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The eA'ects of the dipole interaction on the equilibrium and nonequilibrium properties of 'He-B are
calculated using the quasiclassical theory. In zero field, the dipole interaction distorts the l=1 gap,
generates an I=3 gap, and induces a new rotated planar phase next to the normal-state transition.
The field dependence of the Leggett angle OL is calculated to order (yH/6)', including the eAect of
nonquasiparticle corrections. Using the equilibrium properties as input, we calculate the zero-field
NMR frequencies in the collisionless regime. A calculation of the field dependence of the longitudi-
nal NMR frequency reveals the existence of a Fermi-liquid oscillation term due to the out-of-phase
motion of the normal and superAuid components. Finally, we compare the collisionless and hydro-
dynamic theories of NMR.

I. INTRODUCTION

Before the first' NMR experiments in superfluid He,
little theoretical interest was paid to the small orienting
effects of the dipole interaction. Only after unexplained
shifts in NMR frequencies were observed did Leggett
realize that the condensed state of He enhances the
effects of the dipole forces. Though the orientational en-
ergy between neighboring He nuclei is only 10 K, the
orientational energy of a collection of Cooper pairs, all in
the same angular-momentum state, is many times as
large. By breaking the spin-orbit symmetry of superfluid
He, the dipole interaction selects the equilibrium order

parameter and shifts the collective-mode frequencies.
In this paper we use the quasiclassical formalism to cal-

culate the effects of the dipole interaction in superfluid
He-8. In Sec. II we calculate the equilibrium effects, and

in Sec. III we calculate the shifts in NMR frequencies in
the collisionless, low-temperature regime. This theory de-
scribes the longitudinal NMR experiments of Candela
et al. , which were performed at temperatures
T!T,5 0.5. Finally, in Sec. IV we compare the collision-
less and hydrodynamic results for the longitudinal NMR
frequency. This paper continues the work of Fishman
and Sauls (FS) on the response functions and collective-
mode frequencies of the 8 phase in a strong magnetic field

[yH &b,(T)]. As discussed in FS, a magnetic field in the
z direction depopulates the 5, =0 Cooper-pair state,
compressing the energy gap, enhancing the magnetic sus-
ceptibility, and altering the frequencies of the collective
modes. The results of this paper, like the results of FS,
are valid in the weak-coupling limit and include all
Fermi-liquid parameters and pairing interactions.

Part of the motivation of FS and the present work is to
obtain information about the material parameters that
regulate superfluid properties. Reliable determinations of
the higher-angular-momentum Fermi-liquid and pairing-
interaction parameters test the consistency of the quasi-
classical theory and check the reliability of the microscop-

ic theories which predict the effective interactions of
liquid He. More information about material parameters
can be obtained from NMR and collective-mode spectros-
copy ' in the superfluid than can be extracted from
normal-state measurements. In particular, higher-
angular-momentum pairing interactions affect superfluid
but not normal-state properties. Like the results of FS for
the field dependence of the susceptibility and of the real
squashing-mode frequencies, the results of this paper
should ultimately provide precise values for the l=2 an-
tisymmetric Fermi liquid parameter F2 and for the l=3
transition temperature T,3, at least at low pressures were
strong-coupling corrections are believed to be small. The
results of this paper can also be used to determine the re-
normalized dipolar coupling constant from longitudinal
NMR measurements in zero field.

We begin Sec. II by briefly reviewing the quasiclassical
equations for equilibrium He. A calculation of the zero-
field gap reveals that the dipole interaction distorts the
I=1 gap, generates an /=3 gap, and induces a rotated
planar phase next to the normal state. The temperature
width of this new phase is proportional to the dipole in-
teraction strength gD. We then calculate the field depen-
dence of the Leggett angle HL through order (yH/b, ) .
All moments of the quasiparticle renormalization factor
R (p.p') are included in these calculations. Because the
dipole interaction is short ranged, nonquasiparticle correc-
tions modify the equilibrium properties of the superfluid.
These corrections are included first order in the l=1 pair-
ing interaction.

Using the equilibrium properties as inputs, we calculate
the collisionless NMR frequencies in Sec. III. In zero
field only the longitudinal frequency is shifted by the di-
pole interaction. The magnetic field dependence of the
longitudinal NMR frequency is calculated through order
(yH/b, ) . The out-of-phase motion of the normal and
superfluid components generates a Fermi-liquid oscillation
term, proportional to (F2) and independent of gD. At
T=0, when the normal component is absent, and at
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T = T„when the superfluid component is absent, this
term vanishes. Unlike the field dependence of the longitu-
dinal resonance, the field dependence of the transverse
resonance can be computed perturbatively only at T=O,
where cu=+yH to zero order in gD.

Previous calculations' '" of the field dependence of the
longitudinal NMR frequency followed the method of Leg-
gett and Takagi. ' In the original hydrodynamic theory
of Leggett, ' the quasiparticles respond adiabatically to
the nonequilibrium motion of the spin and the internal de-

grees of freedom of the order parameter are not excited by
the spin resonance, provided that ~ &&A. Leggett and
Takagi worked to extend the range of validity of this
theory into the collisionless regime by including the effects
of relaxation between the quasiparticles and the spin reso-
nance. They suggested that, at least at T=O, when the
normal component vanishes, the hydrodynamic theory
should accurately describe the spin dynamics of the order
parameter. In Sec. IV we follow the formalism of Leggett
to calculate the longitudinal NMR frequency, including
all material parameters and all moments of the quasiparti-
cle renormalization factor, through order (yH/b, ) . We
find that at T=O the zero-field collisionless and hydro-
dynamic frequencies do indeed agree. However, the field
dependences of the collisionless and hydrodynamic fre-
quencies diff'er, even at T=0. The description of the
NMR provided by the collisionless theory is quite
different from the hydrodynamic picture. In Sec. III we
find that the collisionless NMR couples to internal de-
grees of freedom of the order parameter first order in the
field. These "off-diagonal" components contribute to the
field dependence of the NMR frequencies, even at T=O.
Because it cannot incorporate the effect of the internal
order-parameter modes, the hydrodynamic theory is inap-
propriate to describe the collisionless dynamics.

A review of the tensor notation used extensively in this
paper is given in Appendix A. Other technical details and
lengthy results are left to Appendixes B—F. We shall
often refer to FS for the derivation of results that are
needed as a starting point for this work.

The results of this paper for the field dependence of the
Leggett angle [Eq. (52)] and for the longitudinal NMR
frequency [Eqs. (73), (80), (81), and (F2)] place new con-
straints on the material parameters of the B phase. In
particular, analysis of NMR results may confirm previous
determinations of F2 and T,3. Future measurements of
the Leggett angle, which contains sizable nonquasiparticle
corrections, may yield new information about the quasi-
particle energy cutoff c, .

m —m (2)

where g (p, R;e„) is the conventional one-particle Green's
function integrated over gz and f (p, R;c,„) is the corre-
sponding anomalous propagator. These propagators de-
pend on the quasiparticle momentum p, the center of
mass R, and the Matsubara frequencies e„=(2n +1)irT.
The time-reversed propagators are g

'"= [g ( —p, R;e„)]*
and f = [f ( —p, R; s„))*. The quasiclassical equations
for homogeneous He consist of the commutation relation

[1e T3 n—6 —o, g ]=0

the normalization condition

[g™(p;e„)]= —~ I, (4)

and the self-energy equations for the diagonal (o ) and
off-diagonal (b, ) self-energies, which are defined diagram-
matically in terms of the propagator g™and the quasipar-
ticle interactions. The mean-field relations for the self-
energies,

0
0 =

0

0 0

are given by
I

cr p(p)=v p(p)+ ,'T g f [—3(p.p')],, ~~Pi (p', s„),
n

f

6 g(p) = ,
' T g f [V(p.p'—) i, pp

n

+g&R (p p')(5„„—3q„q, )o."~asap]

g (p, R;e„)cc f dgzr3G(p, R;e„),
C

where G is the one-particle Matsubara Green's function,
is the Pauli matrix in particle-hole space,

= v~(
~ p ~

—pF ) is the quasiparticle energy near the Fermi
surface in terms of the Fermi velocity UF and Fermi
momentum pF, and c, is the energy cutoff for the quasi-
particle spectrum. The structure of g™in particle-hole
space is given by

II. DIPOLAR EFFECTS IN EQUILIBRIUM

The quasiclassical theory of superconductivity, de-
veloped by Eilenberger, '" Eliashberg, ' and Larkin and
Ovchinnikov, ' was adapted to superfluid He by Rainer
and Serene, ' whose notation' we follow, and by Eck-
ern. ' The quasiclassical theory is formulated in terms of
(4X4)-matrix Careen's functions, in particle-hole and spin
space, that are integrated over the magnitude of the quasi-
particle momentum near the Fermi surface. Equilibrium
properties are calculated from the Matsubara propagator

where v p represents an external field that couples to the
quasiparticles. The time-reversed self-energies o. and 6
are related to a and 6 by the same symmetries as the cor-
responding propagators. The scattering amplitudes
A (p.p ') and pairing interactions V(p p '), which
parametrize the self-energy equations, can be decomposed
as

[3 (p p')] y I3p
——2'(p p')6 @5~A+ 2'(p. p')o I3 oyer,

(8)
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[V(p p')] r, pp
V——'(p p')o polyp

+ V'(p p')((r'(r') i3((r'~r')r~, (9)

even (odd)
V""(p.p ') = g (2I + 1)V)P((p. p '),

I

(10)

where o' are the Pauli matrices in spin space. In accor-
dance with the exclusion principle, the singlet-pairing in-
teraction V'(p. p') contains only even-l components and
the triplet-pairing interaction V'(p. p ') contains only odd-l
components. We define the components V~ by

the Fermi energy E~, R (p.p') exhibits no temperature
dependence on the scale of T, . To estimate the pressure
dependence and magnitude of R (p p ') requires a micro-
scopic model for the quasiparticle interactions. Note that
(7) neglects dipole-interaction terms of order gD and
higher. In principle, the dipole interaction will contribute
an additional scattering term in the particle-hole channel,
modifying (6). In Appendix C we show that this contri-
bution to the diagonal self-energy can be neglected.

Specializing now to the B phase, we include the effect of
a magnetic field perturbatively in the parameter

while we use Landau's original convention for the scatter-
ing amplitudes, yH /b, =0.16(H/kCx)/(6/mK), (17)

gg(~)(~ ~ t) g gz(Q)p
I

with A~'" related to the Fermi-liquid parameters F~'"' by

which is small for fields as large as 1 kG, except very
close to T, . The propagators and self-energies are ex-
panded in powers of this parameter:

Fs (a)

~ s(a)
I +Ff "/(21+ 1)

(12)

& =cT&+02+ (18)
The propagators g and f can also be decomposed in

spin space:
A p A ] A

gpss(pi nE) =g(pi En )&py+g(pi nE)'o py

f~~(p;E„)= [fo(p;s„)6~@+f(p;s„) cr~p]io p~
. .

(13) where, for example,
~ g; —( y H /b, ) g; )

~

. The rela-
tions in FS for g™in terms of the triplet order parameter,

In the absence of the second pairing term in (7), which is
contributed by the dipole interaction, physical results can
be expressed in terms of the Landau parameters F~" and
the transition temperatures for pairing in the lth partial
wave,

b, (p) = —
—,'tr[io. crt, (p)],

and the effective field,

h(p) = —,
' tr[o o.(p)],

(19)

(20)

T,~
——1.13',e (15)

gD = X(0)(y)r))
3

(16)

where y is the gyromagnetic ratio that determines the
Larmor frequency yH in terms of the external field H,
and 1V(0) is the single-spin density of states at the Fermi
surface. The momentum exchanged by the dipole interac-
tion is q=p —p '. The signs of the pairing interaction and
of the dipolar coupling constant in Eq. (7) are determined
by the convention that positive interactions are attractive.
As first explained by Leggett, ' the renormalization factor
R (p.p ') describes the modification of the dipole interac-
tion by the quasiparticles. Since the range of the dipole
interaction is only a few angstroms, R (p.p') also in-
cludes high-energy, nonquasiparticle corrections that are
outside the domain of Landau's Fermi-liquid theory. Be-
cause the dipole interaction varies on the energy scale of

Of course, T, —:T, &
is the physical transition temperature.

The energy cutoff c„which separates the high-energy,
non quasiparticle regime from the quasiparticle energy
spectrum, is chosen so that ~T, &&c, &&cp, but is other-
wise undefined by Fermi-liquid theory. When the dipole
interaction is neglected, the cutoff E, and the pairing in-
teractions V~ can always be eliminated in favor of the
physical I-wave transition temperatures.

Associated with the dipole interaction is the dimension-
less coupling constant

are still valid, since only (3) and (4) are used in their
derivation. It is straightforward to show that the singlet
projection of A(p) can be neglected since tr[o b,(p)] is of
order gD.

A. Equilibrium in zero field

I

—gDTQ f N(p')R (p p')(5" —3q q )5 (p')
n

(21)

where the momentum dependence of

(22)

comes from the dipolar distortion of 6 (p).
In the absence of the dipole interaction, the B-phase or-

der parameter is given by b, ;(p) = b. R ~(n, O)P~, where
R;~(n, O) is the matrix for a rotation around the n axis by
the angle 0, both undetermined by the gap equation.
When gD =0, 1V(p) is independent of momentum and the
logarithmically divergent sum

Our first task is to calculate the distortion of the equi-
librium order parameter caused by the dipole interaction,
which will be needed to calculate the NMR frequencies.
We use the result of FS for g p to rewrite the mean-field
equation for b, (p) as

I

&';(p)=&g g (2&+1)V)J &(p')P)(p. p')&,'(p'),
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T QN(p)=T
I&n I «c

=In(1. 13', /T, )
[s2 +(gP)2]ll2

sum and that the cutoff drops out of the gap equation.
In the presence of the dipole interaction, we must

decompose b, ; (p) into l= 1 and 3 components:

(23) ~i ( p ) =d ijpj +di jklpj p kp I (24)

must be regulated by the energy cutoff s, . Using (15), we
see that the l= 1 pairing interaction in (21) cancels this

Performing the momentum integral in the dipole term of
(21) yields

d;,j 1 —3V(TQ f (pj) N(p) = — (Rp ——,'Rl)(35ijdkk 2d—, ~3dj';),
n I

(2&)

d; jklxi= —', Tg f— N(p)[5pmpjpkpld ~ —(pj) d 52k—l (pk) d k5ll —(p )ld l5lk]
n

(RP + 3R
&
—10R 2)[5jdkl' +5 kdji ' +5 ldjk' —

5
(5 jdkI ' +5j(dik ' +5kld 2

' ))12 V) V3
(26)

where dkI'" is the traceless and symmetric matrix J)=Tg f N(p), (30a)

and

dkl =
2 (dk, l +dl, k ) 3 dl j5kl' (27)

J2 = T g f (pi )'N (p), (30b)

R (p.p ') = g (21+ 1)RiPl(p p ') .
I

(2&)
J& = T g f (pi )'N (p),

n

(30c)

measures the relative importance of the f and p-wave-

pairing interactions, with a negative value of x3 corre-
sponding to an attractive f wave pairing inter-action. No-
tice that the two projections R =Rp —R~/3, first definedr=
by Leggett, ' and S —= —,'Rp+R l

——', R2 enter (25) and
(26). When gD=0, Eq. (26) requires that the l=3 gap
vanishes. Even when the l=3 pairing interaction is zero,
however, the dipole interaction itself induces a finite l=3
gap proportional to gDS /V&.

The l= 1 relation (25) separates into three independent
equations:

53( 1 —3 V~ J2 ) = —
—,', gliR J2[36 ~(cosOL ) +2b i]

g(cosOL )[1——,
' V~(J~ —J2)]

= —~gDR (J& —J2)[7b~(cosOL )+3bq],

b, l(sinOL )[1—
—,
' Vl(Jl —J2)]=—', gDR (Jl —J2)hlsin9L,

(29a)

(29b)

(29c)

A11 higher-angular-momentum components of the gap
vanish to first order in gD. In the 1=3 relation (26), the
parameter

xi= V) ' —Vi ' =ln(T, g!T,l)

(30d)

If b, l&0 and b, i&0, then (29b) and (29c) imply that, to
zero order in gD,

COSOL = ——
gO

(31)

Using this result we can rewrite (29a) and (29c) as

1 —3V)Jp ————', gDR Jp,
1 ——', Vi(Ji —J2)= ', gDR (Jl —J—2),

(32a)

(32b)

=
—,', xs '52(J( —18J2+25J2)

which agree with Tewordt and Einzel ' when l=3 corre-
lations are neglected (when Vi =S =0) in the integrals Jl
and J,.

Decomposing the l=3 gap into J=2, 3, and 4 com-
ponents, we use (26) to solve for the gap tensors in terms
of the integrals J;. For the J=2 gap we find

where we have taken

d j ——RPj(z, OL)b,;,
3 gDS
16 V) V3

(33)

which (25) demands. The rotation axis n~~z is fixed by an
infinitesimal magnetic field 8=Hz. The axial symmetry
about the z axis is then used to set A~ ——Aq. The func-
tions J; are weighted integrals over N(p):

The J=3 gap tensors can be written

(3 3) (3,3)

= —,'(singL )b, ~xi '( —2Jl +7J2 —5Ji+10J4), (34a)
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d 2 12'2 = —d '1 )1'1 = —,
'

( sin 01 )b, lx 3
'

( —J1 +J2 + 10J4 ),

dl )33= d2133 ——', (sin91 )i5, 1x3 '(Jl —6J2+5J3) .

(34b)

the I=1 gap distortion is given by

45 gDR(go)2 (go)2 [1 3 (go)2Y0 x —1]
1 3

8 (V)2YO 5 1 3/23

(34c)

Finally, the J=4 tensors are

~(4, 3) ~(4, 3) 1 w(4, 3)
CC 2233 —CC 1133 2

4 3333

16 53x 3
'

( —3J 1
—30J2 +65J3 )

d'll'22' = —,', b3x 3 '( —8J1+25J2 —25J3+ 70J4),

d'll'll' =d 22'22' =
—,', b 3x3 '(11J1+5J2—40J3 —70J4) .

(35a)

(35b)

(35c)

No 3

Jl = T g N ,' T g ———[(b3) —(b, l) ],
n n

N
J2 ——,

' T g N ——,', T g —
2

—[(b, 3 ) —(g ) ]
n n

(36a)

O 3 O—
~~ T g Rim di, m 33 ~i

77

(No 3

J3= ,'T g N ,', T g——
2

—[(A3—) —(g) ]
n 7T

N—,4„Tg —(3R;md; m33b. , +2d 3, 333+3),
n 77

NJ = —,', T g N —„' T g ——[(b 3)' —(&1)']
n n 7T

0 3—T g (Rim dim22 ~i +, Ri 1di, 122 ~14 (N ) o 3 o o 3 o

n

(36b)

(36c)

+RP2d; 211@) (36d)

where

~0 7T

2 + (go)2]1/2
(37}

The final ingredient needed is an expression for the l=1
gap distortion (b, l) —(b, 3), which we obtain from (32)
and (36):

45 gDR(g)' —(&;)'=, T gN'
1 3//2

(38}

All other components vanish.
To proceed further, we express the integrals J; in terms

of the gap components by expanding N (p) in the dipole
interaction, with the results

Tc 1. 13ccexp
—1

V1 —TgDR3 Y
(41)

9 gDS
x —1(go)2 (39)

28 V1 V3

The results for the 1=3 gaps and for N(p) are given in

Appendix B. If V3=S =0, then (39) agrees with
Tewordt and Einzel. '

In the absence of I=3 correlations the dipole-
interaction constant only appears in the dimensionless fac-
tor gDR /( Vl ), which can be considered a new phenom-
enological parameter, to be determined alongside the oth-
er interaction parameters. We shall see shortly that
gDR /( Vl ) can be expressed in terms of the temperature
width of the dipole-induced planar phase. Therefore,
despite appearances, this factor is actually independent of
the energy cutoff e, . In practice, gDR /(Vl ) can be ob-
tained from longitudinal NMR measurements in zero
field, as shown in Sec. III. The last term in (39), which
remains finite when V3 ~0, originates from the I= 3
correlations induced by the dipole interaction itself. The
relation

X3 X3
—1 —1

(40)
(v, )'

can be used to show that the dipole-induced
gDx 3

' /( Vl V3 ) term contains a correction of order
Vl smaller than the gD /( Vl ) term. Although
Vl = I/In(1. 13', /T, ) vanishes in the c., /T, ~ao limit,
the more realistic estimate c, =0.07EF indicates that
V]=0.2 at 0 bar, so this correction can be sizable. Un-
like DR /( Vl) and x3 ' (to zero order in gD), the factor
gDS /( Vl V3) cannot be expressed in terms of the physical
transition temperatures and does depend on the cutoff c, .
If gDR /( Vl ) is obtained from zero-field NMR measure-
ments, then gDS /( Vl V3) can be estimated by using a mi-

croscopic model for ( V1S )/( V3R ).
It is not surprising that, in the presence of the dipole in-

teraction, the cutoff cannot be eliminated from observable
quantities such as the gap distortion. Since the dipole in-
teraction varies on the energy scale cF &&c„ the dipolar
constant gD is renormalized by cutoff-dependent factors.
When V3 ——0, the I=1 moment of the dipole interaction is
scaled by (Vl) and the 1=3 moment is scaled by Vl.
Since it includes high-energy corrections, the renormaliza-
tion factor R (p p') also depends on the energy cutoff'.

The ratio of cutoff'-dependent quantities R /( Vl ), howev-
er, is independent of c, .

One interesting consequence of (39) is that b, 3/61 must
vanish as the temperature is increased. At the tempera-
ture

where Y /2 = T g„(N ) /vr ' are the generalized
Yoshida functions, in terms of which the original Yoshida
function is given by y = 1 —(b, 1 ) Y3/2. Equations
(33)—(38) completely determine the integrals J; and the
zero-field gap. Solving this set of equations, we find that

we find that A3 ——0, cosOL ——0, and

R0 2 45 gD

(Vl) „ i
c„

i

(42)



R. S. FISHMAN 36

To examine the intermediate region between the normal
state and the B phase, we must solve (29) with b, 3=0 and
A]&0. We find that cosOL ——0 throughout this region and
that the l=1 gap is given by

(g) = ——', ln
T

TP
(43)

where T, is the temperature of the normal-state transi-
tion:

T, =1.13c.,exp
V) +—'gDR

(44)

The l=3 gap components in this dipole-induced state are
listed in Appendix B.

Notice that the gap tensors and the rotation angle OL

change continuously across T, , which therefore marks a
second-order phase transition from the rotated planar
state into the B phase. The width of the rotated planar
phase is proportional to the renormalized dipole-
interaction constant:

confirming the assertion made earlier. In the planar
phase, the S, =0 Cooper-pair state has been completely
depopulated by the dipole interaction, which favors pair-
ing in the S, =+1 states. The existence of the dipole-
induced phase was first discussed by Leggett. The effects
of higher-order self-energy diagrams, which introduce
fluctuations of the order parameter about its mean-field
value, were later included by Jones et al. ,

" who demon-
strated that this phase is, in fact, stable.

B. EquiIibrium in a magnetic field

To study the field dependence of the equilibrium gap in
(7) requires the off-diagonal Matsubara Careen's functions

fez ——if (ocr )zz given in FS. Our starting point is the
field-dependent version of (21):

I

b.;(p) = T g g (21 +1)V, f P, (p. p ')f, (p ')
n I 4m

I

gDT g—f R (p.p')(6;, —3q;q, )f, (p') .
n

(46)

gDR
T, —T =9T

(V))'
(45) Again, b, ;(p) is decomposed into l= 1 and 3 components,

with the l=1 gap given by

dA dA
d 1=3V~TQ f graf (p) ——,'gDTQ f fk(p)[ —(Rp+3R~ —10R2)p~ppl, +( —Rp+R~ —2R2)p~fik

n n

—2(R 3 Rp)(Pi ojk +P—I &i) )] . (47)

We shall not be concerned with the l=3 gap, except to note that when gD ——0 we recover the results of FS, provided pj is
replaced by s~:Rjf,p/& which is the unit vector of the "dipole representation, " discussed in Appendix A.

As can be verified from (47), a magnetic field H=Hz fixes the rotation angle n=z. Using the rotation symmetry
about the z axis, Eq. (47) can be broken into the three independent equations:

b ~(sinOI )(1—V~K2) = ', b ~gDR K2sinOL, —

6](cosOL )( 1 —V&K& ) = —4gD [—2(R p
—

R p )63K3 —(Rp+ 3R ] —
10R 3)63K4

+ (4R p
—2R

& +2R 2 )6 ]K ] ( cosOc ) + ( R p + 3R ] —10R 3 )6 ]Kg ( cosOL )]

(48a)

(48b)

A3( 1 —V~K3 ) = ——gD [(Rp
—R

~ +2R 3 )63K3 + (R p + 3R
~

—10R 2 )53K4

—2(R 2
—

R p )6 ]K](cosOL ) —(R p+ 3R ] —10R 3 )5 ]Kg(cosOI. ) ] (48c)

T dA Ptfi(p»
b, ] cosOL „ 4' (49a)

where we take d, =RJ(z, OI )6; and set b, ~=63
=6~+6~. The functions K; are weighted integrals over

f, (p):

T dA,Ks=
& g f p&(p3)'f~(p) .
b ] cosOL „4~ (49e)

These integrals can easily be evaluated to zero order in

gD. Using the results in Appendix B for the zero-field
l= 3 gap, we then find that

K'=~(s O ) &f 4."f'"T dA

n

X f 4 P3f3(p»
T dB

4w

K4= g f p3(p)) f3(p),T dA
4~

(49b)

(49c)

(49d)

1 gDS
K2 —K] ———

28 V) V3

2
FQ

Xx3 (7'H) 1+ D Y3g3(1 ——'A)

(so)
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where
cosOL = —— ——'( H

4 g 112
V3R

D =1+(-', + —,'y)F'o+( —,'+ —'y) + F' (51)
Xx3

2Fa
21+

5
D y3/2 1

3

and A =(6 ) Y3 3'/5.2/5. This result is used in (48a) and
8b) to obtain the field dependence of the Le e

to zero order in gD
..

o e eggett angle,
(52)

The I= 1 gap distortion'on was previously calculated in FS:

yH
8

2Fa
D —2

5

(~i)'Ysr2—5+33 +3 +3(b,')'Y'
~3y2

3ypx 3 (1—3 ) (53)
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The matrix L can be decomposed in particle-hole space as

VPP(p, p')L)~~(p') V Py(p, p')L2p~(p')

F'(p.p')L3 ~(p') F'(p p')L4 r(p') (64)

V; (p, p')= V'(p p')5;, gDR—(p.p')(5;~ —3q;q~)

(65}

is the pairing interaction modified by the dipole forces and
F'(p. p') is the Fermi-liquid exchange interaction. The
matrices L;(p ';co) are given in FS as functions of the equi-
librium order parameter, the effective field, and the fre-
quency co.

The eigenvalue equation (62) can be solved perturba-
tively in the magnetic field by expanding L, d, and co in
powers of (yH/b. ):

L( ) L(0)+L(1)+L(2)+

where d"=(d+, e+) is a six-component vector and the
star product is defined as

I

[L(p,p', 01)ed(p')]k= I [L(p,p', co)]kjd~(p') . (63)

the expansion of N) and N2 about cop in (69a) and (69b) is
valid, in general, only if coo is nonzero.

A. Zero-field NMR

+( ) g(1,0)+ 1 ~(1,2)~ ) g(1,2)eoj S = j 2$j k sk —
2 J 7 (70)

The NMR corresponds to an oscillation of the magneti-
zation, given by the average of the real spin density over
the Fermi surface 5M —Idee+. Since only the 1=0
component of e+ contributes to this integral, the NMR
involves only the J=1 component of the real spin density.
In the dipole representation, which we adopt for the
remainder of this section, the J=1 component of the real
spin density couples to the J=1 component of the real
triplet order parameter through Eq. (62). In the momen-
tum representation, on the other hand, the NMR couples
to J=O, 1, and 2 components of the real triplet order pa-
rameter.

Solving the zero-order equation d p
——L' '(cop)ed 0 for

the J= 1 mode, we find that the order parameter
dp~(s)=BJ,'' s„ is described by the antisymmetric l= 1

tensor B„",". The spin density can be written as a super-
position of 1=0 and 2 tensors:

d =d +d 1+d P+

6) =COO+A)1+6)2+

(66)
with components related to B j' by

(71a)

where, for example,
~

co;
~

—(yH/b )
~

co; 1
~

. To obtain
the frequencies co; it is convenient to introduce the
transposed eigenvalue equation

(1,2) (1, 1) —1Ek ' = CkjuBuj
' U (71b)

b(p) =b(p ')*L(p ', p;co) (67)
where

1V]
C02 =— (68)

with

for the eigenfrequency 6 and the transposed eigenfunction
b(p), which does not equal [d(p)]" because L is not Her-
mitian. If b and d have the same spin and orbital sym-
metries, it can be proved by induction that co =co to all or-
ders in field. The zero-field transposed relation can then
be used to show that the eigenfrequencies co] and co2 are
given by

U =1+—'A.F()+—
3 S

(72)

and A, is the lambda function evaluated at zero frequency
(see Appendix D and Fig 7).

We use (70)—(72) to obtain the zero-field frequency cdp

from the zero-order eigenvalue equation. The longitudi-
nal mJ ——0 solution is obtained by taking B'13'"——Bz3'"——0
and B'12'"&0, with the simple result

co R0 27 gD
(73)

mj=o 4~ (V))

N) bpeL "(coo——)ed p,

N2 =b poL (ig20) 0 d p+ b pe L ((L)p) ed 1

(69a) independent of x 3
' and ( V)S )/( V3R ) (see Fig. 3). The

transverse m J ——+1 solutions are obtained by taking
B'12'" ——0 and B)3",B23"&0, with the results

2

gL (1)
+co1& 04 +d 0+ ~ 00 gd 0

~~o 2 Bazoo

600

mj ——+10 =0, (74)

gL (0)
+Ct7]b 04

BQ)0

aL"'
D =$0+ +do

BC00

(69b)

(69c}

unaffected by the dipole interaction. Equation (73) agrees
with Tewordt et al. when F2

——0 and their spin-
fiuctuation parameter I is identified with Fp. Using (39)—
we find that if Fp ———1 and all other material parameters
are neglected, then at T=O the zero-field gap distortion
and longitudinal NMR frequency are related by

As expected in perturbation theory, the second-order fre-
quency m2 involves both the zero- and first-order "wave
functions" d 0 and d 1. In subsection C we shall see that

(&))'—(b 3)'= —', (~p)', =0,

in agreement with Tewordt and Einzel. '

(75)
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I 50

I 00—

O
3

50—

to lowest order in gD.

(77)
6( go)2

It is also easy to show that Ni ——0, and hence, as expect-
ed, that co~ ——0.

The second-order field dependence of the longitudinal
NMR is more difficult to calculate because it involves
both the first- and zero-order "wave functions. " From
the first-order eigenvalue equation, we find that the order
parameter d &+j is given by a superposition of l=1 and 3,
J=2 components:

d+(~s) C(&, ))~
I

~~ C(&,3)~ ~ 2g!2»)~
iJ JQ SQ ~ 3 Sj PV SP SV 3 Jg S (78)

00 0.25 0.50 075 I 00

FIG. 3. The collisionless (solid line) and hydrodynamic
(dashed line) zero-field longitudinal frequency at 0 bars calculat-
ed with the same parameters as Fig. l.

(76)

We then verify that coo=coo, as assumed in (68) and (69).

B. Field dependence of longitudinal %MR

To calculate the field dependence of the mJ ——0 mode
requires N), N2, and D„, which are defined in (69). Only
the zero-order "wave function" is needed to calculate D

The transpose relation b o=b oeL '(coo) is also easily
solved. The J=1 order parameter is again given by an
l= 1 tensor B („","=[B(,''))* and the spin density by a su-
perposition of l =0 and 2 tensors:

with tensors CJ'„'" and CJ'„' ' written in terms of BJ„''' in
Appendix E. The spin density e+&j:DJ vs„s, contains
only a J=2 component, also given in Appendix E. Com-
parison with the work of Sauls and Serene reveals that
this first-order "wave function" corresponds to the mJ ——0
magnetic substate of the real squashing modes, which
have the resonant frequencies ( —,

')' b, in the absence of
interaction effects. Similarly, the first-order "wave func-
tion" of the mJ ——0 real squashing mode, calculated in FS,
includes a contribution from the longitudinal NMR. In
both cases the first-order "wave function" contains contri-
butions from order-parameter modes with different sym-
metry than the zero-order "wave function. " Since the fre-
quencies of the longitudinal NMR and the real squashing
modes are quite different, both sets of "off'-diagonal" exci-
tations are off resonance. We shall see that these excita-
tions play a fundamental role in the collisionless dynam-
ics.

Using these results, we find that the contributions to
the second-order numerator N2 are either zero order or
first order in gD. The zero-order part N2 ' can be written

2
FQ

N(o) 1 P Y B (1, 1)B(1,1)(g 1)2 6p 1 p tv Llv
5

FQ
I+ A.F2+

5

XF2
(DU) 1 —A, —y 1+

5

2

(79)

2 2
1 P V

2b, (0)

2

+ ,'/3(y H)—(80)

where 6 (0)= 1.764k~ T, is the zero-temperature gap.
Equations (77) and (79) imply that

2

4 1 g F2, , 1+F2/5
U 'D

5 k 5

which vanishes at T=O and T = T, . To see the
significance of this term, we parametrize co by

sponds to a nondipolar oscillation of the longitudinal
magnetization, which arises from the out-of-phase motion
of the normal quasiparticles and the spin resonance. The
torque exerted by the quasiparticle molecular field on the
nuclear spins produces a correction to the longitudinal
frequency, which vanishes at zero temperature. Formally,
this term remains finite when the dipole interaction is
turned off. However, since L ("'(cu) contains singular
terms proportional to 1/co (m (n), the perturbative ex-
pansion about cop breaks down unless co2/cop ((1,or

A,F2
1 —A. —y 1+

5

2

(81)

—,'[P(b, (0)) +I co ] — ((co' .
yH

2b. (0)
(82)

which is positive for all temperatures. This term corre-
Therefore, in the formal limit gD~O, the expression for f3
remains valid only for vanishingly small values of the field
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and of the temperature such that (82) holds. Since P is
very flat for low temperatures and reaches a maximum at
T/T, =0.95 (see Fig. 4), its contribution to the NMR fre-
quency in the collisionless regime will usually be small.

It is straightforward but tedious to evaluate the first-
order part Nz", which requires the dipolar corrections to
the functions Y„/2 and A, , given in Appendix D, as well as
the dipolar corrections to the spin density, given in Ap-
pendix E. Contributions to N2" which involve dipolar
corrections to b, (p) can be expressed in terms of the in-
tegrals Ki and Kq, which were evaluated in Sec. II. We
disregard contributions proportional to gD(A, —1)(F2),
which produce dipolar corrections to P and which involve

gD corrections to the modified pairing interaction. The
evaluation of Nq" is simplified if we ignore the explicit di-
polar contributions contained in the modified pairing in-
teraction (65), which produce negligible corrections of or-
der V~. The final expressions for N2" and I, given in
Appendix F, include cutoff'-dependent corrections propor-
tional to gDS/(V'V3). Since these terins do not
significantly change I, the collisionless longitudinal fre-
quency depends only weakly on the cutoff. At T=0,
N q

——0 and N 2" simplifies, so that

7.0—

6.0—

5.0—

4.0—
lO P

3.0—

2.0—

I.O—

0
0 0.25

l
I
I
I
I
I

I
/

/
lI

/

~ ~

.... ~ ~ "
I

0.50 0.75
T/T

1.00

FIG. 4. The quadratic coefficient P(T) for Fo = —0.7 and (1)
F2=0.20, x 3

' ———0.60 (solid curve), (2) F2=0.50, x 3
' = —0.66

(dotted curve), and (3) F2=0.95, x3 ' = —0.75 (dashed curve).
These three sets give the same real squashing-mode frequency in
zero field (Ref. 34) if T, =1.04 mK.

2
co(H) 1 yH
co (0) 2 b,

2

F2 A21+ D(0) ' ——'+ —'(1 —x, ') 3+—F; 1——
5 5 3

A2
+ —,', x3 D(0) 1—

(83)

where the (V&S )/(V3R ) terms are neglected. Equation
(83) indicates that at low temperatures a magnetic field
suppresses the longitudinal NMR frequency.

Since the Fermi-liquid oscillation term P enhances the
longitudinal frequency, the P and I contributions will ex-
actly cancel at a sufficiently large temperature T* (see

Fig. 6). At this temperature co2 will vanish and the field
dependence of the longitudinal frequency will become
fourth order. Since T' is a strong function of F2, as seen
in Fig. 6, lack of evidence for this field cancellation within
the collisionless regime can be used to place stringent lim-
its on

~

F2 ~. For example, because this effect has not

70—
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50—

40—
r

30—

20—
~ ~ ~ ~ ~ ~

~ ~ ~

'(H) 2-
~'(0)

I
I

/
/

IO—
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~l444~ 4hh'444%JAP lks&hLSF~aag~—

0
0 0.25 0.50

T/T

I

0.75 l.00

FICx. 5. The quadratic coefficient I (T) for the same three
cases as Fig. 4, with ( VlS )/( V3R ) =0.0.

'0 0.25
I

0.50 I.OO

T/T
FICx. 6. The collisionless result for cu (H)/co (0) at 0 bar for

the same three cases as Fig. 4 with ( VlS )/( V3R ) =0.0,
T, = 1.04 mK, and H=2.75 kG (9 MHz).
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been observed in the longitudinal NMR experiments of
Candela et al, we can conclude that T*/T, &0.6 and

~

F2
~

&0.8 at 0 bar. The parameter dependence of P and
I is shown in Figs. 4 and 5.

C. Field dependence of transverse NMR

verse NMR because a sufficiently high field yH=( —', )'~ b
would destroy the B phase. Using the first-order "wave
function, " we find that co] ——mJyH to zero order in g~, in-
dependent of Fermi-liquid corrections and pairing interac-
tions, as required by spin conservation.

The perturbation theory used to obtain the longitudinal
NMR frequency fails for the transverse resonance because
of the singular terms, proportional to H"Ice (m &n), in
the nth-order effective Hamiltonian L'"(co) Si.nce the
transverse frequency is proportional to H, all orders of the
effective Hamiltonian will contribute to the numerators
X' and N2, invalidating (69a) and (69b). Unlike the lon-
gitudinal resonance, which is not affected by the singular
terms provided that co2/cop « 1, the transverse resonance
cannot, in general, be treated perturbatively.

At least to second order in field, however, the
coefficients of the singular terms vanish at zero tempera-
ture. Assuming this holds to all orders, we can solve for
the first-order frequency co] from the quadratic equation
1V2(co')= cuzD„—=O using (69b) at T=O. To simplify
this calculation, we work to zero order in g~, in which
limit spin-orbit symmetry requires that co=+yH, unal-
tered by interaction effects.

The results for the first-order "wave function" at T=O
are given in Appendix E. We find that the order parame-
ter d;~+ vanishes, but that the spin density e]+j:Dj s s,
contains J=1 and 2 components. Comparison with the
work of Sauls and Serene reveals that the J=2 first-
order "wave function" of the m J ——+1 NMR corresponds
to the mJ ——+1 magnetic substates of the real squashing
modes. Analogously, the first-order "wave function" of
the mJ ——+1 real squashing modes, calculated in FS, con-
tains contributions from the transverse NMR. Of course,
the real squashing modes cannot be excited through trans-

IV. HYDRODYNAMIC NMR

The original hydrodynamic theory' of NMR was
designed for the high-temperature regime where
cu~L~&&1. Leggett and Takagi' modified this theory in
order to treat the low-temperature, collisionless regime
where ~~L~&&1. They suggest that as long as co &&5 no
internal degrees of freedom of the order parameter will be
excited and a description of the spin dynamics based on
equations of motion for the spin S and the n vector
should be valid. At T=O, when the normal component of
the superAuid vanishes, the authors expected this hydro-
dynamic description to become exact. In order to treat
finite temperatures, Leggett and Takagi introduced the
effect of spin relaxation to first order in 1/co~L~.

In this section we obtain generalized results for the hy-
drodynamic longitudinal NMR frequency, including
higher pairing interactions and higher moments of the
quasiparticle renormalization factor. We do not consider
the finite-temperature refinements of Leggett and Takagi,
since we are primarily interested in comparing the col-
lisionless and hydrodynamic results at T=O. We shall
see that in zero field the hydrodynamic calculation does
yield the correct zero-temperature frequency. However,
the field dependence of the longitudinal NMR in the col-
lisionless and hydrodynamic limits is different, even at
T=0.

Our starting point is the general expression of Leggett
for the longitudinal NMR frequency squared:

, J f, & (P'P )[q ~(P) q ~(P ) —q'~(p) $3~3(p') —[qX~(p)]3[qXb(p')]3), (84)
2 2

1

where P(H) =8M/BH is the thermodynamic susceptibili-
ty. Cutoff-dependent corrections of order Vi are neglect-
ed in (84). From this expression it is clear that dipolar
corrections to the equilibrium gap and to the effective field
do not contribute to the longitudinal NMR frequency in
the hydrodynamic regime.

In zero field, Eq. (84) can be readily solved to yield the
relation first found' by Leggett:

~o 27 gaR —D (85)'0 4 (V)2

At T=O, D(0)=U(0) and A, =l, so the zero-field hydro-
dynamic and collisionless NMR frequencies agree. Be-
cause of the A, function in the denominator of (73), the
collisionless frequency is slightly larger than the hydro-
dynamic frequency at finite temperature, as shown in Fig.
3. At T =T„ofcourse, both frequencies vanish.

In a finite field, the longitudinal frequency contains
contributions from the l=1 and 3 gaps proportional to R
and S . Using the results of FS for the 1=3 gap and the
results of Sec. II for the field dependence of the Leggett
angle, (52), we find

Fa
co =

—,'y X 'X(0)
z 8g —,'b, 3 —~(hi) Y3/2x3'D—I+ (yH) (6—5A)

1

(86)

When V3 ——S =0, this relation agrees with Schopohl' and, at T=O, with Pleiner and Brand. " Because the quasiparti-
cles respond adiabatically to the spin resonance, no analogue of the Fermi-liquid oscillation term occurs in the hydro-
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dynamic limit. Comparing (86) with the collisionless result, we find the zero-temperature equality

cu (H)
cu (0)

~ (H) sin 91 (0) F2, 1 H——
—,', U(0) 1+ x3 '

co (0) csin 01.(H)

X 1 — [(1+—'„'xp ')(1 —
—,'x3 ') '+ —' ——,'x3 ']

12 g2
(87)

to lowest order in Vi. When x3 '=0, Eq. (87) reduces to
an intriguing relation between the collisionless and hydro-
dynamic frequencies at T=O.

It should have been expected that the second-order field
dependence of the longitudinal NMR frequency is
different in the two regimes. First order in field, the lon-
gitudinal NMR couples to the mJ ——0 magnetic substate of
the real squashing modes, which have the noninteracting
frequencies ( —,')'i b, . Even at zero temperature the off-

resonance real squashing mode

d &+i
—[cooH/(6 ) ]doij

remains finite. The hydrodynamic theory assumes that
the order-parameter modes with resonant frequencies of
order 6 are not excited by the NMR with the much
smaller frequency coo. However, in the collisionless
theory, the small "off-diagonal" excitation d;~+ contributes
a large correction to the field dependence of the longitudi-
nal NMR. Since it contains both J=2 and 1 components,
the collisionless NMR in a finite field can no longer be
simply described by oscillations of the spin S and the n
vector. Only in zero field and at zero temperature, when
internal modes are unexcited and quasiparticles are ab-
sent, do the collisionless and hydrodynamic results agree.

The "off-diagonal" modes of the spin density and order
parameter are essential to the collisionless dynamics. We
have already seen that the first-order, J=2 spin density of
the transverse NMR is finite at T=0. If these spin-
density modes were neglected, the transverse frequency
would differ from the Larmor frequency yH, and spin-
orbit symmetry would be violated. The symmetries of
He-8 are preserved in the collisionless regime only by the

complex interaction of internal modes and external forces.
The hydrodynamic description of NMR in terms of mac-
roscopic variables that characterize the equilibrium order
parameter is not appropriate in this limit.
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APPENDIX A

This appendix reviews the tensor notation. A spin sca-
lar T(p) with orbital angular momentum ( can be written

T(p) =t„',„, u(pu, pu~ pu( ~ (A 1)

The tensor t„',„, . . . „, is by construction traceless and sym-
metric in the indices [ u i, u 2, . . . , ui I . Since T (p) is a
spin scalar, the total angular momentum J equals l. A
spin vector V(p) with orbital angular momentum I can be
written

IV;(p) =v; „,„z. . . „,p„,p„z ' ' ' p„, . (A2)

A A (1+1 () A A Ap. V(p) = v„,„, „i+,p„ip, 2 p, i+

(j —1, ()+ ul u2 ' ' u( lpu, pu, pu( (A3)

The tensor U „,„, . . . „, is also symmetric and traceless in
the indices Iul, uq, . . . , uiI. Since V(p) is a spin vector,
J can equal l —1, l, and l+ 1.

Because p V(p) is a spin scalar that contains com-
ponents with orbital angular momentum l+1, we can
write
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where U„",
—„,'.". . u, +, are symmetric and traceless in the l 1

indices. These tensors can be defined in terms of
v „,„, . . . „, by using (A2). The I =I +1 tensor can be
constructed by symmetrizing the spin tensor and remov-
ing the trace:

(1+1 1) 1
~ I

U (U ~ ~ ~

ul u2 ' ' u(+ 1 l 1
u l, u2 ' u(+ 1

+ u(+ l, ul „)— 2

(i + 1)(2I + 1)
(5„ „ v ~ ~ ~

U t"(+1 + + "I"1+1 l i" i
'''"I —i

(A4)
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The J =1 —1 tensor is obtained by summing over two in-
dices of the spin vector:

(I —1 I) 1
V U t

ulu2 ' ' u( 1 21 1
J, jul u( (A5) I 00

The J =1 tensor is then constructed by subtracting off the
J =1+1 contributions from the spin vector.

The simplest nontrivial example is the 1=1 spin vector
D;(p)=d „P„, which can be decomposed into J=O, 1,
and 2 components:

0.75—

di, u =diu ' +di, u' +&iud

where

(A6) 0.50—

diu
' =

2 (di, u +du, i ) 3 &iu dk k (A7a)

(A7b) 0.25—

(A7c)

Using these relations, we see that the 8-phase gap
b, ;(p) =b, R;~p& contains J=O, 1, and 2 components.

Tensors in the "dipole representation" take sj:RJj,pk
as the unit vector. The tensor associated with a spin vec-
tor (or scalar) is different in the two representations:

0
0.25 050 0.75

T/Tc
I 00

FIG. 7. The k function and its frequency derivative evaluated
at gD =0 (see Appendix D).

I—~i, u, u~ u(SuiSu~ Su(

I
I& u

1
u 2

' ' u(pu ipup pu(

(A8)
I

i, uiu2 ' ' ' u( i, Q[Q2 a( a
&

u
& a2u2 Q(u( (A9)

where U „,„, . . . „, and u „,„, . . . „, are tensors in the
momentum and dipole representations related by

which mixes up different J components. For example, the
gap in the dipole representation, given by b, , (s) =(3, s;, has
only a J=O component.

APPENDIX B

In this appendix we collect the equilibrium results in zero field. The calculations of Sec. II A yield the l= l gap distor-
tion, given by (38), and the 1=3 gap tensors given below:

(2 3) (2 3) [ (2 3) 9 DR p 1 3 DS pd 11 d22 d33 3x3 + —b, 3X3 [1——"'(5i) Y3/2x3 ][1——'(g) Y3/2x3 ] (B1)

d 1 )22 = —d 2 '111 = —
4 d 1 )33 =

4 d 2 '133 = —3d 2 '122 =3d(3 3) (3,3) 3 (3 3) 3 (3, 3) (3,3) (3 3)

= —'(sinOI ) gx3 ' ——'(sinOL) (g) Y3/2X3 [1——'(6i) Y3/2X3 '] (B2)

d 1133 d 2233 2
d 3333 3

d 1111 3
& 2222 4d 1122

(4, 3) (4, 3) [ (4, 3) 4 (4, 3) 4 a(4, 3) (4, 3)

pox —i + x —2(+0)2+OYO [ 1
c (QO)2 YO x —1

]
—1

112 (V )' 2352 V, V3
(B3)

while all other components vanish. These results for the 1=3 gap tensors are also valid in the rotated planar phase,
where A3 ——0 and sinOL ——1. Therefore the 1=3 gap of the planar phase contains only J=3 components.

In Sec. III we require the 1=3, B-phase gap tensors in the dipole representation, which are

R
(2, 3) (2, 3) & (2, 3) 9 ~ 0 —1 —1 0

16 (V )2 56 (Vi V3)
LL3X 3 + —X3 (B4)

S(3 3) (3 3) 4 (3 3) 4 (3 3) (3 3) (3 3) gD I p . pe 1,533 e 2, 133 3 1,522 3 2, 111 4e 1,011 4e 2, 122 4 ~ ~ & 3 ~3»nOL
1 3

(4, 3) (4, 3) l (4, 3) 4 (4, 3) 4 (4, 3) w (4, 3)
1133 e 2233 3333 1111 e 2222 4e 1122

(B5)
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—lgo[1 4(go)2Yo —1]—1
3 3 9 1 3/2 3

correct to first order in gD.
Using the equilibrium gap tensors to calculate the integrals J; defined by (30), we obtain the following expression for

N(p), valid to first order in gD.

N(p)=N — (b, i) (a&+p&p 3+Ygp 3)

where

R
a = —x3 — —x3 [1+—(b, )) Y3g2x3 ][1——(b, i) Y3g2x3 ]

—1 32 02 0 —1 4 02 0 —1 —1

16 ( V, )' 64 V, V3
9

45 gD 225 gD — &

1 ——,'(bo)2 Yo
R S

16 (V, )'(go)'Y„, 224 V, V,

DS
x3 [1——(b )) Y3/2x3 ]

—1 4 0 2 0 —1 —1

64 V1 Vg

We also note that

I
c.„~ (c,

T g N = 1

V1

2 2
3 0 2 0 —1 3 gD —1 0 2 0

16 (V, )'
—[1——,'(b, () Y3gpx3 ]+ 56 V1 Vg

—x3 (bi) Y3gp,

where the cutoff is introduced to regulate the otherwise logarithmically divergent integral.

APPENDIX C

In this appendix we calculate the dipolar corrections to the effective field. The mean-field relation for h(p), including
the contribution of the dipole forces to scattering in the particle-hole channel, can be written

I

h o—=.— . + —,'&y J [[&(p.p')] i3, +-,'gDQ'(p. p')(&„3i,e.)a"-pa—Py) [g(p')lpp
2(1+Fo ) „4~ (Cl)

where Q (p.p') is a quasiparticle renormalization factor.
The contribution of the dipole interaction in the particle-
hole channel is well defined and independent of the cutoff
e„since the sum over E„ in (C 1) is convergent. Thus the
dipolar corrections generated by this term are ( V~ ) times
smaller than the gap-distortion corrections contained in
g(p), which are of order gD/(Vi) . To first order in V&,

therefore, we are justified in ignoring the dipole interac-
tion in the particle-hole channel.

The dipolar corrections to h contained in g (p) can be
calculated in a straightforward manner. The parameters
B&, B2, and B3 introduced in (54) are given by the set of
coupled equations:

B,= +(B~+B2) [(b~) Y3q3 —3(b, i) Ys/2(a + ,Pg+ —yg)—
)+F0 3

+2(4—g)&i Y3g2(I —
—,
' 3)+—,'e'3' 'b, , Y 3)——,'B ——,'(1 —

—,
' A)B (C2)

B2=(B)+B2) [(&))'Y —3(h, ) Y, , (a + —,'p + —,', y )

+ o
—(1——', 3)+—,'e33' 'b~ Y3~q(1+43)+ —,'e3233b, ~ Y3q2(2 ——,

' g)]+ —',B3g,
1

(C3)

+ —,'e33 'b, i Y3n(4 ——', A) ——", eq2'33'b.
~ Y3qq(2 ——,

' A)] . (C4)
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The tensors e33 ' and e2233 describe the 1=3 zero-field gaps in the dipole representation and ag, pg, and yg are the
coefficients in the expansion of N(p) (see Appendix 8). In the limit gD~0, we recover Bi =D '(1+yF'2/5),
B2=D '(1 y)F—2/5, and 63=0.

APPENDIX D

The results of Appendix B can be used to expand the functions Y /2 and k about ga ——0. For the generalized Yoshida
functions, we find (m =3,5, . . . )

p p ~4
Ym/2 = T g = Ym/2 m Y(m +2)/2((zg +Pgp 3+ ygp 3)

where Y /2=T g„(N ) Irr '. For the )(, function we find

A(cop) = dx
2 ) 2

=)(p+
2 + ((xg +pgp 3+ygp 3)(A p

—1 +y)tanh[P
l
aP(p)

I
x /2l 1 ~p ()'~ 2 4

x —[ /2
i
6 (p) i ] (x' —1)' 2 ()p3'

(D2)

where Xp is the )(. function evaluated with gD =0. Note that dipolar corrections enter )(, through both p3p and 5 (p)
~

.
In Fig. 7 we plot Ap and (b, ) (8 )(./()p3()) versus T/T, .

APPENDIX E

The components of the longitudinal order parameter d 1j Cj s +Cj s„s,s are given by
2

(2 1) 3IMppH 1 + F2/5 —1 —1
AF2 XF2

C„', "= (DU) '(—1 —)(,x3 ') I+A, —y+2k +y
32K(AP)2 1+RF2/5 5 5

(E1)

( )
3imoy H 1+F2/5 —(DU) )M3 ' 1+k—y+2A, +y

32K(bP)2 1+AF;/5 5

'2
XF2

5
(E2)

where

(1, 1) (1, &) 2 (1, 1)~ uv (f3u 3Evab ~ha +Ov3euab ~ha Tfiuv E3ab ba

V'

The longitudinal spin density e 1j ——D~ „,s„s, contains only the J=2 components D11 ——D22 ———
—,'D33 where

1 (2, 2) (2, 2)
Duv 2 (EujkDkJ v + euj kDk/'u

(E3)

(E4)

and, through order gD,

(( i) F2 y~ Ap
D33 =&3uvBvu'

5 2S',
1+

2

3 cop

16
U-'(e, +e, ) 1+

5

A, pF2
X (1——)(px3 ) Xp+ 1 —y +2kp +y3 5

)(,pF 2

5

2

—-'(e, +e, )(1 —y)

kpF2+ —,', (1 —y)(e) + B2)F2 1+ ~o Bk
, + (& +g', Pg + —,', yg )(&p ——1+y)

COp

Q)p
2 0 0

g(2) 0)2
-(e, +e2)(kp+ I —y) U ' ——'(1—y)B3——'(Bi+ —'B2)(1—y)14 2 7 gp

+—', (Bi+B2)(~i '
)Ys /2~(g+,'13g+ —,', yg)+ —,'—,~i Y3/2e'3'3"(e) —

—,'B2)

2
,' b i Y3/2e 2233 ( e, +,' e, ) + U

—'
—,
' e2—)(pF;+ —,

'
( e, + —,

' e, )

X 2(1 —A, p) —(pp +2(ag+ —,'Pg+ —,', yg)(A, p+1 —y) ——", A.p
coo 1

4 ~0 (2 3) 32 ~0 (4 3)

7 go 33 21 /0 (E5)
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where e 33
' and e 2233 are the zero-field gap tensors given in Appendix B.

At T=O the transverse spin density e ]+~ =D~'„,s„s, contains the J=1 and 2 components,

D( ' ) = —'Fg) (0) ' 1' B(' 1

l 3 0 l3 (E6)

FQ
D(1,2) 2 D(p) —1 1 B(1,1)

6 5 0 l3

FQ

16 5
D (0)

(1
(Ok3~jabBba + fij 3ekab bag0

while the transverse order parameter d;~+ vanishes.

(E7)

(E8)

The result for N2" is given by

APPENDIX F

X2'"= V,
R2 FayH

2b, (V)

2

9 (b ) O'A, U. —I

40 k &~02 5

U' —127
16K.

1 (~1) 1'sn 1——,'A(A+1 —y)(1 —kx3 ')+ 1+1—y —A, +—(2+1—y) (1——,'&3 ')
10 Y3g2

——2A, Fo(l —A)[1 —(1 —y)x3 ']

0 2

—
—,', M3 '[7(1—y)+3k](1 —A) —

—,(k
(~1) ~Sn ——,([A. —(1—y) )x3

Y3

2
3 Fax-' + y U-'

1 —y 5

2 2

F2 yF2+ —,', y (1—A ) ——,
'

—,'„[1—
—,', (1—y)x3 ']+ —,', (1—y)x3 —[1——', (g) Y3/2x3 ] [~~ 3(1—y)x3 ']

3

2

+x ' —'(1—y)(1 —A)+:(1—y)[1 ——,'(&()1 3&xx 3
—'] '[ A ' (1 —y)x '+ —",

, ', (1 —y) Ax
V3R

1 V(~, 3 (~() 1'spaz
1 ——'A —— ——'(1 —y)x3 '(1 —A)

56 y3R 2 ' 5 Y3~2
(Fl)

valid to lowest order in V1, as explained in the text. The parameter I introduced in (80) is defined by

2
8N(2 1 g'(0)
cooD„yH (F2)

where D is given by (77).
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