the
ratio of the average potential energy of, say the electron
to its average kinetic energy. This theory met with con-
siderable success in comparing it to experiments in wide
variety of problems, such as absorption in semiconduc-
tors, metals, and nondegenerate or classical plasmas.

Similarly, much effort was directed in understanding
the response of plasmas to longitudinal electric fields.
To lowest order in the plasma parameter, the dielectric
response depends solely on the self-consistent fields. The
calculations of the dielectric function are given by the
well-known random-phase approximation (RPA). How-
ever, RPA gives the correct result for the dielectric
response for finite values of r„only when small wave
numbers (i.e. , large distances) are considered. For large
wave numbers (i.e., short-range phenomena), one finds
the RPA results unacceptable. Here one must take into
account the short-range effects of the charged particles
due to exchange and correlations which deviate remark-
ably from the RPA calculations.

The problem of strongly correlated electron plasmas
has been considered by many authors. ' They were
mainly interested in the effect of short-range correlation
on the dielectric response function and the pair correla-
tion function. In this paper we will focus our attention
on the effects of short-range correlations on the conduc-
tivity and the relaxation time of plasmas. The purpose
of this paper is to develop an overall calculation scheme

which adequately treats the correlation in dynamical
conductivity. We shall use an equation of motion
method to derive the general expression for the conduc-
tivity. In our equation of motion for the density matrix,
we approximate the three-particle correlation functions
by the products of one- and two-particle correlation
functions, respectively. We introduce an effective in-
teraction term instead of the Coulomb matrix element
into our equations. The short-range correlation effect
will be included in this effective interaction in a way
which was previously suggested in Ref. 7.

II. GENERAL FORMALISM OF TOTAL CURRENT

In the following we are concerned with a many-body
system described by the Hamiltonian

Ho 2+k, k, k,
k, s

1 ss'+ 7 X X k+q, sak' —q, s'~q ak', s' k, s
k, k', q s, s'

(2.1)

in which ak, and ak, are the usual creation and annihi-
lation operators for state of wave vector k and com-
ponent s, that satisfy the anticommutation relation

~a k, ak', ' ~ ~k, k'~, (2.2)

(k —e A)
Ek,s~

2ms
(2.3)

where A is the vector potential of the applied field.
Now the Hamiltonian of the system becomes

In Eq. (2.2) Fk, ——k /2m, . For notational convenience,
we use the units in which Planck's constant A, speed of
light c, and Boltzmann's constant kz are equal to unity
through our paper. Now let us imagine that the system
described by Eq. (2.1) is perturbed by an application of a
weak uniform time-varying field, then
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H =Hp+Hi, (2.4)

where Ho is still given by Eq. (2.1) and Hi is a small
perturbation

e,
H, = gk. A ak, ak, e

k, s m,
(2.5)

In writing Eq. (2.5}, we have omitted the quadratic terms
in A. For the system we are considering, the current
operator is

5H esJ= = g (k+e A)ak, ak,5A k, m,

III. THE EVALUATION OF THE TOTAL CURRENT

The quantity we wish to evaluate is

e,

k ms
(3.1)

which contains the expectation value of the operator
a k, calculated with respect to the perturbed density ma-
trix of the many-body system. If one assumes the densi-
ty matrix expanded in powers of A, one may write

tion correction will affect the absorption. We now turn
to this aspect of the calculation.

=Jp+J) . (2.6) P =Pp+P]+ (3.2)

Jp and J& are expressed as the following:

ie2 n,
Jo=croE, o'o=

m,
(2.7)

(a k,.ak, .& =«(Poa k,.ak, .)+«(Pia k,.ak, .)

= &ak, ,ak, , &0+ &ak„ak, , &1 (3.3)

where n, is the number density of s species of the sys-
tern,

Only the second term in Eq. (3.3) contributes to the
current, so one obtains the following expression for J&

..

k ~ ms
(2.8)

e,
J, = g k(ak, ak, &i .

k, s ms
(3.4)

We see from Eq. (2.8) that the important correlation
correction to the conductivity is contained in Ji. The
expectation value in Eq. (2.8) is taken with respect to the
perturbed density matrix. Ji will have a different fre-
quency dependence from that of Jp and is complex, rath-
er than pure imaginary. This indicates that the correla-

We use the equation of motion method first presented by
Suhl and Werthamer' and by Wolff. ' We first find the
equation of motion in the Heisenberg representation of
the number operator ak, (t)ak, (t). Its time derivative is
determined in the usual way, by the commutator with
the Hamiltonian

i ak, (t)ak, (t)=[ak, (t)ak, (t), Ho+H~]
~ a

k', q, s'
V~" e, e, [ak, (t)ak q, (t)ak, (t)ak q, (t) —ak+q, (t)ak q, (t)ak, (t)ak, (t)] . (3.5)

Now it is important to notice that the equation does not explicitly contain the perturbation A. Thus the occupation
numbers ak, (t}ak,(t) are not directly altered by the field, but only in an indirect way through its effect on the opera-
tors ak, (t)ak q, (t)ak, (t)ak q, (t) and ak+q, (t)ak q, (t)ak, (t)ak, (t) which describe pair correlation in the plas-
ma. By taking the trace of Eq. (3.5) with the first-order correction p& to the density matrix and substitute it into Eq.
(3.4), we may now obtain the expression for Ji as

1
Ji ———g g V~" e, e, .k ((ak, ak q, ak, ak q, &i —(ak+q, ak. q, ak, ak, &i),

k, k', q s, s ™s (3.6)

where we have used the fact that all the first-order ex-
pectation values vary as e' ' since the perturbation is
harmonic in time. In the first term of Eq. (3.6), let
k~k+q, we obtain

well as hole contribution. We write

Je+ Jh

with

(3.7b)

1 ss'Ji ———g g V, e, e, q (ak+q, s k' —q, s' k', s' k, s &1 .~ k, k', qs, s'

(3.7a)

2
1

Ji ——g g V~ e, q(ak+q, ak, ak, ak, &],
me

(3.7c)

It is instructive to see that J& is composed of electron as and
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2

Ji= —g X V, , q(ak+q, hak' —q, 'ak', 'ak, h)1
~k, kqs mh

nq(s)= $ak+q ~

k
(3.12)

(3.7d)

being the electron and hole current, respectively. Going
back to Eq. (3.7a), we make the transformations s~s',
k~k', and q~ —q. We then use this new form for J&

together with the original one, Eq. (3.7a), to obtain an
equivalent expression for J& which demonstrates the full

symmetry between s and s', i.e.,

We see that the induced current is uniquely determined
by correlation of induced density (nq(s)n q(s')), Eq.
(3.10) is an exact expression for Ji. Its form shows im-
mediately that there is no absorption if the system only
contains one species. To determine the current J& we
must evaluate the perturbed correlation function
(ak+q, ak, ak q, ak, ),. We consider this qllestloil lil
Sec. IV.

Ji —— g QVq e, e, q
e,

m,
IV. CALCULATION OF PERTURBED

CORRELATION FUNCTION

X ( a k+ q, s a k' —q, s'a k', s'a k, s ) 1

If we use

(a k+q, sa k' —q, s' k', s' k, s ) ( a k+q, sak, sa k' —q, s'ak', s' )

—(n, (k+q) )5, , fik k

where n, (k) a=k, ak„Eq. (3.8) becomes

(3.8)

(3.9)

To determine Ji, we need to know (nq{s)n q(s')). lf
one writes the equation of motion for nq(s, t)n q(s', t)
(i.e., calculates the first time derivative of density fiuc-
tuation), all terms which are proportional to the
Coulomb interaction cancel out. Therefore we shall
solve for the function (ak+q, ak, ak q, ak, ), , and
then sum over k and k' to obtain (nq{s)n q{s') ). We
consider the equation of motion of

(ak+q, (0)ak, (0)a„q, (t)ak, (t)),
1 I SJ, = g g V~" e,e, q

k, k', q s, s'

e,

X (ak+q sak, ak q s ak s ) (3.10)

Because of the 5 function 6„, the second term of Eq.
(3.9) does not contribute to the current. In Eq. (3.10),
the summation over k, k' can be easily completed and we
obtain

which is the two-particle autocorrelation function, and
in the limit of t~o gives us the desired two-particle
correlation function. We shall demonstrate that the per-
turbed autocorrelation function obeys, in the random-
phase approximation, a solvable integral equation. On
the contrary, the equation of motion for

(ak+q, (t)ak, (t)ak q, (t)ak. s (r)),

1 SJ,= g g V~" e, e, q

where

(n (s)n (~')),
ms'

(3.11)

is very involved. A straightforward computation shows
that the equation of motion for

(ak+q, (t)ak, (r)ak. q, (t)ak, (r) )
&

is given by

i—[ak+q, (0)ak, (0)ak q, (t)ak s (t)]=ak+q, (0)ak, (0)[ak q, (t)ak s (t), H]

(+k', s' +k' —q, s' )[ak+q, s(0)ak, s{0)ak'—q s'{ )ak', s {&)]

les q.Q e' '[ak+q, (0)ak, (0)ak q, (t)ak, (t)]
m, co

+ g V~, e, e, , [ak+q, (0)ak, (0)ak q, (t)ak, q. .. (t)ak, , (t)ak q, (t)]
kis'g]sS

V~, e, e, , [ak+q, (0)ak, (0)ak q+q, (t)ak q, (t)ak. . (t)ak, (t)] .
ki, ql, s

1

(4.1)

This is a set of equations which, through the Coulomb interaction, couples the two- and three-particle correlation
functions. Progress in solving this set of equations is usually made by replacing the three-particle correlations by a
suitable product of one- and two-particle correlations. For weakly coupled plasmas, i.e., when the average potential
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energy of a pair of charged particles is small compared to their kinetic energy, we use the RPA approximation. Here
we retain only those terms which arise from the direct Coulomb interaction —that is, these terms in Eq. (4.1) in which
q is equal to q. These introduce a factor of I/q into the Coulomb terms of Eq. (4.1) which are highly divergent in
the limit q~O. Other terms which are not singular and thus do not affect the long-range behavior arising from the
Coulomb potential are omitted. Thus the basic approximation of RPA (Ref. 18) is to replace the average of the
three-particle operator by the following expression:

(ak+q, (0)ak, (0)ak q, (t)ak q, , (t)ak, , (t)ak q, (t))&

(ak+, (0)ak, (0)ak —,(r) k, (r) ~le ak' —,'(r)ak' —q, '(r) ~0 (4.2)

We now multiply Eq. (4.1) by the density matrix, take its trace, and collect terms of first order in A, and make use of
the approximation outlined in Eq. (4.2). We thus obtain a relatively tractable equation for the perturbation of the
two-particle correlation function. Let us define

F~(k, k', s,s', t)=(ak+q, (Q)ak, (0)ak q, (t)ak, (t))o, (4.3)

and

Fz'(k, k', s,s', t)=(ak+q, (0)ak, (0)ak q, (t)ak, (t)) i . (4.4)

The equation of motion for the correlation function I' ' now reads

ie,
i +E (k' —q) —E (k') Fz(k, k', s,s', t)= e' Fq(k, k', s, s', t)

—[n, ,(k' —q) —n, (k')] g V'' e, F'(
k,

k", s,s", )r.
k",s"

(4.5)

In this RPA approximation we have taken into account the long-range effect of the Coulomb interaction. ~e now
proceed to improve the RPA result as given by Eq. (4.5), to include the local field correction due to short-range corre-
lation. In order to determine how to include short-range correlation we first consider the second time derivative of
the operator nq, (0)n, (t), we find that

2
n q(0)n q, (t)= —n, (0) g

2 2

q

m, . , (&)a„, (&)

n, (0)g V—' '

m,
1 1

q, (&)—nq, (0) g g V
' ' n, .(t)n, , (r)

s
1

q'&q s
~

2

nq, (0)q. Ae'"'g — ak, (t)ak, .(t) .
C m, m,

(4.6a)

We shall first consider Eq. (4.6a) in the absence of the
external field. The first term of the right-hand side
(rhs) of the equation represents the single-particle recoil
and the Doppler shift. The second term on the rhs is
due to the long-range part of the Coulomb potential and
is proportional to the plasma frequency. The third term
on the rhs involves the product of two density fiuctua-

i(q —q' j-r&tion operators. Since nq q (s), given by g; e
(where r; represents the electronic coordinate of the ith
electrons), is a sum of complex exponential terms with
differing phases for q&q', and since the ensemble aver-
age of nq q(s) vanishes for (q~q') if the system is
homogeneous, we expect destructive interference to
occur in this term and therefore we drop it from the
equation. This is the original random-phase approxima-
tion as proposed by Bohm and Pines. ' Therefore
within the RPA and without external potential, we ob-
tain

a2
2

n (s,qO)n q(s', t)at'

= —nq, (0)g
k

kq
m, .

2 2

ak q, (r)ak, (r)
m, .

—nq, (0) g co~(s, )n (s, O)n (s, , t),
es

(4.6b)

where ai~(s) =4me n, /m, is the plasma frequency for the
s component. It is obvious that for the limit of q~O,
the first term on the rhs of Eq. (4.6b) vanishes. By tak-
ing the ensemble average over the density operators we
are left with four homogeneous coupled equations for
(nq(s, O)n q(s', t)) with one finite frequency root at
co =co&(e)+co&(h). To include the short-range correla-
tion, the nonlinear term in Eq. (4.6a) (i.e., the third term
on the rhs) must be retained. If we use the expression
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for n, in terms of the electronic coordinates r, , i.e.,
iq r,n, =g, e ', we may rewrite this nonlinear term as

n—, g + V ' n , (t)n , (t)
I m

sl q

n—q, gg V ' n, (t)n ~, (t)nq q, (t) .
S

l q
™S

(4.7)

We now follow the approximation used in Ref. 7 and re-
place the operators nq q, (t)nq q, (t) in Eq. (4.7) by

their ensemble average (n ~, (t)nq q. , (t) ). Since

both density operators depend on the same time t, the
average value of nq q, (t)n„, ~(t) is time indepen-

q —q, s& q —q, s&

dent and is given by the static structure factor' '

S '(q —q'). Using this approximation we can now com-
bine the second and the third terms of Eq. (4.6a) [using
Eq. (4.7)] to give

—n, (0)g V
' '

$1 m,
1

2
g I n, qn, .(t) n,—(0) g g V
' ' n ~, (t)n, (t)= n, g—U

' '

s& q' (&qj sl sl s

n , (t),

where U" is the effective interaction including short-range correlations and is given by

I

Uq' ——Vq' 1+ d q'
2

S" q —q' —1 (4.&)

Thus Eq. (4.6a) is approximated by

n (s, O)n (s', t)= nq, (0—) g
2

2

q

ms

ls,s,

ak, .(t)ak, (t) —n, (0) g co (s& ), n (s, O)n (s&, t) .
es'

2 Uq

sl

(4.9)

Therefore we see that the equation of motion for nq, (t)n, .(t) has the same structure as in the RPA case except
that V, the Coulomb interaction, has been replaced by U, the effective interaction. We now argue that in order to
obtain short-range correlation effects in Eq. (4.5), the interaction V" should be similarly replaced by U", the effective
interaction, while all other terms remain unchanged. The derivation of the effective interaction and its use for the
one-particle kinetic equation, in calculations of the dielectric response, was first proposed by Singwi et al. with con-
siderable success. It was generalized for multicomponent plasmas in Refs. 19 and 20. Here we use the same idea for
the two-particle autocorrelation function. We point out that Refs. 7 and 19 deal with the response of time-dependent
longitudinal fields having wave number q. We, on the other hand, calculate the response of plasmas to time-
dependent homogeneous field (photons). The absorption rate in Refs. 7 and 19 is due to Landau damping. We go
beyond this to obtain the collisional absorption which is a higher order in the plasma parameter r, . Physically it im-
plies that the longitudinal field supplies both the energy and momentum to the excited plasma while the photon sup-
plies only the energy. The momentum is obtained by the electrons, say, interacting with the density fluctuation of the
holes. We now write

I.e,
i +E (k' —q) —E (k') Fq(k, k', s,s', t)= e' Fz(k, k', s, s', t)

ai m, co

—[n (k' —q) —n (k')] g Uq e-F&(k, k",s, s"', t)
kit II

In order to solve F' in terms of F we use the Fourier transformations

F,'(t)=e ' 'T, (t),

Tq(x ) = f dt e' Tz(t)
2~

(4.10)

(4. 1 1)

(4.12)

F~(x)= f dt e'"'F (t),2'
we obtain

(4.13)

I,e,[~+x +E, (k' —q) —E, (k')]T~(k, k', s,s', x) = '
F~(k, k', s, s', x)

m, co

—[n, (k' —q) —n, (k')] g Uz
' e, Tq(k, k",s,s",x) .

klan
II

,s
(4.14)
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Now we define

g T (k, k', s, s', x) = T (k, s, s', x),
k'

(4. 15)
T(e -e) = A (e-e)(1 —e U" "B)+ee'QU' "A (e-h)

e (cu+x)

(4.20)
and write explicitly the two coupled equations for
Tq(k, k",e, e,x) and Tq(k, k",e, h, x),

T(e-e)=eQ [U' 'eT(e-e)+e'U' "T(e-h)]+ A (e-e),

(4. 16)

T(e -h) = A (e -h)(1 —e U' 'Q)+ee'BU" 'A (e -e )

eq(co+x)

T(e-h)=e'Q[U" 'eT(e-e)+e'U" "T(e-h)]+ A (e-h),
where

(4.21)

where

n, (k) —n, (k —q)
Q, (q, co)= g x +co E, (k)——E, (k —q)

(4.17)

(4.18)

For simplicity we will use Qq(co) for Q, (q, co) and Bq(co)
for Qi, (q, err). U" is an effective interaction tensor. In
Eqs. (4.16) and (4.17) the dependences on k and q are
suppressed. e is the charge for electron while e' is the
charge of the hole. The quantity A (ss') in Eq. (4.16) is
given as

Fq(x)=[1 —e U' 'Qq(x)][1 —e Uq" Bq(x)]

e Uq Uq Qq(x)Bq(x) (4.22)

We point out that this 8 is not the dielectric response
function. However the modes of the collective excita-
tion are given by zeros of this Z. Similarly,

A (h -h)(1 —e U' 'Q)+ee'BU" 'A (h -e)

eq(co+x)

(4.23)

le ~ q.E F (k, k', s, s', x)
A (k, s, s')=

m, . co „, x +co E, (k)+—E, (k' —q)

(4.19)

and

T(h -e) = A (h -e)(1 —e U "B)+ee'QU' A (h -h)

eq(co+x)

From Eqs. (4.16) and (4.17) we obtain the solutions for
T(e-e) and T(ei)- (4.24)

Substituting Eqs. (4.20) —(4.24) into Eq. (4.10), we obtain

ie q E Fq (k, k', e -e)
Tq(k, k', e -e)=-

m co x +co —E,(k')+E, (k' —q)

n, (k') —n, (k' —q)+e, , [eUq 'T (k, e-e)+e'U' hT (k, e-h)], (4.25)

and

ie' q.E Fq(k, k', e-e)
Tq(k, k', e -h ) = m' co x +co Eh(k')+E~(k' ——q)

n„(k') —n„(k' —q)+e [eUq Tq(k, e-e)+e'Uq "Tq(k, e-h)]
x +co Eh(k )+Eh(k' ——q)

and similar expressions for Tq(h-h) and Tq(h e) can be obtained as-

Tq(k k h h) q E Fq (k, k', h -h )

m' co x +co Eg(k')+Eh(k' ——q)

nl, (k') nz (k' —q)—+e' [e'U~ "T (k, h h)+eUq 'Tq(k, h -e-)],
x +co E„(k')+Eq k' —q)—

and

(4.26)

(4.25')

;e q.E F (k, k', h-h) n, (k') —n, (k' —q)
Tq(k, k', h -e)=- +e, ' [e'U "Tq(k, h -h)+eUq 'Tq(k, h -e)] .E,(k')+E, (k' —q) x +co —E, (k )+E,(k —q)

(4.26')
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The function Fq is given by Eq. (4.11). Substitute it into Eq. (3.10) and sum over s and s, we obtain the conductivity
as

e'
J& —— g Vqee'q ——,g J dx[T (k, k', e-h) —T (k, k', h-e)] .2' m Pl k k, 0

(4.27)

Now our task is to evaluate the zeroth-order two-particle correlation function F (k, k', s,s', x). For this purpose it is
convenient to consider the retarded Green's function defined by

G„(t)=—i6(t)([aj, q, (t)ak, (t), al, +~, (0)ak, (0)]) . (4.28)

The advanced Green s function can be obtained by replacing i6(t) by —i6( —t) in Eq. (4.28). We see immediately
that there is simple relation between G„(t) and F (k, k', s, s', x), i.e.,

G„(k,k', s,s', x) —G, (k, k', s, s', x)
F (k, k', s, s', x)=i

px
(4.29)

The equation of motion for G„(k,k', s, s', x) is

i Ez, .+E—t, q, G„(k,k', s,s', t)

=(nz, —nk q, )5(k+q —k')5, ,
—i6(t) g Vq~e, e, , ([aj q, (t)al, , q. .. (t)al 1,,

(t)al, ql, (t),ag+q, (0)al, , (0)])
k), q[,s)

+i6(t) g Vq e,e, ([ak q+q, (t)ak q, (t)al, , (t)a~, (t), al+ q, ( 0) ak, ( 0)]) .
k, , q, ,s,

(4.30)

This set of equations are exact. We solve it within the same approximation as was used in deriving Eq. (4.10). The re-
sult is a simplified integral equation for G„(k,k', s, s', x),

[x +i5+E, (k' —q) —E, (k')]G„(k,k', s, s', x)

[n, .(k' —q) —n, .(k')]
5, , 5|, &+ [n, (k' —q) —n, (k')] g U'' e,"G„(k,k",s,s",x) .2' Il tlk, s

(4.31)

This equation is similar to Eq. (4.14). If we compare it with Eq. (4.14), we see that the inhomogeneous term
(ie, /m, .)(q E/e)F in E. q. (4.14) is corresponding to the inhomogeneous term [n, (k) —n, .(k —q)]5(k+q —k')5, , in

Eq. (4.31). Using a similar method as we used in the solution of Eq. (4.14), and after some algebra, we obtain the solu-
tion for retarded Green's function. Similarly, the solution for advanced Green's function can be obtained. We define
x +—=x+i5 where 5~0+, we then write our solution for G, =G+ and G, =G where

6+(k, k', e-e, x)=Q (k,x —
) 5(k+q —k')+ Ie U' '[1—e U "B(x—)]+e U' "U" '8(x —

)I
q

e x —
)

and

(4.32a)

and

Qq (k,x )Bq (k', x —)—
G+(k, k', e -h, x) =

I
ee'U" '[1—e U" "8 (x )]+e ee'U" "U" '8 (x +—

) I,
E'q x

(4.32b)

G+(k, k', h-h, x)=Bq(k, x —
) 5(k+q —k')+ [e U" "[1—e U"Q(x —)]+e U 'U' "Q(x —

))
eq x )

and

(4.32c)

Qq(k, x —)Bq(k', x —
)

G+(k, k', h-e, x)= [ee'U' "[1—e U' 'Q(x —)]+e ee'E' 'U' "Q(x )]
Fq(x —

)
(4.32d)

Here

+ n, (k) —n, (k —q)
Qq(k, x —

) =
x —+E,(k)+E, (k —q)
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and

+ nz (k) n—z (k —q)
Bq(k, x —

) =
x +—E„(k)+E,(k —q)

In our expression for conductivity, the quantity that needs to be determined is

Fq(k, k', e, e,x) 1 G„(k,k', e, e,x) —G, (k, k', e, e,x)
x +co E, (—k )+E,(k —q) e~"—1 k z x +co E, (—k')+E, (k' —q)X '

~ ~
= . X

+ Q.("+")—Q.(")
[1—e U" "Bq(x+ ))

e ~"—1 coFq (x +
)

Q, ( ++ ) —Q, ( )
[1—e U 8(x )]e~ —1 coeq (x )

(4.33)

and

and

F (k, k', e, h, x) 1 G„(k,k', e, h, x) —G„(k,k', e, h, x)

z z, x +co Eh(k')—+El, (k' —q) ei 1 k z, x +co EI, (k')—+Eh(k' —q)

coeq(x+) coZ (x )

(4.34)

F (k, k', h, e,x) 1 G„(k,k', h, e,x) —G„(k,k', h, e, x)

k k, x +co —E,(k')+E, (k' —q) ei"—1 k k, x +co E, (k')+E—, (k' —q)

ee'U" 'Q (x+) 8 (x++co) B(x+—) ee'U" 'Q (x ) 8 (x++co) B(x—)

px px

and

ee'U' "Bq(x+) Qq(x++co) —Qq(x+)
e~ —1 coFq(x+)

ee'U' Bq(x ) Qq(x++co) —Qq(x )

e~ —1 coZq(x )

(4.34')

Fq(k k h h x) 1 G (k k h h x) G (k k h h x)

k k, x +co Eh(k')+Eh(—k' —q) e~"—1 k k x +co Eh(k')+Eh(—k' —q)

Bq (x + + co) Bq(x+ )—
[1—e U' 'Qq(x+))

e i'" —1 coeq (x +
)

8 (x++cu) Bq(x )—
[1—e U' 'Qq(x )]e~ —1

'
coZq(x )

Substituting Eqs. (4.33)—(4.35) in Eq. (4.21), we obtain

Tq ( e -h ) = g Tq ( e -h )

k

ee'U" 'q E 1 e'
[1 e U Qq(x++co)]Qq(x+)[Bq(x++cu) Bq(x+)]

co eq(co+x+) eq(x+)

(4.35)

X [1—e U" Bq(x+)]Q (x+)[Qq(x++co) —Q (x+)]
me

Fq(x ) mh
[1 e U Qq(x++co)]Qq(x )[Bq(x++co) Bq(x )]

X [1—e U" Bq(x )]Qq(x )[Qq(x++~) —Qq(x )]
me

and Tq(h e) can be obtained by-interchanging i~e and B~Q. Using the expression (4.30) we have

(4.36)
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U' Tq(e-h) —U" 'T (h-e)

ee'U~ ~q E
(~+.x +

) me

e' l [Qq(x++co) —Qq(x+)][Bq(x++co B—, (x+ )]
eq x+

1
[Q, (x +~)—Q, (x )][Bq(x++~)—B,(x )]

Eqx'

Our final complete expression for current ( J& ) is

(4.37)

(J, )= ',
26) me

'2
e'

mg 2qri

x Jdx coth
2

1
[Q (x++co) —Q (x+)][B (x++co) B(x—+)]

e (x++co)e (x+)

1
[Q (x++co)—Q (x )][Bq(x++co)—Bq(x )]

eq(x +co)Eq(x )

(4.38)

Qq
—(u, s) =

Bfo(v, s)
n s Bv

m, q v —qu+ie n, P[1+—uf,—(u)],

This is a rather complicated result but in principle can
be evaluated numerically for specific problems. Besides
the three-dimensional integration in Eq. (4.38), we need
the numerical solution for U". Our result is tempera-
ture dependent and thus is applicable for quantum plas-
mas as well as for nondegenerate classical plasmas pro-
vided the plasma parameter r, is of order of unity. Be-
fore presenting numerical computation, we would like to
consider our result in two limiting cases.

a. High-temperature limit. In order to obtain the
nondegenerate or classical case, we must take the high-
temperature limit of Eq. (4.38). We first make the trans-
formation x =huq and obtain

use has been made of the following transformations:

m, vk=

n, (k+ q) —n, (k) = 2~X n, ~ ~f0(v ~)
q. 7

m, m, Bv

(4.40)

where fo(v, s) is the Maxwell distribution for the s

species, and

f, (u')
f,—(u)= j du' (4.41)

with f, (u) being the one-dimensional Maxwell-
Boltzmann distribution function. In the high-
temperature limit

(4.39)
coth

2
(4.42)

where Qq(u, s) stands for Qq(u) or Bq(u). In Eq. (4.39)
I

and thus

( )
e4n'P

2' m,

2

f dq 3V U'"qq E(2'�)' ' ' 2qri

[(u +w)f,+(u +w) —uf, (u)][(u +w)fh+(u +w) —ufo'+(u)]fX
eq(u + w)Zq(u)

[(u +w)f+(u +w) —uf, (u))[(u +w)fq+(u +w) —ufo' (u)]

eq(u +w)Fq(u)

(4.43)

where w =su/q and q „is the cutoff due to large angle
collision (in the quantum case q,„ is given by the
recoil). One should note here that for the nondegenerate
case Uq" (and thus e) must be obtained in the high-
frequency limit. Thus Eq. (4.43) is our generalization of

I

the result of Ref. 3 which includes the effect of short-
range correlations between the charged particles.

b. HeaUy-hole limit. In order to carry out the limit of
fixed-ion scatterers we treat the ion (hole) classically,
namely, we replace the Q's by their classical representa-
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tion Eq. (4.40), and prescribe for the ions

fh (u)= —P—+iqr5(u) .
1

Q

One should notice that in this limit

g(q, x )~ 1+ Uq 'Qq(x),

while

(4.44}

(4.45)

For the one-component plasma Z can be related to the
dielectric function through

Vq Qq

6

where eq(co) is the dielectric function for correlated plas-
ma first introduced by Singwi-Tosi-Land-Sjolander (Ref.
7), i.e.,

coth [B(x +co)+B(x)] +in5(x) .
2

Thus we obtain

Vq Qq(co)
eq(co) = 1+

1 —W' '
Vq Qq (co )

(4.47)

(J)2eneydqVU, &EQq —
Qq

2co m, (2') g (co)g (0}

2e n e dq VqUq

2co m (2m) U' '
e q

1 1
)&qq E

Z'q (co ) Zq (0)
(4.46)

The quantity 8" ' is the local field correction defined as
Uq '/Vq = 1+ W' '. Thus Eq. (4.46) is our generaliza-
tion of the electron-ion system' which includes the
short-range correlations.

V. RESISTIVITY AND COLLISION FREQUENCY

Let us consider a system consisting of equal number of
electrons and holes. The total current can be written as

ine E e' Ee2 e+
3CO me

2e'

1
[Q (x++co)—Q (x+)][B (x++co) B(x+)]-

eq(x++co)E' (x+ )

1
[Qq(x+ ~co) —Qq(x )]

Fq(x + +co)Fq(x )

&([Bq(x++co) Bq(x )]— (5.1)

and the conductivity can be written as
t

ine I (co) 1(co)
o(co) = 1+ =crp(co) 1+

pcs CO Cc)

where

1 1 1+
P me m~

and

(5.2)

4 4 pI(co)= dq V U'
3n cop 2~~ q ' 2mi

x f dx coth
2

1
[Q, (x++co)—Q, (x+ )][B,(x++co) B,(x+)]-

Eq(x +co)eq(x )

1
[Qq(x++co) —Qq(x )][B (x++co) B(x )]-

eq(x++co)e (x )
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Compare Eqs. (5.2) and (5.3) with the Drude formula for conductivity:

ine
o (co)=

p(co+i v)

We obtain for high frequency (co &»)
v = Im [I(ip ) ]=vp+ v ),

(5.4)

(5.5)

where v is the collision frequency. vo is the collision frequency calculated from RPA and v& is the correction on col-
lision frequency due to the short-range correlation. Taking the imaginary part of I (co) and using the analytical prop-
erties of Q, B, and "dielectric function, " respectively, we can write

v= f dq V U' —f dx coth
3cun p 2~~ ~ ~ 2 2

p(x +co)
2

F(x,x +co), (5.6)

where

F] +F2+F3
F(x,x +co) =

f

Z(x )
/

'
/

r(x +cp)
f

'

with

(5.7)

and

~
= [ 2(x +~)+B2«)][[&i(x +~)&i(x)+e2(x +~)~2(x)1[Q2(x +~)+Q2(x)]

—[e ((x )ep(x +~)—E )(x + co)e'2(x ) ][Q &
(x +co)—Q& (x ) ] j (5.8)

F2=[Br(x) B2(x +co—)][[E((x +co)E]( x) —E2,(x +rp)e'2(x)][Q2(x +~)—Q2(x)]

—[e'](x)r2(x +co)+e](x +cd)E2(x)][g](x +el)) —Q](x)]] (5.9)

and

F3 ——2[B~(x +co) B~(x)][@&—(x +co)e2(x)gz(x +co) —e&(x)Fz(x +co)gz(x) —[Q&(x +co) —Q~(x)]@2(x)ez(x +co)]],
(5.10)

where 8& and 82 represent, respectively, the real and
imaginary parts of the dielectric function. Similarly, Q&

and Qz (B, and B2) represent, respectively, the real and
the imaginary parts of Q(B). At T=O, the factor
[ coth(px /2) —coth[p(x —co ) /2] I reduces to 2 within
the region —co &x &0 and vanishes outside. Therefore
Eq. (5.6) can be written as

f dq V U f dx F(x, rp —x) . (5.11)
3Mn p 27T

We shall evaluate this equation for some typical parame-
ters and discuss the effect of correlation in Sec. VI.

UI. DISCUSSION

We have derived an expression for the conductivity
and collision frequency for a two-component plasma in-
cluding short-range correlation. We found that the
short-range correlation will affect the dynamical conduc-
tivity in two ways. First, we found that the Coulomb
matrix element Vq is replaced by the effective interaction
U&

" in Eq. (5.6). Note that only one of the matrix ele-
ments Vz is replaced by the eff'ective interaction (due to
the short-range correlations). The other Coulomb ma-
trix element as it appears in Eq. (3.10) is part of the ex-
pression for ( J& ) and is not part of the density-density

correlation function. This replacement indicating the
change of the scattering matrix of the electrons by the
holes which in our theory are taken to be correlated
rather than described by plane waves. This in turn
enhances the collision frequency. Second, the correla-
tion affects the dielectric function. Here U' ', U ", and
U' all contribute to the change of screening effect.
Here the replacement of Vq by appropriate effective po-
tential in the dielectric function tends to reduce the
screening effect. We point out that the short-range
correlation breaks the symmetry between the magnitude
of the electron-electron interaction versus electron-hole
interaction (U~ '&U~ "). Therefore, the dielectric func-
tion includes an extra term which is proportional to the
product of density fluctuations of electron and hole (QB)
as can be seen in Eq. (4.22). This extra term will further
reduce the effect of screening. The combined effect of
enhanced scattering and reduced screening will increase
collision frequency or the absorption constant.

We have performed some numerical calculations of
the collision frequency at zero temperature. We use the
numerical values for the local field correction W' ',
W" ", and W' " given by Vashjshta et al. ' The results
for collision frequency are shown in Figs. 1 —3.

In Fig. 1 we consider electron-hole plasma with equal
densities of electrons and holes, for a plasma parameter
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r, =1. The two dashed curves represent the collision fre-
quency for mass ratio ca=1 and 4, without including
short-range correlations. The solid curves represent our
solution for the collision frequency including short-range
correlations for the same system. Similarly, in Fig. 2, we
plot the collision frequency for electron-hole plasma for
r, =2. Here the results for three values of mass ratio are
presented, i.e., a=1,4,6. As before, the dashed curve
represents the collision frequency when short-range
correlations are omitted and the solid curve gives the
collision frequency when short-range correlations are
taken into account.

We point out that for a one-component plasma, RPA
overestimates the screening effect at large wave numbers.
Here the short-range correlation tends to decrease the
screening at short distances (large q) due to the particles'
repulsion. For two-component plasma the situation is
more complicated. For example, at short distances, an
electron will experience less screening by other electrons
but an enhanced screening by the holes. No physical ar-
guments can determine the effect of short-range correla-
tions on the screening without detailed calculations. We
found that for the values of r, used in our paper the
screening was less effective than what is predicted in
RPA. In this paper we calculate the collision rate for
long-wavelength radiation fields due to electron-hole
scattering. In our case, less screening results in more
efficient scattering and the increase of v. Moreover, our
theory takes into account the attractive electron-hole
correlations during the scattering process. We calculate
the electron-hole scattering matrix including correla-
tions. We take into account the increase of the electron
density around the hole during the collision process. It
is worthwhile to mention that the electron-hole correla-
tions will eventually, at large enough values of r„result
in the formation of an exciton gas. Our results show an
increase in the collision frequency due to short-range
correlations for the values of r, and mass ratio con-

80

70

60

V

50

40

20

IO

sidered in this paper. However, to better understand the
behavior of the collision frequency as a function of r,
and e, more numerical work is needed. We at present
are limited by the numerical solutions of the effective in-
teractions for the parameters presented in Ref. 19.

From Fig. 3, we find that the effect of short-range
correlations at low frequency is much more important
than that at high frequency. The large correction at low
frequency is due to the change of the screening. At low
frequency, F(q, co) can be approximated by its static value
e'(q). The collision frequency v can be given as
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FIG. 2. Plot of normalized collision frequency v=20m. v/
EF(e} as a function of normalized frequency co/EF. r, =2.0;
Cl, present theory with a= 1; C4, present theory with a=4.0;
C6, present theory with a=6.0. rl, RPA theory with a= 1; r4,
RPA theory with a =4.0.
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FICx. 1. Plot of normalized collision frequency v=20m. v/
E~(e} as a function of normalized frequency ~/E~. r, =1.0;
Cl, present theory with a= 1; C4, present theory with a=4.0.
rl, RPA theory with a= 1; r4, RPA theory with a=4.0.

%u/E

FICx. 3. Plot of the ratio of the collision frequencies between
present theory and RPA for r, =2.0 and a = 1,4,6.
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(6.1)

where 2 is a constant given by 3 =(~/24)r, (1+a).
The quantitative enhancement factor for the collision
frequency due to the reduction of screening and the
enhancement of the scattering matrix element (1+W' )

at low frequencies can be 10 to 15 times larger compared
to that calculated from RPA. We also found, as expect-

ed, that the effect of correlation on the scattering matrix
is larger for large r, . However, the effect of correlation
due to screening is more important at small r„ i.e., for
high densities, and when r, increases the effect of the
screening is reduced.

In conclusion, we have calculated the dynamical con-
ductivity and the collision frequency in a two-component
plasma. The short-range correlation is taken into ac-
count. Numerical results showing quantitative effect of
correlation are presented.
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