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The effects of the dipole interaction on the equilibrium and nonequilibrium properties of *He-B are
calculated using the quasiclassical theory. In zero field, the dipole interaction distorts the /=1 gap,
generates an /=3 gap, and induces a new rotated planar phase next to the normal-state transition.
The field dependence of the Leggett angle ;. is calculated to order (yH /A)?, including the effect of
nonquasiparticle corrections. Using the equilibrium properties as input, we calculate the zero-field
NMR frequencies in the collisionless regime. A calculation of the field dependence of the longitudi-
nal NMR frequency reveals the existence of a Fermi-liquid oscillation term due to the out-of-phase
motion of the normal and superfluid components. Finally, we compare the collisionless and hydro-

dynamic theories of NMR.

I. INTRODUCTION

Before the first! NMR experiments in superfluid *He,
little theoretical interest was paid to the small orienting
effects of the dipole interaction. Only after unexplained
shifts in NMR frequencies were observed did Leggett?
realize that the condensed state of He enhances the
effects of the dipole forces. Though the orientational en-
ergy between neighboring *He nuclei is only 10~7 K, the
orientational energy of a collection of Cooper pairs, all in
the same angular-momentum state, is many times as
large.’ By breaking the spin-orbit symmetry of superfluid
He, the dipole interaction selects the equilibrium order
parameter and shifts the collective-mode frequencies.

In this paper we use the quasiclassical formalism to cal-
culate the effects of the dipole interaction in superfluid
3He-B. In Sec. II we calculate the equilibrium effects, and
in Sec. III we calculate the shifts in NMR frequencies in
the collisionless, low-temperature regime. This theory de-
scribes the longitudinal NMR experiments of Candela
et al.,* which were performed at temperatures
T/T.=0.5. Finally, in Sec. IV we compare the collision-
less and hydrodynamic results for the longitudinal NMR
frequency. This paper continues the work of Fishman
and Sauls® (FS) on the response functions and collective-
mode frequencies of the B phase in a strong magnetic field
[YyH <A(T)]. As discussed in FS, a magnetic field in the
Z direction depopulates the S,=0 Cooper-pair state,
compressing the energy gap, enhancing the magnetic sus-
ceptibility, and altering the frequencies of the collective
modes. The results of this paper, like the results of FS,
are valid in the weak-coupling limit and include all
Fermi-liquid parameters and pairing interactions.

Part of the motivation of FS and the present work is to
obtain information about the material parameters that
regulate superfluid properties. Reliable determinations of
the higher-angular-momentum Fermi-liquid and pairing-
interaction parameters test the consistency of the quasi-
classical theory and check the reliability of the microscop-
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ic theories® which predict the effective interactions of

liquid *He. More information about material parameters
can be obtained from NMR and collective-mode spectros-
copy”® in the superfluid than can be extracted from
normal-state measurements. In particular, higher-
angular-momentum pairing interactions affect superfluid
but not normal-state properties. Like the results of FS for
the field dependence of the susceptibility and of the real
squashing-mode frequencies, the results of this paper
should ultimately provide precise values for the /=2 an-
tisymmetric Fermi liquid parameter F4 and for the /=3
transition temperature 7,3, at least at low pressures were
strong-coupling corrections are believed to be small.” The
results of this paper can also be used to determine the re-
normalized dipolar coupling constant from longitudinal
NMR measurements in zero field.

We begin Sec. II by briefly reviewing the quasiclassical
equations for equilibrium *He. A calculation of the zero-
field gap reveals that the dipole interaction distorts the
I=1 gap, generates an /=3 gap, and induces a rotated
planar phase next to the normal state. The temperature
width of this new phase is proportional to the dipole in-
teraction strength gp. We then calculate the field depen-
dence of the Leggett angle 6, through order (yH /A)%.
All moments of the quasiparticle renormalization factor
R*P-p’) are included in these calculations. Because the
dipole interaction is short ranged, nonquasiparticle correc-
tions modify the equilibrium properties of the superfluid.
These corrections are included first order in the /=1 pair-
ing interaction.

Using the equilibrium properties as inputs, we calculate
the collisionless NMR frequencies in Sec. III. In zero
field only the longitudinal frequency is shifted by the di-
pole interaction. The magnetic field dependence of the
longitudinal NMR frequency is calculated through order
(yH/A)*. The out-of-phase motion of the normal and
superfluid components generates a Fermi-liquid oscillation
term, proportional to (F$)* and independent of gp. At
T=0, when the normal component is absent, and at
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T =T,, when the superfluid component is absent, this
term vanishes. Unlike the field dependence of the longitu-
dinal resonance, the field dependence of the transverse
resonance can be computed perturbatively only at T=0,
where w =ty H to zero order in gp.

Previous calculations'®!! of the field dependence of the
longitudinal NMR frequency followed the method of Leg-
gett and Takagi.'> In the original hydrodynamic theory
of Leggett,!® the quasiparticles respond adiabatically to
the nonequilibrium motion of the spin and the internal de-
grees of freedom of the order parameter are not excited by
the spin resonance, provided that w <<A. Leggett and
Takagi worked to extend the range of validity of this
theory into the collisionless regime by including the effects
of relaxation between the quasiparticles and the spin reso-
nance. They suggested that, at least at T=0, when the
normal component vanishes, the hydrodynamic theory
should accurately describe the spin dynamics of the order
parameter. In Sec. IV we follow the formalism of Leggett
to calculate the longitudinal NMR frequency, including
all material parameters and all moments of the quasiparti-
cle renormalization factor, through order (yH /A)*. We
find that at T=0 the zero-field collisionless and hydro-
dynamic frequencies do indeed agree. However, the field
dependences of the collisionless and hydrodynamic fre-
quencies differ, even at T=0. The description of the
NMR provided by the collisionless theory is quite
different from the hydrodynamic picture. In Sec. III we
find that the collisionless NMR couples to internal de-
grees of freedom of the order parameter first order in the
field. These ‘“off-diagonal” components contribute to the
field dependence of the NMR frequencies, even at T=0.
Because it cannot incorporate the effect of the internal
order-parameter modes, the hydrodynamic theory is inap-
propriate to describe the collisionless dynamics.

A review of the tensor notation used extensively in this
paper is given in Appendix A. Other technical details and
lengthy results are left to Appendixes B-F. We shall
often refer to FS for the derivation of results that are
needed as a starting point for this work.

The results of this paper for the field dependence of the
Leggett angle [Eq. (52)] and for the longitudinal NMR
frequency [Egs. (73), (80), (81), and (F2)] place new con-
straints on the material parameters of the B phase. In
particular, analysis of NMR results may confirm previous
determinations’ of F$ and T.;. Future measurements of
the Leggett angle, which contains sizable nonquasiparticle
corrections, may yield new information about the quasi-
particle energy cutoff ..

II. DIPOLAR EFFECTS IN EQUILIBRIUM

The quasiclassical theory of superconductivity, de-
veloped by Eilenberger,'* Eliashberg,!* and Larkin and
Ovchinnikov,'® was adapted to superfluid *He by Rainer
and Serene,!” whose notation'® we follow, and by Eck-
ern.’” The quasiclassical theory is formulated in terms of
(4 X 4)-matrix Green’s functions, in particle-hole and spin
space, that are integrated over the magnitude of the quasi-
particle momentum near the Fermi surface. Equilibrium
properties are calculated from the Matsubara propagator

2"pRie) e [ dgHG(pRie,) )

where G is the one-particle Matsubara Green’s function,
f3 is the Pauli matrix in particle-hole space, §&,
=vp( | p| —pr) is the quasiparticle energy near the Fermi
surface in terms of the Fermi velocity vyp and Fermi
momentum pr, and €, is the energy cutoff for the quasi-
particle spectrum. The structure of g ™ in particle-hole
space is given by

g" fm

m Zm| > 2
Fm oz (2)

where g (P, R;e, ) is the conventional one-particle Green’s
function integrated over &, and f"(p,R;e,) is the corre-
sponding anomalous propagator. These propagators de-
pend on the quasiparticle momentum P, the center of
mass R, and the Matsubara frequencies €, =(2n + 1)7T.
The time-reversed propagators are g "=[g"(—p,R;e,)]*
and f"=[f"(—p,R;e,)]*. The quasiclassical equations
for homogeneous *He consist of the commutation relation

lie,35—A—6,8 =0, 3)

the normalization condition

~

(g m(ﬁ;en)]zz_ﬂ'zl ) (4)

and the self-energy equations for the diagonal (&) and
off-diagonal (A) self-energies, which are defined diagram-
matically in terms of the propagator § ™ and the quasipar-

ticle interactions. The mean-field relations for the self-

energies,

R o O ~ 0 A

UZOE’A:KO’ (5)
are given by
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where v,p represents an external field that couples to the
quasiparticles. The time-reversed self-energies & and A
are related to o and A by the same symmetries as the cor-
responding propagators. The scattering amplitudes
A(P-P’) and pairing interactions V(p-p’'), which
parametrize the self-energy equations, can be decomposed
as

(4P P ) aypo=ADD8updyp+ AP P N0Oup 0,
(8)
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where o' are the Pauli matrices in spin space. In accor-
dance with the exclusion principle, the singlet-pairing in-
teraction V*(p-p’) contains only even-/ components and
the triplet-pairing interaction V(p-p’) contains only odd-/

components. We define the components V; by
even (odd)
VUep)= 3 QI+DVPBD), (10)

1
while we use Landau’s original convention for the scatter-
ing amplitudes,

As(a)(ﬁ/ﬁ V= 2 Asta
/

P(pD), (11)

with 47 @ related to the Fermi-liquid parameters F} ' by
F:(u)

AP = — : (12)
1+F7' /721 +1)

The propagators g™ and f™ can also be decomposed in

spin space:

g5 (Dien)=8(P;€, )8,y +8(Ds€n) 0 py (13)

f,',"y(ﬁ;a,, )=[fo(P;€n 18,5+ f(P;en )-apﬁ]iaﬁy . (14)

In the absence of the second pairing term in (7), which is
contributed by the dipole interaction, physical results can
be expressed in terms of the Landau parameters F;*¢ and
the transition temperatures for pairing in the /th partial
wave,

—1/v,

T.,=1.13¢.¢e (15)

Of course, T, =T, is the physical transition temperature.
The energy cutoff €., which separates the high-energy,
nonquasiparticle regime from the quasiparticle energy
spectrum, is chosen so that 77, <<€, <<€f, but is other-
wise undefined by Fermi-liquid theory. When the dipole
interaction is neglected, the cutoff €. and the pairing in-
teractions V; can always be eliminated in favor of the
physical /-wave transition temperatures.

Associated with the dipole interaction is the dimension-
less coupling constant

gD=4TﬂN(O)(yﬁ)2 , (16)

where y is the gyromagnetic ratio that determines the
Larmor frequency yH in terms of the external field H,
and N(0) is the single-spin density of states at the Fermi
surface. The momentum exchanged by the dipole interac-
tion is q=p—pP'. The signs of the pairing interaction and
of the dipolar coupling constant in Eq. (7) are determined
by the convention that positive interactions are attractive.
As first explained by Leggett,!® the renormalization factor
R2(p-p’) describes the modification of the dipole interac-
tion by the quasiparticles. Since the range of the dipole
interaction is only a few angstroms, R*(p-p’) also in-
cludes high-energy, nonquasiparticle corrections that are
outside the domain of Landau’s Fermi-liquid theory. Be-
cause the dipole interaction varies on the energy scale of

the Fermi energy er, R*(P-p’) exhibits no temperature
dependence on the scale of 7,. To estimate the pressure
dependence and magnitude of R*(p-P’) requires a micro-
scopic model for the quasiparticle interactions. Note that
(7) neglects dipole-interaction terms of order g} and
higher. In principle, the dipole interaction will contribute
an additional scattering term in the particle-hole channel,
modifying (6). In Appendix C we show that this contri-
bution to the diagonal self-energy can be neglected.

Specializing now to the B phase, we include the effect of
a magnetic field perturbatively in the parameter

yH/A~0.16(H /kG)/(A/mK) , (17)

which is small for fields as large as 1 kG, except very
close to 7,. The propagators and self-energies are ex-
panded in powers of this parameter:

6=6,4+62+ ", (18)

where, for example, |87 | ~(yH/A)|87 1|. The rela-
tions in FS for g ” in terms of the triplet order parameter,

Ap)=—1ulic’aA®D)], (19)
and the effective field,
h(p)=1trloo(B)] , (20)

are still valid, since only (3) and (4) are used in their
derivation. It is straightforward to show that the singlet
projection of A(P) can be neglected since tr[o*A(p)] is of
order gj3.

A. Equilibrium in zero field

Our first task is to calculate the distortion of the equi-
librium order parameter caused by the dipole interaction,
which will be needed to calculate the NMR frequencies.
We use the result of FS for g §' to rewrite the mean-field
equation for A%P) as

N ~TS 3@+ Vlf—N BPBDIAAD) ,

21)
NRABD NS, —3q:8)ANB)
where the momentum dependence of
N®p)= o (22)

(&3 + | A%) 7]

comes from the dipolar distortion of A%p).

In the absence of the dipole interaction, the B-phase or-
der parameter is given by AYP)= AORU 1,6)p;, where
R;;(0,0) is the matrix for a rotation around the f axis by
the angle 6, both undetermined by the gap equation.
When gp =0, N (P) is independent of momentum and the
logarithmically divergent sum
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e, | <€
T
TSNOP=T > =In(1.13¢./T,)
2 2 @i o
(23)
must be regulated by the energy cutoff €.. Using (15), we

see that the /=1 pairing interaction in (21) cancels this

dQ N 3 &b
dl |[1-3v,T ===(p;)? —1
S i ;f% (Bj*N®) |=— 35 (Ro—3R
dQ " oA
diuxs=—3T 3 [ =N B)5pnpprbidim —(p; dlu—
n
1 &b
12 ViV;

where dj7V is the traceless and symmetric matrix
dipV=Xd}+dl)—1d} 6 (27)
and
R¥pH)=3 QI+ DR PP . (28)
7

All higher-angular-momentum components of the gap
vanish to first order in gp. In the /=3 relation (26), the
parameter

x3=Vi'—Vi'=In(T;3/T.)

measures the relative importance of the f- and p-wave
pairing interactions, with a negative value of x3 corre-
sponding to an attractive f- wave pairing interaction. No-
tice that the two projections R? =Ro—R /3, first defined
by Leggett,” and S’=1R¢+R,— 2R, enter (25 and
(26). When gp =0, Eq. (26) requires that the /=3 gap
vanishes. Even when the /=3 pairing interaction is zero,
however, the dipole interaction itself induces a finite /=3
gap proportional to gnS2/V.

The /=1 relation (25) separates into three independent
equations:

AY1—3V1Jy)=— 2gpR2J2[3A%cosH? ) +2A8] ,  (29a)
Af(cosb? [ 1—2V (], —J7)]
= — 2gpR%(J; —J2)[7A%cosH) )+3A3] ,  (29b)

Asin6) )[1—2V1(J1 —J2)]=2gpRAJ| —J5)AJsin6? ,

(29¢)
where we have taken
dl;i=RJz,69)A?,

which (25) demands. The rotation axis 1i||Z is fixed by an
infinitesimal magnetic field H=HZ. The axial symmetry
about the Z axis is then used to set A{=AY. The func-
tions J; are weighted integrals over N (P):

sum and that the cutoff drops out of the gap equation.
In the presence of the dipole interaction, we must
decompose AY(P) into /=1 and 3 components:

AXD)=d};p; +d2up;PrPi - (24)

Performing the momentum integral in the dipole term of
(21) yields

1)(38ydid x—2d};+3d}) , (25)

(P )?d k8 —(p1)d} 18]

~(Ro+3R | —10R)[8;d{P V" 8ud P! +8ud 2V — 2(8d iV +8,d 2V + 84d# ], (26)

H=T3Z f—N( (302)
7n=T3 f (P3N (), (30b)
J3_T2 f p3)4N ), (300)
1=73 %(ﬁm(ﬁz)zmﬁ) (30d)

If A95£0 and AY%5£0, then (29b) and (29¢) imply that, to

zero orderzo in gp,

wo

cos6y = —

ENIEN
>|[>
—_0
(™)
Y—

Using this result we can rewrite (29a) and (29¢) as

1—-3V1]2 ——gDR Jz s (32a)

1—-%V1(J1—Jz)=%gDR (J1—-J2) » (32b)
which agree with Tewordt and Einzel?! when /=3 corre-
lations are neglected (when ¥V3=S2=0) in the integrals J
and J,.

Decomposing the /=3 gap into J=2, 3, and 4 com-
ponents, we use (26) to solve for the gap tensors in terms
of the integrals J;. For the J=2 gap we find

1d%Y

% 1A3(J]—18J2+25J3)

2,3) _ 7(2,3)
dip’'=dy% =~

igl)s_ F1A9
+ 16V, V3 Ay . (33)

The J=3 gap tensors can be written
4 =—di

——-%(smeL AT (=20, +7J,—5J3+10J4) , (34a)
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d5dh = —d P =1(sin6) A 71 (—J +J,4+107,) ,
(34b)
d‘ﬁf‘ﬁ: —d‘2333)3 =7 (sin0) )Adx 71 (J; —6J,+5J3) .
(34¢)
Finally, the J=4 tensors are
d¥%=d} =—1d'%)
=L A% (—37,—30J,+65J3) , (35a)
dii =LA T (—8J,+25],—25J3+70J4) , (35b)
di) =d %R = LAY T (11, +5J,—40J5—70],) .
(35¢)

All other components vanish.

To proceed further, we express the 1ntegrals J in terms
of the gap components by expanding N (p) in the dipole
interaction, with the results

0_ 1 (N0)3 0y2 042
—r3 N3 a9, (36a)
n n T
| 0 (N°)? AQ)2 0y2
Jr=3T 3N — TE“_ A3 —(AD7]
n
T2 (Jj;z)_Ri(r)ndi?m:;.’}A? , (36b)
n
J3=3T I N°— TE 2 97— (a2
— 15 TE 3R,md,m33A?+2d§,333A9) ,  (36¢)
Ja=#T I N°— 5T (A9?—(AD)?]
n
— 35 led13m22A0+Rlldr,122A1
+R5d51AY), (36d)
where
0= = 37

[e2 +(AD?)2 -~

The final ingredient needed is an expression for the /=1
gap distortion (A9)?—(A9)?, which we obtain from (32)

and (36):
_
45 gpR
(AD?—(A?=—=—"—T 3 N°+ 2R, d}n33A?,
8 VY%, g "
(38)

where Y9, n=T3, (N®™/m™~! are the generalized
Yoshida functions, in terms of which the original Yoshida
function is given by y=1-—(A0)?YY,,. Equations
(33)-(38) completely determine the integrals J; and the
zero-field gap. Solving this set of equations, we find that

the /=1 gap distortion is given by

45 goR?

—(A3)*=
8 (V)Y

[1—3AD?YS x5 ]

9 gpS?

28V, V3
The results for the /=3 gaps and for N (p) are given in
Appendix B. If V;=S5°=0, then (39) agrees with
Tewordt and Einzel.?!

In the absence of /=3 correlations the dipole-
mteracnon constant only appears in the dimensionless fac-
tor gDR /(V1)?, which can be considered a new phenom-
enological parameter, to be determined alongside the oth-
er interaction parameters. We shall see shortly that
gpRZ/(V1)? can be expressed in terms of the temperature
width of the dipole-induced planar phase. Therefore,
despite appearances, this factor is actually 1ndependent of
the energy cutoff €.. In practice, gDRZ/ (V1)? can be ob-
tained from longitudinal NMR measurements in zero
field, as shown in Sec. III. The last term in (39), which
remains finite when FV3;—0, originates from the /=3
correlations induced by the dipole interaction itself. The
relation

x5 HA)? . (39)

1

| _
x x
3 _ %3 . 1 (40)
Vivs  (vy) Vi

can be used to show that the dipole-induced

gpxi'/(VV3) term contains a correction of order
V, smaller than the gp/(V;)* term. Although
Vi=1/In(1.13¢./T.) vanishes in the &./7T.— o limit,
the more realistic estimate?? e.=0.07¢r indicates that
V,~0.2 at O bar, so this correction can be sizable.?* Un-
like DF/( V1)? and x3! (to zero order in gp), the factor

gpS*/(VV3) cannot be expressed in terms of the physical

transition temperatures and does depend on the cutoff €..
If gDR_Z/ (V)? is obtained from zero-field NMR measure-
ments, then gDST/( V1V3) can be estimated by using a mi-
croscopic model for (V,.STZ)/( V;R_Z).

It is not surprising that, in the presence of the dipole in-
teraction, the cutoff cannot be eliminated from observable
quantities such as the gap distortion. Since the dipole in-
teraction varies on the energy scale er >>¢€., the dipolar
constant gp is renormalized by cutoff-dependent factors.
When V3 =0, the /=1 moment of the dipole interaction is
scaled by (¥;)? and the /=3 moment is scaled by V.
Since it includes high-energy corrections, the renormaliza-
tion factor R%(P-p’) also depends on the energy cutoff.
The ratio of cutoff-dependent quantities R R2/(V,)?, howev-
er, is independent of ..

One interesting consequence of (39) is that A3/A? must
vanish as the temperature is increased. At the tempera-
ture

-1

B—=1.13e.exp (41)
V1—~gDR
we find that A9=0, cos6} =0, and
R -1
(A9)2— 23 &2 42)
8 (V)
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To examine the intermediate region between the normal
state and the B phase, we must solve (29) with A9=0 and
A95£0. We find that cos6? =0 throughout this region and
that the /=1 gap is given by
—1

, (43)

e

(A= —3In

Ty

| €n l }
where T?Y is the temperature of the normal-state transi-
tion:

—1

TP=1.13g.exp | ————
Vl‘f‘%gDR_Z

(44)

The /=3 gap components in this dipole-induced state are
listed in Appendix B.

Notice that the gap tensors and the rotation angle 69
change continuously across 72, which therefore marks a
second-order phase transition from the rotated planar
state into the B phase. The width of the rotated planar
phase is proportional to the renormalized dipole-
interaction constant:

dl =3V, Tz f—p,f,

confirming the assertion made earlier. In the planar
phase, the S, =0 Cooper-pair state has been completely
depopulated by the dipole interaction, which favors pair-
ing in the S, ==1 states. The existence of the dipole-
induced phase was first discussed by Leggett.> The effects
of higher-order self-energy diagrams, which introduce
fluctuations of the order parameter about its mean-field
value, were later included by Jones et al.,?* who demon-
strated that this phase is, in fact, stable.

B. Equilibrium in a magnetic field

To study the field dependence of the equilibrium gap in
(7) requires the off-diagonal Matsubara Green’s functions
f;"y:if-(aaz)py given in FS. Our starting point is the
field-dependent version of (21):

dQ) o A s,
=T§§[‘,(21+1)V1f—4ﬂ P®Di(D")

dQ, A A AA ~
—gpTS f—w R*PP )8y —33:4,)/,(")
(46)

Again, A;(P) is decomposed into /=1 and 3 components,
with the /=1 gap given by

dQ A A £~
—3epT 3, f;fk(P)[_(R0+3Rl—10R2)ﬁjpipk +(—=Ro+R | —2R1)p;Si
n

—2(Ry—Ro)piSj +Pi8;)] - 47)

We shall not be concerned with the /=3 gap, except to note that when gp =0 we recover the results of FS, provided p; is

replaced by §j =

=R} JjkPx, which is the unit vector of the *““dipole representation,” discussed in Appendix A.

As can be verified from (47), a magnetic field H=H?Z fixes the rotation angle n=Z. Using the rotation symmetry
about the Z axis, Eq. (47) can be broken into the three independent equations:

Ay(sinf )(1—V1K2)=%A1gDIFK2sin9L , (48a)
Ay(cosO (1 —V 1K )= —3gp[—2(R;—R()A3K3—(Ro+3R|—10R;,)A3K,
+(4Ro—2R+2R,)A K (cosf )+ (Ro+3R;—10R,)AKs(cosOL )] , (48b)
A3(1—VK3)=—3gp[(Ro—R | +2R,)A3K3+(Ro+3R| —10R;)A3K,
—2(R;—Rp)A K (cosbr )—(Rp+3R{ —10R,)A K 5(cosO )], (48c)
|
‘—N_—h;§iAv%’.e Ttlii( i‘uniit}{o:nsR %fl-z;?'é )é';iglftt:i irf:etgra?sl ?\2? Ks=—— Al cosQL % f 4 2 D163’ f1(B (49e)
Sty These integrals can easily be evaluated to zero order in
= A cos@ 2 f dﬂplfl P, (49a) gp. Using the results in Appendix B for the zero-field
L) % I=3 gap, we then find that
2= smGL) 2 f_pil 49b) KZ_KI:_if/D_I‘i—
2—2 f—P3f3 (49¢) i 2{ F$ JZ )
x3 (yH)" [1+— | D7°Y;,(1 A),
=—‘2 f—ﬁ3 (B1f3(P) (49d)
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where

F$§ F$
D:l+@+&ﬁF&H§+§w?%+ﬂ%?% (51)

and 4=(AY)*Y9,,44/5. This result is used in (48a) and
(48b) to obtain the field dependence of the Leggett angle,
to zero order in gp:

1 Az v,S?
COS@L=—ZE—ﬁ2-(’}’H)2 VIR—Z
3

F3

2
A
1+— | DY, [1— =
+ 5 ] 3/2 3

><x§1

(52)

The /=1 gap distortion was previously calculated in FS:

1
A 1 H 2 F$ (AO)Z YO
=14 [ L | 142 | D2 | =5434 +3——2 1 3(A02Y x5 1 (1— 4) (53)
A 8 | Al 5 32
—
In the absence of /=3 correlations we recover the result 1 we plot cos@; versus T /T, for one possible set of input

of Tewordt and Schopohl?®® for cosd;. Two corrections
proportional to x3 ! enter cosf.: one contained in the
/=1 gap distortion (53) and the other contained in the
I=3 correlations induced by the dipole interaction, which
enter the second term in (52). The latter contribution
remains finite when V3;—0, although it becomes smaller
by V; than the other field-dependent terms. Close to 7.
the cutoff-dependent contribution, proportional to
(VISTI)/( V3R “), will be much smaller than the contribu-
tion from the /=1 gap distortion. In this regime the
strong-coupling and dipolar corrections to the Leggett an-
gle, calculated by Fetter?® and Greaves,?’ respectively, will
be more important than the cutoff-dependent correction.
The cutoff-dependent term can have an appreciable
effect on the field dependence of cosf; at low tempera-
tures. Fomin, Pethick, and Serene®® estimate R%(p-p’) by
using polarization potentials?®® to describe the screened
response of the Fermi liquid at short wavelengths of order
#i/pr. Using their model, we find that S?/R?~0.48 at 0
bar, decreasing slightly to 0.45 to 10 bars. Although
Vi/Vi—1 as e./T.— «, realistic estimates?’ indicate
that V/V3~1.5, so (Vlff)/( V;Rj_):OJS For reason-
able’ values of x3 !, the cutoff-dependent term can change
the field dependence of cosf; by several percent. In Fig.
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i
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I ]
03— —
oal
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FIG. 1. The field dependence of the Leggett angle at O bars
using F§=—0.7, F§=0.2, xi'=—0.6, (V189 /(V3sR?)=0.0,

and 7. =1.04 mK.

parameters.

We pause here to note that the dipolar corrections to
the zero-field equilibrium gap will generate corrections to
the effective field h;. If we neglect the dipole-induced
I=4 component of h;, which does not contribute to the
lowest-order field dependence of the NMR frequencies,
then

h1:§H[91+e3(§3)2]+ %GSH(«;, (54)

where H=HZ. The results for O, ©,, and O3 are given
in Appendix C. In the following section we shall use
these parameters and the results for the equilibrium gap
to calculate the shifts in NMR frequencies.

III. COLLISIONLESS NMR

The importance of the dipole interaction to the spin dy-
namics of superfluid *He was first recognized by Leggett,>
who sought to understand the shifts in the transverse
NMR frequencies of the A phase.! Leggett’s theory of
“spontaneously broken spin-orbit symmetry” demonstrat-
ed that the dipole forces were enhanced by the condensed
state of the superfluid. This theory also predicted'? a shift
in the B-phase longitudinal NMR frequency, which was
later observed by Osheroff’® and others.>!

The Leggett-Takagi equations'? are a semiphenomeno-
logical description of the spin dynamics of *He based on
equations of motion for the vectors which specify the
equilibrium configuration of the order parameter. The
theory postulates that, other than the spin resonance, no
internal degrees of freedom of the order parameter are ex-
cited. This is a good assumption provided that the reso-
nance frequency o is much smaller than the internal exci-
tation frequencies of the order parameter, which are of or-
der A, and that the quasiparticles have sufficient time to
respond to the motion of the spin. Thus the Leggett-
Takagi (LT) theory should be valid if w<<A and
w7t << 1, where 7t is the spin-relaxation time.

In Fig. 2 we have plotted 71 using the results of Peth-
ick et al.,* and Einzel and Walfle.>* Also plotted are the
zero-field longitudinal NMR frequencies®! for 0 and 16
bars, with temperature dependence estimated from the hy-
drodynamic theory. At O bar the collisionless regime
oTLT>>1 extends to T /T, ~0.55 and the hydrodynamic
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FIG. 2. The inverse Leggett-Takagi relaxation time in kHz
and the zero-field longitudinal NMR frequency for O and 16 bars
vs T /T.. The temperature dependence of the NMR frequency is
calculated with the hydrodynamic formula (85).

regime w7 r<<1 begins at T/T.~0.65. The midway
point ot t~1 decreases in relative temperature as the
pressure increases.

The theory developed in this section treats the low-
temperature, collisionless dynamics of the NMR. We find
that in zero field the longitudinal frequency is proportion-
al to gpR?/(V1)? but the transverse frequencies remain
zero. In a finite field and at finite temperature, a term
proportional to (F4)? but independent of g, contributes to
the longitudinal frequency squared. This term, which
arises from the restoring force between the quasiparticles
and the spin resonance, vanishes at 7=0 when the quasi-
particle density vanishes. Unfortunately, because the
zero-field frequency of the transverse resonance vanishes,
the perturbative calculation of the field dependence of the
transverse NMR frequencies breaks down, except at
T=0, when we recover the expected result o==*yH to
zero order in gp.

A theoretical description of the collisionless modes of
’He-B requires a nonequilibrium generalization of the
quasiclassical theory. The linearized transport equation is
written

[e75,88 ]+ 50{ 73,68} — [ *4,88]
—868 Ye—w/2)+8 “Ue+w/2)86 =0,
(55)
where the square and curly brackets represent the usual
commutator and anticommutator, and &%(P;e,w) and
86 (P;w) are small deviations from the equilibrium Kel-

dysh Green’s function g “UP;e) and the equilibrium self-
energy & “Up). The Keldysh Green’s function and the

self-energy are functions of the quasiparticle energy € and
the frequency w, which is determined by the external
field. The equilibrium Keldysh Green’s function can be
obtained from the Matsubara Green’s function using

g “e)=[8 ey =—ie+m)

£
2T

S m

—8™(e, = —ie—mn)]tanh (56)

n—0"

Relations for g “d(¢) are given in FS.
The nonequilibrium generalizations of the mean-field
equations (6) and (7) are

~ dQ rde . | ., ~
5aa,3(p;w>=%f? i LA BD ) ]ay 08,y (B s60)

(57)

L rde
2 41

de Y
Xfm{[wpp Nay.sp
+gDR2(ﬁ~f)')(5#v—3@u{1\v)05}'0/‘3,p}

X8fpy (P's8,0) . (58)

As in Sec. II, the Green’s functions and self-energies are
decomposed in spin space:

88ap(P;e,0)=08g(P;€,0)8,5+88(P;e,0) T up »

8fap(P;e,0)=[8f0(P;€,0)80p+8f(P;e,0)-00plio)s 59
and
80 4p(P;0) =e(P;w)8up+e(P;0) T , 60)
8Aq5(P;0)=[d (P;0)84,+d(P;0) 0 oplic s -

The time-reversed quantities are then given by the sym-
metry relations

88 =06g(—p;—¢,0), Sg=8g(—P;—se,0),
8f =—[8f(—P;—&,—w)]*, 8F=[8f(—P;—e, —w)]*,
. (61)

]
[l

[d(P;—w)]*, d=[d(P;—w)]* .

It is convenient to introduce the sum and difference func-
tions *=A+ A4, which have simple transformation
properties. For example, d* (d~) represents the real
(imaginary) part of the time-dependent spin-triplet order
parameter. Density and spin-density modes of the
superfluid correspond to oscillations of e © and e, respec-
tively.

The NMR corresponds to an oscillation of the real spin
density, e*, which couples through (55) to the real triplet
order parameter d . As shown in FS, the homogeneous
eigenvalue equation governing the real, triplet modes can
be written in the matrix form

dP)=L(Pp,p0)xd(D"), (62)
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where d"=(d"*,e*) is a six-component vector and the
star product is defined as

[L(’ﬁ,ﬁ’;w)*g(f)’)]sz%[L BP0 lyd; B . (63)

The matrix L can be decomposed in particle-hole space as
VaB .9 L1gy (") ViR ®.P)Lopy (B

L= A A A aAnr avr ’ 64

= FYPP')L3q,(P") FYPP')Laay(P") (64)

where
VEP®,P )=V DD "8, —gpRAP-D )8, —34:4;)
(65)

is the pairing interaction modified by the dipole forces and
FPp-p’) is the Fermi-liquid exchange interaction. The
matrices L;(P';w) are given in FS as functions of the equi-
librium order parameter, the effective field, and the fre-
quency .

The eigenvalue equation (62) can be solved perturba-
tively in the magnetic field by expanding L, d, and o in
powers of (yH /A°):

L@)=LO+LV4+LP -+,
d=do+d +d 2+ ", (66)
O=wo+to;+w+ ",

where, for example, |w; | ~(yH /A%)|w;_,|. To obtain
the frequencies w; it is convenient to introduce the
transposed eigenvalue equation

b(P)=b(P")*xL(P', ;@) (67)

for the eigenfrequency @ and the transposed eigenfunction
b(P), which does not equal [d(P)]" because L is not Her-
mitian. If b and d have the same spin and orbital sym-
metries, it can be proved by induction that @ =w to all or-
ders in field. The zero-field transposed relation can then
be used to show that the eigenfrequencies w; and w, are
given by

Nl N2
@==Dp, “~ "D, (68)
with
Ny=boxL"(wo)*d o, (692)
Ny=b ox L' (w0)*d o+b o L'(wo)*d |
(1 w? 2L ®
= do+—b =
+w1b o* dwo *d o+ 5 b ox 202 *d o
L©
tobox == —*d i, (69b)
aﬂ)o
0)
Do=box 2E—sd (69c)
6a)0

As expected in perturbation theory, the second-order fre-
quency w; involves both the zero- and first-order “wave
functions” d o and d ;. In subsection C we shall see that

the expansion of Ny and N, about wy in (69a) and (69b) is
valid, in general, only if wq is nonzero.

A. Zero-field NMR

The NMR corresponds to an oscillation of the magneti-
zation, given by the average of the real spin density over
the Fermi surface SM~ [dQe*. Since only the /=0
component of et contributes to this integral, the NMR
involves only the J=1 component of the real spin density.
In the dipole representation, which we adopt for the
remainder of this section, the J=1 component of the real
spin density couples to the J=1 component of the real
triplet order parameter through Eq. (62). In the momen-
tum representation, on the other hand, the NMR couples
to J=0, 1, and 2 components of the real triplet order pa-
rameter.

Solving the zero-order equation d o=L '"(w¢)%d ( for
the J=1 mode, we find that the order parameter
dd;(8)=BfI"8, is described by the antisymmetric /=1
tensor B/}'!. The spin density can be written as a super-

position of /=0 and 2 tensors:
edi®)=E["O+ I§ENYS — LE[MY (70)

with components related to B,}'" by

iw
E,ﬁ"°’=»—6A% AF8e B U, (71a)
iog AF$
EL'JJ:—é‘Z‘; e BT (71b)
where
)\‘Fﬂ
U=1+20F§4+ L 222 (72)

3 5

and A is the lambda function evaluated at zero frequency
(see Appendix D and Fig 7).

We use (70)-(72) to obtain the zero-field frequency wq
from the zero-order eigenvalue equation. The longitudi-
nal m; =0 solution is obtained by taking B{}yV =B{{P=0
and B{%" 50, with the simple result

_ 27 &R?
my; =0 4A (V])Z

a0 U, (73)

independent of x5! and (V,S87)/(V3R?) (see Fig. 3). The
transverse my==x1 solutions are obtained by taking
B{%V=0and B{5",BY%">£0, with the results

wo g

A0 =0, (74)

my==l1

unaffected by the dipole interaction. Equation (73) agrees
with Tewordt et al.’* when F$=0 and their spin-
fluctuation parameter 71 is identified with —F§. Using (39)
we find that if F§= —1 and all other material parameters
are neglected, then at T=0 the zero-field gap distortion
and longitudinal NMR frequency are related by

(A9 — (A= Hwo)m, -0 » (75)

in agreement with Tewordt and Einzel.?!



88 R. S. FISHMAN 36

I
150f— -
= o0f— —
s
3
50— -
o w |
0 025 050 075 100
T/T.
FIG. 3. The collisionless (solid line) and hydrodynamic

(dashed line) zero-field longitudinal frequency at O bars calculat-
ed with the same parameters as Fig. 1.

The transpose relation b o=b g% L V(@) is also easily

solved. The J=1 order parameter is again given by an
I=1 tensor B \;V=[B\}'"]* and the spin density by a su-
perposition of /=0 and 2 tensors:

_ i@
Ef=—EY=——GMView B0 (76)

We then verify that @y=w,, as assumed in (68) and (69).

B. Field dependence of longitudinal NMR

To calculate the field dependence of the m;=0 mode
requires Ny, N,, and D, which are defined in (69). Only
the zero-order ‘“‘wave function” is needed to calculate D,

]ﬂz
AO

— F
BB G- 1) ‘ -

which vanishes at 7=0 and T =7.. To see the
significance of this term, we parametrize w? by

2
vH

1-T |5
2A°(0)

+1B(yH)?, (80)

(/) _C()()

where A%0)=1.764kzT. is the zero-temperature gap.
Equations (77) and (79) imply that

gt A=h | FE L, 1485
5 A 5 1+AF%/5
AFS
l—A—y |1+ 52 , (81)

which is positive for all temperatures. This term corre-

| 3
+5

to lowest order in gp:

_@o (LDp(1,1)

D,= (Ao)z AV B VB U T (77)
It is also easy to show that Ny =0, and hence, as expect-
ed, that 1 =0.

The second-order field dependence of the longitudinal
NMR is more difficult to calculate because it involves
both the first- and zero-order ‘“‘wave functions.” From
the first-order eigenvalue equation, we find that the order
parameter d{; is given by a superposition of /=1 and 3,
J=2 components:

dii8)=C;>"s, +385,C 5,5, —1C2Y%, (78)
with tensors CJ‘u2 Y and C(2 3) written in terms ofB in

Appendix E. The spin den51ty eU—Dj wwSuSy contams
only a J=2 component, also given in Appendix E. Com-
parison with the work of Sauls and Serene’® reveals that
this first-order “wave function” corresponds to the m; =0
magnetic substate of the real squashing modes, which
have the resonant frequencies (%)I/ZAO in the absence of
interaction effects. Similarly, the first-order “wave func-
tion” of the m; =0 real squashing mode, calculated in FS,
includes a contribution from the longitudinal NMR. In
both cases the first-order “wave function” contains contri-
butions from order-parameter modes with different sym-
metry than the zero-order “wave function.” Since the fre-
quencies of the longitudinal NMR and the real squashing
modes are quite different, both sets of “off-diagonal” exci-
tations are off resonance. We shall see that these excita-
tions play a fundamental role in the collisionless dynam-
ics.

Using these results, we find that the contributions to
the second-order numerator N, are either zero order or
first order in gp. The zero-order part N’ can be written

(DU) 2

1—A—y |1+ (79)

5

2
xpg”

sponds to a nondipolar oscillation of the longitudinal
magnetization, which arises from the out-of-phase motion
of the normal quasiparticles and the spin resonance. The
torque exerted by the quasiparticle molecular field on the
nuclear spins produces a correction to the longitudinal
frequency, which vanishes at zero temperature. Formally,
this term remains finite when the dipole interaction is
turned off. However, since L"’(w) contains singular
terms proportional to 1/w™ (m <n), the perturbative ex-
pansion about wg breaks down unless w,/wo << 1, or

_YH ’

1[B(A%0))*+ Twi] A0 | < @3 . (82)

Therefore, in the formal limit gp—0, the expression for 8
remains valid only for vanishingly small values of the field
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and of the temperature such that (82) holds. Since S is
very flat for low temperatures and reaches a maximum at
T/T.~0.95 (see Fig. 4), its contribution to the NMR fre-
quency in the collisionless regime will usually be small.

It is straightforward but tedious to evaluate the first-
order part N5, which requires the dipolar corrections to
the functions Y?,, and A, given in Appendix D, as well as
the dipolar corrections to the spin density, given in Ap-
pendix E. Contributions to NY'’ which involve dipolar
corrections to A%(P) can be expressed in terms of the in-
tegrals K| and K,, which were evaluated in Sec. II. We
disregard contributions proportional to gp(A—1)(F$)?
which produce dipolar corrections to 8 and which involve
g5 corrections to the modified pairing interaction. The
evaluation of N4 is simplified if we ignore the explicit di-
polar contributions contained in the modified pairing in-
teraction (65), which produce negligible corrections of or-
der V. The final expressions for N4 and I, given in
Appendix F, include cutoff-dependent corrections propor-
tional to gDS‘T/( ViV3). Since these terms do not
significantly change I', the collisionless longitudinal fre-
quency depends only weakly on the cutoff. At T=0,
NP =0 and N simplifies, so that

where the (V,S2)/(V3R?) terms are neglected. Equation
(83) indicates that at low temperatures a magnetic field
suppresses the longitudinal NMR frequency.

Since the Fermi-liquid oscillation term 3 enhances the
longitudinal frequency, the 3 and I" contributions will ex-
actly cancel at a sufficiently large temperature T* (see

[0 o 1
0 I I I
) 025 0.50 0.75 1.00
T/,
FIG. 5. The quadratic coefficient I'(T) for the same three

cases as Fig. 4, with (V,5%)/(V3R?)=0.0.
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FIG. 4. The quadratic coefficient B(T) for F§= —0.7 and (1)
F$=0.20, x 7' = —0.60 (solid curve), (2) F§=0.50, x7'=—0.66
(dotted curve), and (3) F§=0.95, x3!=—0.75 (dashed curve).

These three sets give the same real squashing-mode frequency in
zero field (Ref. 34) if T, =1.04 mK.

Aa
1— 2

+5x35'D(0)

(83)

Fig. 6). At this temperature w, will vanish and the field
dependence of the longitudinal frequency will become
fourth order. Since T* is a strong function of F9$, as seen
in Fig. 6, lack of evidence for this field cancellation within
the collisionless regime can be used to place stringent lim-
its on |F9|. For example, because this effect has not

T
3 —
w?(H) 2 .
w?(0)
o | | |
(0] 025 050 075 100
T/Te

FIG. 6. The collisionless result for w*(H)/w*(0) at O bar for
the same three cases as Fig. 4 with (V15%)/(V3R?)=0.0,
T.=1.04 mK, and H=2.75 kG (9 MHz).
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been observed in the longitudinal NMR experiments of
Candela er al,* we can conclude that T*/T, >0.6 and
| F§ | <0.8 at O bar. The parameter dependence of 8 and
I" is shown in Figs. 4 and 5.

C. Field dependence of transverse NMR

The perturbation theory used to obtain the longitudinal
NMR frequency fails for the transverse resonance because
of the singular terms, proportional to H"/w™ (m <n), in
the nth-order effective Hamiltonian L‘"(w). Since the
transverse frequency is proportional to H, all orders of the
effective Hamiltonian will contribute to the numerators
N, and N,, invalidating (69a) and (69b). Unlike the lon-
gitudinal resonance, which is not affected by the singular
terms provided that w,/wg << 1, the transverse resonance
cannot, in general, be treated perturbatively.

At least to second order in field, however, the
coefficients of the singular terms vanish at zero tempera-
ture. Assuming this holds to all orders, we can solve for
the first-order frequency w; from the quadratic equation
Ny(w))=—w,D,=0 using (69b) at T=0. To simplify
this calculation, we work to zero order in gp, in which
limit spin-orbit symmetry requires that w=*yH, unal-
tered by interaction effects.

The results for the first-order “wave function” at T=0
are given in Appendix E. We find that the order parame-
ter d;j vanishes, but that the spin density e =D?,8,5,
contains J=1 and 2 components. Comparison with the
work of Sauls and Serene® reveals that the J=2 first-
order “wave function” of the m; =11 NMR corresponds
to the my; =11 magnetic substates of the real squashing
modes. Analogously, the first-order “wave function” of
the m; =1 real squashing modes, calculated in FS, con-
tains contributions from the transverse NMR. Of course,
the real squashing modes cannot be excited through trans-

J

gD daQ’ dQ
_6 2 —lN /\/\, ~ AN A
w’=6y’X 2ff a4 RBDI@AB)
where X(H)=0M /0H is the thermodynamic susceptibili-

ty. Cutoff-dependent corrections of order V, are neglect-
ed in (84). From this expression it is clear that dipolar
corrections to the equilibrium gap and to the effective field
do not contribute to the longitudinal NMR frequency in
the hydrodynamic regime.

In zero field, Eq. (84) can be readily solved to yield the
relation first found!3 by Leggett:

‘AP

verse NMR because a sufficiently high field sz(%)l/on
would destroy the B phase. Using the first-order “wave
function,” we find that w;=m,;yH to zero order in gp, in-
dependent of Fermi-liquid corrections and pairing interac-
tions, as required by spin conservation.

IV. HYDRODYNAMIC NMR

The original hydrodynamic theory!* of NMR was
designed for the high-temperature regime where
w7 << 1. Leggett and Takagi'? modified this theory in
order to treat the low-temperature, collisionless regime
where wrpr>>1. They suggest that as long as w <<A no
internal degrees of freedom of the order parameter will be
excited and a description of the spin dynamics based on
equations of motion for the spin S and the fi vector
should be valid. At T=0, when the normal component of
the superfluid vanishes, the authors expected this hydro-
dynamic description to become exact. In order to treat
finite temperatures, Leggett and Takagi introduced the
effect of spin relaxation to first order in 1/w7T.

In this section we obtain generalized results for the hy-
drodynamic longitudinal NMR frequency, including
higher pairing interactions and higher moments of the
quasiparticle renormalization factor. We do not consider
the finite-temperature refinements of Leggett and Takagi,
since we are primarily interested in comparing the col-
lisionless and hydrodynamic results at 7=0. We shall
see that in zero field the hydrodynamic calculation does
yield the correct zero-temperature frequency. However,
the field dependence of the longitudinal NMR in the col-
lisionless and hydrodynamic limits is different, even at
T=0.

Our starting point is the general expression of Legget
for the longitudinal NMR frequency squared:

t13

—q-AD)§:A:P)—[AX AP LIGXAD )]s},  (84)

]

At T=0, D(0O)=U(0) and A=1, so the zero-field hydro-
dynamic and collisionless NMR frequencies agree. Be-
cause of the A function in the denominator of (73), the
collisionless frequency is slightly larger than the hydro-
dynamic frequency at finite temperature, as shown in Fig.
3. At T =T, of course, both frequencies vanish.

In a finite field, the longitudinal frequency contams

contrlbutlons from the /=1 and 3 gaps proportional to R >

R2 and S7. Using the results of FS for the /=3 gap and the
Do | _ 27 &pK° (85) results of Sec. II for the field dependence of the Leggett

A° 4 (V)7 angle, (52), we find

J
2 2 : 2 2 s? 2 Fi i
— 3 _ _ 1 _ 12 042 —lp— < 206 __

w —lo’}/X (Vl)‘,‘ 8A1 2A3 78 F(Al) Y3/2.7C3 D 1+ 5 (‘}/H) (6—-54) (86)
When V3=S7=0, this relation agrees with Schopohl'® and, at T=0, with Pleiner and Brand.!! Because the quasiparti-

cles respond adiabatically to the spin resonance, no analogue of the Fermi-liquid oscillation term occurs in the hydro-
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dynamic limit. Comparing (86) with the collisionless result, we find the zero-temperature equality

2 2 sin26, (0) F$ ?
W) J _ o) | S0 0Ly FE
©X0) |, @X0) | 4sin’0, (H) 5 A
1 S 32, —1 4, —1y—1 13 3,1
X 1—_12 F[(l—f—ﬁ)(} )(1—3X3 ) -}-?‘——?X3 ] s (87)

f

to lowest order in ¥,. When x; =0, Eq. (87) reduces to DMR-84-51922, by Schlumberger-Doll, and by the Ma-
an intriguing relation between the collisionless and hydro-  terials Research Laboratory of The Ohio State University.
dynamic frequencies at 7=0. The author thanks D. O. Edwards and D. S. Sherrill for
It should have been expected that the second-order field  discussing their results prior to publication and J. A.

dependence of the longitudinal NMR frequency is  Sauls for many helpful and illuminating conversations.
different in the two regimes. First order in field, the lon-
gitudinal NMR couples to the m; =0 magnetic substate of
the real squashing modes, which have the noninteracting
frequencies (%)I/ZAO. Even at zero temperature the off-
resonance real squashing mode This appendix reviews the tensor notation. A spin sca-
lar T (p) with orbital angular momentum / can be written

APPENDIX A

d i ~[woH /(A°)]d 5

. . . T(ﬁ):tiluz'--u,ﬁulﬁuz o 'ﬁu, . (A1)
remains finite. The hydrodynamic theory assumes that
the order-parameter modes with resonant frequencies of
order A® are not excited by the NMR with the much  The tensor tlﬁ]“z"'ul is by construction traceless and sym-

smaller frequency wo. However, in the -collisionless metric in the indices {u,u3,...,u;}. Since T(P) is a
theory, the small “off-diagonal” excitation d;} contributes  spin scalar, the total angular momentum J equals /. A
a large correction to the field dependence of the longitudi-  spin vector V(p) with orbital angular momentum / can be
nal NMR. Since it contains both J=2 and 1 components, written

the collisionless NMR in a finite field can no longer be

simply described by oscillations of the spin S and the 1 ; A N

vector. Only in zero field and at zero temperature, when VitP)=Viuju; -~ wPuPuy """ Puy -

internal modes are unexcited and quasiparticles are ab-

sent, do the collisionless and hydrodynamic results agree.
The “off-diagonal” modes of the spin density and order

parameter are essential to the collisionless dynamics. We

have already seen that the first-order, J=2 spin density of

the transverse NMR is finite at 7=0. If these spin-

density modes were neglected, the transverse frequency

would differ from the Larmor frequency yH, and spin-

orbit symmetry would be violated. The symmetries of

3He-B are preserved in the collisionless regime only by the PVEH)=vl D Pubu P

complex interaction of internal modes and external forces. PI=buiin = w g PuiPuy U+

The hydrodynamic description of NMR in terms of mac-

roscopic vgriab]es that chara_cterige th equilibrium order +U‘31];213(’_ u,;lﬁu,ﬁuz .. 'l/’\uzq , (A3)

parameter is not appropriate in this limit.

(A2)

The tensor v,-[_ul,,2 ...y is also symmetric and traceless in
the indices {u;,u;,...,u;}. Since V(P) is a spin vector,
Jcanequal/ —1,/,and / + 1.

Because P-V(P) is a spin scalar that contains com-
ponents with orbital angular momentum /#+1, we can
write

+ . .
where vl(,’lg;zl’.[.). u;4, are symmetric and traceless in the /£1

indices. These tensors can be defined in terms of
V! wu,---u, by using (A2). The J=I/+1 tensor can be
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The J =/ —1 tensor is obtained by summing over two in- T
dices of the spin vector:

pU=11D _ / vl
uyuy ""171‘2[_'_1 JJuy Uyt

The J =1 tensor is then constructed by subtracting off the
J =I1=%1 contributions from the spin vector.

The simplest nontrivial example is the /=1 spin vector
D,~(f))=d,-},,ﬁu, which can be decomposed into J=0, 1,
and 2 components:

(A5) 100

075

dily=di} " +diy " +8u,d >, (A6) 050 |
where

diPV=4d} +dl)—18udik , (A7a)

d(l 1) %(dllu dul) , (A7b) 025 —‘

d*V=1di . (A7¢)

Using these relations, we see that the B-phase gap
A?(p)=A"R)p; contains J=0, 1, and 2 components. 825 050 075 o0
Tensors in the ‘“‘dipole representation” take §;=R ﬁ(ﬁk T/ T,

as the unit vector. The tensor associated with a spin vec-
tor (or scalar) is different in the two representations:

—p! 5 B P
Vi—vi,uluz-“ulpu]puz Py,

—an! TR
“‘wi,uluz'--ulsulsuz Su, > (AS)

where U’{”ll‘z"'“l and wi{“l“z”'“[ are tensors in the

momentum and dipole representations related by

FIG. 7. The A function and its frequency derivative evaluated
at gp =0 (see Appendix D).

Ui{ uypuy oy :wi{alaz cee a,ch)lu,Ré)zuz e Rr?IuI » (A9)
which mixes up different J components. For example the
gap in the dipole representation, given by A%8)=A%;, has

only a J=0 component.

APPENDIX B

In this appendix we collect the equilibrium results in zero field. The calculations of Sec. IT A yield the /=1 gap distor-
tion, given by (38), and the /=3 gap tensors given below:

—
9 gpR _ 3 gpS?
d(23)=d(23)____1_d(2,3)=_ "AO 1 e AO —1 1— 121 A 1 1— i 2Y —1 , B1
I >d 33 56 (.2 ¥3+ e y oy, B [1— & Y9x5 1= 4(A* Y x5 ] (B1)
a1t = —dth = — 341 — 345 = — 3% —3a 4}
p2 <2
. gpR - 0,808 ovo o2 ~1
= 2 (sin6}) AL Adx 5! — 25(sin6} )V1 v (ADYS x5 2 [1— HAD* Y x5 '], (B2)
diff =d%Y = —1d% = —4d it = — 4d 5 = —4d {1
45 gDR_I 0. —1 65 gD‘ST -2 0v2 A 00 _
=54 maos oo Xx3 HADPAYS L [1— AP YS x s )Y, B3
12 (7, X3+ o3 V1V3x3 (AN A3Y S ,2[1— (A Y3 ,0x3 ] (B3)

while all other components vanish. These results for the /=3 gap tensors are also valid in the rotated planar phase,
where A9=0 and sin6¢ = 1. Therefore the /=3 gap of the planar phase contains only J=3 components.
In Sec. III we require the /=3, B-phase gap tensors in the dipole representation, which are

R 3 S
(2,3) _ ,(2,3) 1,23 _ 9 &b 0, —1 &p
ejp” =ey3T =—5e53 A3+ —x3 A3 (B4)
: 16 (v,)? 56 (V,V3) ’
)
(3,3) (3,3) _ 4,033, _4,(33) _ 3.3 _ 4,3 _ 1 80S 1
ey =—ey 33 =—3er =311 =—4e1=4e3 1= -x3'A%sin6} , (BS)
4 ViV,
4,3 43)_ 1,43 _ 4,3) _ (4,3) _ (4,3)
6’(1133)=€(2233———793333——§€1111——%ezzzz———4€1122
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15 gpS? X! 0 L —17—1
== AJ[1—2 Y
12 v, Al AV YRaxs 17T (B6)
correct to first order in gp.
Using the equilibrium gap tensors to calculate the integrals J; defined by (30), we obtain the following expression for
N (P), valid to first order in gp:

N(p)=N0 (17—2) (A9) ag+ng3+7’gpg), (B7)
where
D2
9 gpR” | 3 gpS? X! i —17-1
= 2 &% 14 2(A9 1— $(A92YS
%= v e v, [T+ 2AN°Y x5 32X3 170,
52 i
45 gnR 225 8pS° | 042 17-1
— 225 1—£(A9)2Y?Y , BS
Be= =6 (V1 2a0Ys, T 224 Wy, <2 LT AYaaxsT ®Y
75 gDS 41 2 -1
_ — T 1—— Y .
Ve o4 V1V3 [ 02YS8,ox3 ']
We also note that
le, | <€ D2
" 1 21 gpR 3 gpS?
T Noz—-——— —[1— 2Y 1 71 A? ZYO
% 716 (Vn)z[ AD*YY x5 1+ = 56 V1,5 (AV) Y3, , (B9)

where the cutoff is introduced to regulate the otherwise logarithmically divergent integral.

APPENDIX C

In this appendix we calculate the dipolar corrections to the effective field. The mean-field relation for h(p), including
the contribution of the dipole forces to scattering in the particle-hole channel, can be written

vH- YH-oq

—hog=— 2(14+F%) +:T 2 f—{[ (PP aprp+ ngQ ®p" (Suv_3@u21\v)‘7gpagv}[g(ﬁ')]PB ’ (€D
I
where Q%(P-p’) is a quasiparticle renormalization factor. therefore, we are justified in ignoring the dipole interac-
The contribution of the dipole interaction in the particle- tion in the particle-hole channel.
hole channel is well defined and independent of the cutoff The dipolar corrections to h contained in g(p) can be

€., since the sum over ¢, in (C1) is convergent. Thus the calculated in a straightforward manner. The parameters
dipolar corrections generated by this term are (¥;)? times 0,, ©,, and O3 introduced in (54) are given by the set of
smaller than the gap-distortion corrections contained in coupled equations:

g (P), which are of order gp /(V;)%. To first order in V,

J

1
14+F§

Aa
0,= +(0,4+6, 3" (AD?Y Y, —3(AN* Y n(ag + 1B +27,)

+2(A3—-ADAYYS (1 — L A)+ 2e 5 ¥A0YS 4] - 1O, — L1 -2 4)0; , (C2)

a

A5
62=(61+92) 5

[(AD?Y2 —3(AD*YS 2@y + 3B, + 374

A3—AY
o=+
1

LeFVAYYS n(14+44)+ 453 A0YS,,(2— 3 A)]+26;4 (C3)

~f—

6;=(1-24)"6,+6,)

3(AN*Y (3B + Ly )+ (A —ADAYY S, (142 4)

+3eRVANYS (43 4)— FeBUALY S 02— 5 )] . (c4)
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The tensors e} and e describe the /=3 zero-field gaps in the dipole representation and ag, S, and Y¢ are the

coefficients in the expansion of N(P) (see Appendix B). In the limit gp—0, we recover ©;=D ~'(1+yF3/5),
0,=D "(1—y)F$/5, and ©;=0.

APPENDIX D

The results of Appendix B can be used to expand the functions Y,, ,» and A about gp =0. For the generalized Yoshida
functions, we find (m =3,5,...)

E—L‘m_, Yo, n—mY0n i nlag+Bepi+vep D), (D1)

where Y5 ,=T 3, (N°)™ /7™ ~!. For the A function we find

[ tanh[ﬁle )| x/2] 1 b 3% ) Say,
= [ ax, T Lao/2 | ) | P =112 0Ty g T @ B 3 YeP 3 Ao 1400, (D2

where A is the A function evaluated with gp =0. Note that dipolar corrections enter A through both wy and | A%P) | .
In Fig. 7 we plot Ao and (A%)*(3?A/dw3) versus T /T..

APPENDIX E

The components of the longitudinal order parameter d{; =C jf,,’s\,, +C ﬁww’s‘uﬁ,fw are given by
2

3imgyH 1+F$5/5 g AF$
(2,1) —1 1
= (DU)" (1—Ax3") + Ay, (E1)
“ T 3NN 14 AFS/S 3 7 17s
2
JiwgyH 1+4F$5/5 AF$ AF$§
C¥¥= (DU "x37! | 14+A—y +2A + Ay (E2)
T 32MA%)? 14+AFS/S } 7 5 V7S “
where
A :(6u35vabBl§;,1)+8u35uabB[(xl’”_isuu 83(1ng¢!’”) . (E3)
The longitudinal spin density e {; = Djzuvfuiv\u contains only the J=2 components DV” :ﬁzz =— %1533, where
Duv:‘zl‘(eujka,}U +£UjkD/(\2juZ) (E4)
and, through order gp,
1 2 _
« Fi yH AoF3 3 |wo AoF3
Dy =e3,,Bib V2 L2 |1 —= | = | U (©,4+6,) |1
33 €3 v 5 2A? + 5 16 AO ( 1+ 2) + 5
2
AoF5 AoF§
X(1=3hox3 1) [ Ao+ 1=y +24 2+y 5 2] ]—%(91+92)(1—J’)
AoF$ w§ 92
+ L(1—y)©,+6,)F}4 - : —29F+<ag+;ﬁg+%yg>(x0—1+y>
o
@} —1_ 3 1 3 Af—AY
— 301+ Ao+ 1-p)U 7" — (1 —y)O;— (0 +502)(1—y) o
8(AY) AY
+%(91+92)(A(1))4Yg/2(ag+%Bg+%}’g)+ AYYS pe 3V (0,—16,)
)\’ a
—2A9Y9,,e533(014+40,)+ U~ +OMFG+ 1O+ 16,) OSFZ'
A A9 A0
X [2(1=2o) “"%a—wg“ U+ 2B+ 57e) Ao+ 1—p)— 224 3A?—1
4 Ao 32 A
—7 a0e® ﬁrﬁe%” =
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where e} and eb%3)] are the zero-field gap tensors given in Appendix B.
At T=0 the transverse spin density e Pj :Dj!w,?u@‘,, contains the J=1 and 2 components,
DO — 1FED ( 0)_‘LB“1 (E6)
A°
D“'Z’ziF—gD(O)”IﬁB“’“ (E7)
i 6 5 AO i3 ’
3 3 K3 1]__ (1,1)
W="T6 s PO L0 (Bk3ejar Boa' " +83ekas Ba' ) E8
while the transverse order parameter d;; vanishes.
APPENDIX F
The result for N is given by
H goR? F3 |’
NV —p, | X B(ll)Bll) D 2| p-2
2 1 ZAO uv (Vl) 5
. )2
9 (A2 3% |[YFI |
x 1= S U
40 A aa)(z)
27y gt as b fag1oy —a BVT L s
£l 1 _ —ix - — _3
* 161 Ty 3 T Y, T Y A3
—IMF3(1— A[1—(1—y)x3']
AF3 (1—yp)?
+3 gm%(l—y)—m”——%/i—%n—ym
(A)?Y
— 3 71 =p)+30)(1— A)— A= 22 A —(1—p)P)xi!
3/2
. )2 7 2 , Fa 2
2 I 2
+ 45 —] (1—4)—¢ ‘+EU 5
1S?
X | = 1=F(1=px 3 T4 55 (1—p)x 3! VR —[1——(A1)2Y3/2x3 TS - N1 —y)x l]J
3
—1 1 VlS 17-1 —1 4 272 -1
+x3 | (1=y)1—A)+ Q=p)[1 =AY 3ox5 ' ][+ 4 —B(1—yx3 +E(1-y)Ax5 ]
56 V3R
1 V,S? (AD)?Y
L2 lima 32002 g parta—a || (F1)
56 y,R? 5 Yin
valid to lowest order in V', as explained in the text. The parameter I" introduced in (80) is defined by
8N(l) 0
410) (F2)
~ woD.,

where D,, is given by (77).
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