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Propagation of surface acoustic waves across random gratings
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The propagation of surface acoustic waves of sagittal and of shear horizontal polarization across
the grooves of a random grating is investigated theoretically. It is found that the attenuation rate
of a sagittally polarized surface acoustic wave in the long-wavelength limit is proportional to (ka),
where k is the wave vector of the wave and a is the transverse correlation length of the surface
roughness. This is in contrast with the (ka)' dependence of the attenuation rate found in this limit
for sagitally polarized surface acoustic waves propagating across a two-dimensional, randomly
rough surface. The dominant contribution to the attenuation rate of such a surface acoustic wave

comes from its scattering into bulk waves. The attenuation rate of surface acoustic waves of shear
horizontal polarization is found to be proportional to (ka) in the long-wavelength limit. The sur-

face roughness gives rise to the wave slowing of surface acoustic waves of both polarizations.

I. INTRODUCTION

The propagation of surface acoustic waves across ran-
domly rough surfaces has been studied theoretically by
several authors over the past 15 years. The propagation
of sagittally polarized surface acoustic waves (Rayleigh
waves) across a randomly rough surface was studied first
by Urazakov and Fal'kovskii' on the basis of Rayleigh's
metho(9. In a subsequent paper Maradudin and Mills
used a Green's-function method to solve the same prob-
lem. Both sets of authors found that the attenuation
rate of a Rayleigh wave on a randomly rough surface is
proportional to the fifth power of its frequency, in the
limit that its wavelength is longer than the transverse
correlation length of the surface roughness. However,
the work of Maradudin and Mills contained errors.
These were corrected in two papers by Eguiluz and
Maradudin, ' who used the Rayleigh method and the
method of effective boundary conditions in studying the
propagation of Rayleigh waves across a randomly rough
surface. In addition, these authors obtained the
roughness-induced change in the frequency of the Ray-
leigh wave as it progresses across the surface, a conse-
quence of surface roughness that had not been con-
sidered earlier by Urazakov and Fal'kovskii or by Mara-
dudin and Mills. They also showed that the dominant
mechanism for the attenuation of a Rayleigh wave on a
randomly rough surface is its scattering into bulk elastic
waves rather than into other Rayleigh waves. All of
these studies of Rayleight waves on a randomly rough
surface assumed that the surface is two-dimensionally
rough, i.e., that the equation defining it, x3=((x„xz),
contains a surface profile function g(x&, xz) that is a
function of both of the coordinates x, and x2 in the
plane of the mean surface x3 ——0.

The propagation of shear horizontal surface acoustic
waves across a randomly rough surface was studied first
by Bulgakov and Khankina. These authors considered
a one-dimensionally rough surface —a random
grating —whose defining equation, x3 ——g(x

& ), contains a

surface profile function g(x, ) that is a function of only
one of the coordinates in the plane x3 ——0. Both the at-
tenuation rate of the surface acoustic wave and its fre-
quency shift were obtained in this work. The former
was found to be proportional to the fifth power of the
frequency of the surface acoustic wave, in the long-
wavelength limit. The propagation of a shear horizontal
surface acoustic wave across a surface that is two-
dimensionally rough was subsequently studied by Har-
douin Duparc and Maradudin, and both the attenuation
rate and the frequency shift of the wave were obtained in
this work.

In this paper we study the propagation of sagittally
polarized surface acoustic waves (Rayleigh waves) across
the grooves of a random grating. The motivation for
carrying out this study is that experiments are currently
being carried out in which the attenuation of Rayleigh
waves on such surfaces is being measured. It is hoped
that the results of the present work will be helpful in in-
terpreting the results of these experiments.

For completeness we also reexamine the propagation
of shear horizontal surface acoustic waves across a ran-
dom grating. Although our final results are in agree-
ment with the earlier results of Bulgakov and Khanki-
na, our approach differs from theirs in that we do not
start with the small roughness limit as they do, but in-
stead obtain the homogeneous integral equation for the
Fourier coefticient of the displacement field in the medi-
um (within the Rayleigh hypothesis) for an arbitrary sur-
face profile. In addition, we show explicitly that in go-
ing to the weak roughness limit it is necessary to retain
only the term in the kernel of this integral equation that
is linear in the surface profile function g(x, ). The term
of second order in this function, which might be thought
to contribute to the same extent, is shown in fact to
yield a higher-order contribution.

The physical system we consider consists of an isotro-
pic elastic medium, characterized by a mass density p
and speeds of longitudinal and transverse sound cI and
c„respectively, that occupies the region x 3 & g(x, ) (Fig.
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P

& g(g)g(g') ) =2~&(g+Q')fi'g(
I Q I

},
where

(1.6)

xs= g{x]}
./~, .~,l~ —x,i~ ~~~f

FICx. 1. The physicai system studied in this paper.

g(IgI}=f «]e ''~(lx] I} (1.7)

is called the surface structure factor.
The general results we obtain in this paper will be

given in terms of an arbitrary function g(
I Q I

). How-
ever, in obtaining numerical results we will assume a
Gaussian form for W'(

I
x,

I ), viz. ,

8'(
I
x, I

) =exp( —x ] /a ), (1.8)

1). The surface x 3
——g(x ] ) is assumed to be stress-free.

We will be concerned with the propagation of surface
acoustic waves of sagittal polarization and of shear hor-
izontal polarization in the x& direction along this sur-
face.

The surface profile function g(x] ) for a randomly
rough surface is unknown in general. This forces us to
characterize it by certain statistical properties. Underly-
ing this characterization is the assumption that there is
not a single function g(x]) but rather an ensemble of
realizations of this function. Physical properties associ-
ated with a randomly rough surface are to be averaged
over this ensemble, and it is assumed that this ensemble
average does not differ significantly from the spatial
average over a single realization of g(x] ). The probabili-
ty that g(x] ) has a certain value at the point x ] is given
by a probability distribution function. An explicit form
for this distribution function will not be required for
what follows; its first two moments sum. ce for our pur-
poses. In common with most theoretical treatments of
surface roughness, ours is based on the assumption that
g(x] ) is a stationary stochastic process, and that the first
two moments of its probability distribution functions are

where the characteristic length a appearing in this ex-
pression is called the transverse correlation length. The
form of g(

I Q I
) that corresponds to the choice (1.8) is

found from Eq. (1.7) to be

g(
I Q I

)=~' a exp( —a Q /4) . (1.9)

This completes our description of the system underlying
the calculations that follow, and we now turn to those
calculations.

The outline of the remainder of this paper is as fol-
lows. In Sec. II we obtain the dispersion relation for a
sagittally polarized surface acoustic wave propagating
across the surface x, =g(x] }. The same calculation for a
surface acoustic wave of shear horizontal polarization is
carried out in Sec. III. A discussion of the results ob-
tained, in Sec. IV, concludes the paper.

II. SAGI'l I'AL POLARIZATION

In this section we obtain the dispersion relation for
sagitally polarized surface acoustic waves propagating in
the x, direction across the random grating depicted in
Fig. 1. The displacement field in this case has the form

&P, ))=0,
& g(x ] )g(x '] ) ) =6 8'(

I x, —x ']
I

) . (1.2)
u(x t ) {u ](x]ytx3

I
cl) )y 0 u 3(x ] ytx3

I
to) }exp( i tot)—

(2.1)
In Eqs. (1.1) and (1.2) the angular brackets & ) denote
an average over the ensemble of realizations of the func-
tion g(x] ). The quantity 5 appearing in Eq. (1.2) is the
mean-square departure of the surface from fatness,

&g'(x, ))=&'. (1.3)

We will also require the Fourier transform g(Q) of
g(x] ), which is defined by

g(x])= f g(Q)e'~ (1.4)

With the aid of the Fourier inversion formula and Eqs.
(1.1) and (1.2) it is readily established that g(Q) possesses
the following properties:

&g(g)) =o,

2

—co u3=(c, —c, )
BX )BX3

a' a'
+ Ct 2 +Cl

BX ( BX3

(2.2a)

(2.2b)

The conditions ensuring that the surface x3 =g(x] ) be
stress-free take the forms

in the region x3 ~ g(x] ). The displacement amplitudes
u ] 3 (x „x3 I

co ) satisfy a pair of coupled equations of
motion in this region:

~ = ~ a ~ a2 2 2

—Co u]= c] +cl ui+(c] —cl )
BX ) BX3 BX ) BX3

—c]g'(x]) +c, u]+ —(c] —2c, )g'(x]) +c,a a 2 2 ~ a 2 a
BX ) BX3 BX3 BX

y x3 ——g(x
1

j

=0, (2.3a}
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—c, g'(x&) +(ci —2c, )
2 ~ 2 2

Bx3 Bx )
u, + —c, g'(x) ) +ci2 ~ a 2 a

Bx ) Bx3 x3 ——g(x ) )

=0. (2.3b)

In addition, we require that u, 3(x,x3
~

co) vanish as x3 ~ 00.
The solutions of Eqs. (2.2) in the region x3 & g(x(),„ that satisfy the boundary condition at infinity can be written

as the Fourier integrals

lkx ) I (k, co)x 3
—a, (k, co)x3u((x)x3~ co)=e'[A&(k, co)e'''+A, (k,co)e''']2'

ikx( . ai(k ~) —a((k, co)x& —a, (k, co)x 3u3(xl x3 I
co) e Al k c0)e + A (k (L) e2'

(2.4a)

(2.4b)

where

1/2 2
k2 —~ CO

2 ~ 2
C1, t

(2.5a)

a, , (k, co)= '

2

1/2 2
CO

k
~1, t

(2.5b)

We now invoke the Rayleigh hypothesis2 and use the solutions (2.4) in satisfying the boundary conditions (2.3) at
the rough surface x3 ——g(x) ). The result is a pair of coupled homogeneous equations for the amplitude functions
Ai(k, co) and A, (k, co):

dk i.kx,
e

2m'

ig'(x() —aI (k, co)g(x
&

)

+2a&(k, co) +2a&(k, co) Ai(k)e
k c,2

a, (k, co)+ k
2ikg'(x ( )+

a& k, ccj

—a, (k, co)g(x ( )

(2.6a)

1kx )e
277

k +a, (k, co)
2a(( k, co )g'(x ( ) i-

k

—ai(k, co)g(x( )

k +a, (k, co) —a, (k, ~)g(x, )

a, k, co
(2.6b)

In writing Eqs. (2.6), to simplify the notation we have stopped indicating explicitly that Ai, i are functions of ~ as well
as of k.

To proceed farther, we introduce the representation

e ' = e 'I(a~g),2~'
where

I(a~g)= f dx, e 'e

so that

(2.7)

(2.8)

(2.9)

When we use Eqs. (2.7) and (2.9) in Eqs. (2.6), the latter become

dq, q„, dk I(ai(k, co)
I q —k ) I(a, (k, co)

~ q —k)f e' "' f '
(q —k)

2 +2qa&(k, co) Ai(k) +. 2qk — A&(k) =0,
2m 2n. kai k, co Ct a, (k, ~) c,2

(.

(2.10a)

CO2qk-
C

2

Ai(k)+I(a, (k, n))
~ q —k )

Q)
2qk —(q+k )

A, (k) =0 .
a, (k, co)

(2.10b)



7830 XUEMEI HUANG AND ALEXEI A. MARADUDIN 36

A, (q) =0,
1

On equating to zero the qth Fourier coefficient on the left-hand side of each of these equations, and then interchang-
ing the roles of the variables q and k, we obtain finally the pair of coupled, homogeneous, integral equations satisfied
by the amplitudes A&(k) and A, (k):

I I(ai(q, co)
i
k —q) ~~ I(a, (q, co)

i
k —q)

k —q +2k~', q, ~ 3, q + 2kq— (2. 1 la)
2~ qa, (q, ~) c a, (q, co)

dq I(ai(q ~)
I
k q)—

2kq-
27T q

2 1(a,(q, ~) ~k —q)
'

Al(q)+ z 2kq —(k+q ) A, (q) =0 .
c a, (q, co) Ct

(2.11b)

Within the Rayleigh hypothesis these are the exact equa-
tions for Ai(k) and A, (k). The solvability condition for
Eqs. (2.11) is the dispersion relation for sagittally polar-
ized surface acoustic waves propagating across the sur-
face defined by the equation xi =g(x, ).

To obtain this dispersion relation we invoke the small
roughness approximation, which is defined by the expan-
sion

g" (Q)=—g(Q) . (2.13b)

gM'p(k)Ap(k)=g f g(k —q)M'p(k
~
q)A (q)

P p 277

When Eq. (2.12) is used in Eqs. (2.11) the resulting equa-
tions can be written in the form

2

I(a
~

Q)= f dxie '
1 —ag(xi )+ g (xi)—

2
——,

' y f '
g '"(k q)—

p 277

2

=2~5(Q) —ag(Q)+ g '(Q)+
2

where

g'"'(Q)= f dxi e 'g"(x~ ),

(2.12)

(2.13a)

)&M'ci(k
~ q ) Act(q), (2.14)

where the indices a, )c3, . . . assume the values 1 and t
The matrices M' '(k), M "'(k

~
q), and M ' '(k

~ q ) are
given by

M"'(k) =
2ai(k, ~)

k +a, (k, co)

k

k +a, (k, co)

a, (k, co)
(2.15a)

M"'(k
~

q)=

(k —q) +2ka, (q, co)
CO 1

C,

ai(q, co)
2kq-

c, q

2kq-
C t

M
2kq —(k+q )

c 2

a, (q„co)

(2. 15b)

CO

(k —q) +2kai(q, co)
C

2
t

a&(q, co) CO

2kq — a, (q, co )
C

2

M"'(k ~q)=
2kq—

C

a,'(q, ~) CO

2kq —(k+q )

(2.15c)

Equations (2.14) [and Eqs. (2.11) as well] are stochastic integral equations because of the presence of the stochastic
function g(x&) in their kernels. The solutions Ai(k) and A, (k) therefore are stochastic functions also. We will not
seek the probability distribution functions of Ai, (k). Instead we will seek their first moments ( Ai, (k) ), which de-
scribe the propagation of the mean wave across the random grating. This suffices for obtaining the dispersion relation
of sagittally polarized surface acoustic waves across the random grating.

Our task therefore is to extract the equations satisfied by (Ai, (k)) from the equations, Eq. (2.14), satisfied by
Ai, (k). To accomplish this we introduce the smoothing operator P that averages everything on which it acts over the
ensemble of realizations of the surface profile function g(xi): Pf =—(f ). We also introduce the complementary
operator Q =1 P that projects out —the fiuctuating part of everything on which it acts. We first apply P to both sides
of Eq. (2.14):
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gM'p(k)PAp(k)=g f Pg(k —q)M"p(k
~
q)[PAp(q)+QAp(q))

P p 27T

——,
' g f Pg' '(k —q )M'

p (k
~ q )[PA p(q)+ QAp(q )] . (2.16)

We have used the identity A p(q) =PA p(q)+QA p(q) in writing this equation. We can simplify Eq. (2.16) by the use
of Eq. (1.5) and the result that

(g' '(k —q)) =5 2@5(k —q),
which follows from Eqs. (2.13a) and (1.3). We obtain

(2.17)

gM'p(k)PAp(k)=g f Pg(k —q)M~p(k
~
q)QAp(q) —

—,'5 gM'p(k
i
k)PAp(k)+o(5 ) . (2.18)

We have neglected the term Pg' '(k —q)QAp(q) on the right-hand side of Eq. (2.16) because, as we will see below,
QA p(q) is of O(g), and we will work only to O(5 ).

We next apply the operator Q to both sides of Eq. (2.14), keeping in mind that we need QA p(q) only to first order
in g(x, ) to obtain the right-hand side of Eq. (2.18) to O(g ):

y M."p(k)QA p(k) =y f q Qg(k q)M."p—(k
~
q)[PA p(q)+QA p(q)]

P p 2'

=g f g(k —q)MI'J(k
i q)PAp(q)+o(5) .

p 7T
(2.19)

When we substitute the solution of Eq. (2.19) into Eq. (2.18), and use Eq. (1.6) we obtain the equation sought;

gM'p(k)(Ap(k)) =5 g f g( i@—q i
)M"'(k

i
q)[M' ' '(q)]„~'p'(q i@)(Ap(k))

——,'5 gM'p)(k
i
k)( Ap(k))+o(5 ) . (2.20)

That this is an algebraic equation rather than an integral equation is due to the restoration of infinitesimal trans-
lational invariance by the averaging process.

The inverse of the matrix M ' '(k) can be written in the form

C p(k, co)
[M' ' '(k)] p

——

where

—k[k +a, (k, co)]

D(k, co) =4k ai(k, co)a, (k, co) —[k +a, (k, co)]

and the matrix C(k, co) is

2k a, (k, co)
C(k, co) = —a, (k, co)[k +a (k, co)] 2kal(k, co)a, (k, co)

(2.21)

(2.22)

(2.23)

The vanishing of D(k, co) is the dispersion relation for Rayleigh waves on a planar, stress-free surface of a semi-
infinite, isotropic elastic medium. Equation (2.20) can therefore be written in the form

pm'p'(k, co)( Ap(k)) =5 pm p(k, co)( Ap(k)),
P P

where

(2.24)

2a, (k, ~)X,(k, ~)
~ (0)m (k, co)= 2 2 k )

X((k,co)

k +a, (k, co)
X,(k, co)

2kX, (k, co)

(2.25)
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and

XI, (k, co) =1+—,'5 ai, (k, co), (2.26)

Since the right-hand side of this equation is explicitly
proportional to 5, we can set X«(k, co)=1 in Eq. (2.32)
to obtain a dispersion relation correct to this order, viz. ,

while

m p(k, co)= f gM "(k
i q)C„(q, co)

2rr D q, co

&&M'p'(q
~

k ) . (2.27)

dq g(~k —q~)
2' D(q, co)

)& gN cr(k;q
~

co)Ns (q;k
~

co),
a,P

where

N &(k;q
~

co)=g C „(k,co)M„'~(k
~
q) .

(2.33a)

(2.33b)
The dispersion relation for sagittally polarized surface

acoustic waves propagating across a random grating is
obtained by equating to zero the determinant of the
coefficients in Eq. (2.24). For this purpose we use the re-
sult

~

m' ' —5 rn
t

=
~

m I '
~

[1—5 Tr(m' ' 'm)+O(5 )] .

Equation (2.33) is the dispersion relation we would have
obtained directly if we had omitted the last term on the
right-hand side of Eq. (2.12) at the outset.

We will solve Eq. (2.33) for co as a function of k by
setting

(2.28) cos(k) =coo(k)+5 A(k), (2.34)

Now we have

X,(k, co)X, (k, co)
~

rn'0'(k, co)
~

= D(k, co)

while

(2.29)

where coo(k) =cz k is the solution of the equation
D(k, coo(k))=0, so that c~ is the speed of Rayleigh
waves on a planar surface. The subscript S here denotes
sagitall. The equation for cR is obtained by substituting
co=cRk into the equation D(k, co)=0, and takes the
form

m ~0~-'(k, ~)= X -'(k, ~)C(k, ~),
D (k, co)

where

(2.30) g —8g"+8(3—2A, )g —16(1—A, )=0
when we introduce the notation

(2.35)

X '(k, co)=
XI '(k, co)

X, '(k, co)
(2.31)

cR c,
(2.36)

Thus the dispersion relation takes the form

D(k, co) =5 Tr[X '(k, co)C(k, co)m(k, co)] . (2.32)

g' is that solution of Eq. (2.35) that satisfies the condition
0&/& 1. When we substitute Eq. (2.34) into Eq. (2.33),
we find that b, (k) is given by

BD(k, co)

BQ) N =MO( k)

N p(k;q i
co)Np (q;k

~

co)

277
g([k —q /) D(q, co)

7
co =coo(k)

(2.37)

to lowest order in 6 .
The derivative BD(k, co)/Bco can be written in the form

BD(k, co)

Bco

It follows that

ai(k, co)+A. a, (k, co)

ai(k, co)a, (k, co
(2.38)

BD (k, co)

Bco 0

k
, , [g' —6/4+4(3 —2A, ')g' —4(1 —A, ')] .

ci (2—g )

(2.39)

We can simplify this result by using Eq. (2.35). In this way we finally obtain

where

aD(k, ~)
Bc() co= coo(k)

k
G(g, X),

cr
(2.40a)

G(g, A, )= [g' —2(3 —2A, ')g'. +6(1—A, ')] .
(2 —g')'

(2.40b)
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Thus, Eq. (2.37) becomes

N p(k;q
~
c&k)N&. (q;k

~
c&k)

h(k) =-
G(g, A }k3 2m.

p D(q, cgk )
g( k —q ) (2.41)

At this point it is convenient to introduce dimension-
less variables according to

X Xk= —,q= —u,
a a

(2.42)

where k, and therefore x, is assumed to be positive.
Equation (2.41) is transformed thereby into

4

b(k)= — I du g((x/a)
~

1 —u
~

)

n.",'(u )e,".'(u )xg
p do(u)

(2.43)

Explicit expressions for do(u}, 'nO1( }u, and h '&(u) are
given in the Appendix.

Equation (2.43) gives b(k) for an arbitrary surface
structure factor g(

~ Q ~

). The numerical calculations of
h(k) in this paper will be carried out on the basis of the
Gaussian form for this function given by Eq. (1.9). In
this case Eq. (2.43) becomes

fork, g& ~u
~ &g,

2 g2)1/2 ~

(g2 2)1/2

(
2 g2g2 )

1/2
(

2 g2g2 )
I /2

and for
~

u
~

& A,g,

(2.47)

of a Rayleigh wave on a randomly rough grating is

1 5
cps (k ) =c„k 1—

2
x I(x), (2.45)

2 1rgG(g, A, ) a2

to lowest nonzero order in 5.
The integral I(x) was evaluated numerically. The

infinite range of integration was divided into five inter-
vals: ( —oo, —g), ( —g, —A,g'), ( —kg, A,g), (A,g, g), and
(g, oo). This is because the functions (u2 —g2)'/ and
(u —A. g )'/ have different forms in these intervals.
According to Eqs. (2.5) we have, for

~

u
~

& g,

(
2 g2)1/2 (

2 g2)1/2

( 2 g2g2)1/2 (
2 g2g2)1/2

1 xh(k) = —c~ k I(x),
2&ngG(g, A, ) a

where

(2.44a) (
2 g2)1/2 ~ (g2 2)1/2

(u 2 g2g2)1/2 -(g2g2 2)1/2
(2.48)

n'.O1(u)e ".'(u)
I( ) J d —x (1 —u) /4y

QO do(u)

(2.44b)

It follows from Eqs. (2.34) and (2.44) that the frequency

The expressions for do(u), n'i'(u), and h 'i'(u) given in
the Appendix are those for

~

u
~

&g'. They must be
modified according to Eqs. (2.46) —(2.48) in the corre-
sponding intervals of u.

In addition, when
~

u
~

&g, do(u) has simple zeros at
u =+1. In fact, in this interval we have

1

do(u)
N(u

~ g, A) 1

16(1—A, )u —8(3—2A, g u +8/ u
(2.49)

where

N(u
~ g g) 4 2( 2 g2g2)1/2( 2 g2)1/2

+(2u2 g2)2

Equation (2.49) can be rewritten as

1

do(u)

where

N(u
i g, A, ) 1

8g D(u
i g, A) u —1

D(u
~ g, A, )=[/ —2(3 —2A, )g +6(1—A2)]

—[(3—2A, )g —6(1—A, )](u —1)

+2(1—A, )(u —1)

(2.50)

(2.51)

(2.52)

1

do(u)
N(u

~ g, A) 1

16$ D(u
~
g, X) u —1 i0—

T

N(u
~ g, X} 1

16$ D(u
~ g, g) (u —1)p

1

u +1+iO

1

(u+1)p

[5(u —1)+|l(u+1)],1

7

(2.53)

where 1/(x)p denotes the principal part of 1/x. This is
the form for do '(u) that was used in the region

I
u

I
&4.

The integral I(x) is therefore complex,

I

with the poles at u =+1 in the expression is to rewrite it
as

From Eqs. (2.5) it is found that the correct way to deal I(x)=I1(x}+iI2(x) . (2.54)
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Its real part is associated with the roughness-induced
change in the frequency of the Rayleigh wave. Its imag-
inary part describes the roughness-induced damping of
the Rayleigh wave caused by its scattering into bulk
waves (the contribution from the interval

~

u
~

&g) and
into other Rayleigh waves (the contribution from the in-
terval ~u

~

&g').
In Fig. 2 we have plotted I&(x) and Iz(x) as functions

of x for the case where A, = —,
' (the Poisson case), for

which g=(2 ——'~3)' =0.919402.
It is convenient to rewrite Eq. (2.45) in the form

-0.2

-0.4

-0.6
3

-0.8

I
'

I
'

l
' I ' I '

I
' I

$2 $2
co@(k)=czk 1+ co&(x) t —coz(x)a2 a

where

(2.55)
-1 2--

I s I
s

I
I

I s I s I s I s I s I s I

I
'

I
'

I
'

I
'

I '
I

'
I

x I, (x)
co,(x)=-

2~mgG(g, A, )

x Iz(x)
coz(x)=

2~m.g'G(g, A, )

(2.56a)

(2.56b)

are universal functions of x =ka. In Fig. 3 we have
plotted co,(x) and coz(x) as functions of x for A, = —,

'. In
plotting coz(x) we have plotted the contribution associat-
ed with the scattering of the Rayleigh wave into other
Rayleigh waves, co&"(x), as well as the total function. It
is clearly evident that the contribution coz'(x) is dom-
inated by the contribution associated with the scattering
of the Rayleigh wave into bulk waves.

0.5

0.4
CV

3

0.2

O. l

0.0
0

I I I I I I

10

50 s
i

s
1

s
1

s
1

t
1

s i I l I (

FIG. 3. The functions ~1(x) and co2(x), defined by Eqs.
(2.55) and (2.56) of the text, for Rayleigh waves on a random
grating, when k = 3.

2.0

x 1.0
III. SHEAR HORIZONTAL POLARIZATION

0.0

-1.0

In this section we consider the propagation of shear
horizontal surface acoustic waves across the random
grating depicted in Fig. 1. The displacement field in this
case has the form

s I s I s I s I s I I I
s

I
~

I
s

I
s I

s
I s I I I s I s I s u(x;t)=(0, uz(x»x3

~
co)s 0)exp( icut)—(3.1)

0.0 in the region x3 & g(x, ). The time-independent equation
of motion satisfied by uz(x „x3

~

co) in this region is

-0.4
CV -0.6

a' a'—CO Q2=Ct + Q2
a 2 a 2

(3.2)

-1.2 The stress-free boundary condition at the surface,
x3 ——g(x, ), can be expressed in the form

-1.6

-2.0
s I I I s I s I s I I I I I. I I I I I

a a—g'(x') +
Bx ) Bx3 x3 ——g(x I )

(3.3)

4 6 8 IO

FIG. 2. The functions I, (x) and I2(x) defined by Eqs.
(2.44b) and (2.54) of the text, for I, =

3
.

In addition, we require that uz(x&, x3 ~co) vanish as

X3 —+ op.
The solution of Eq. (3.2) in the region x3&g(x, )

can be written as the Fourier integral
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dk ikx
&

—a, (k,~)x3
ui(x„xq

l

co)= A(k, co)e
277

(3.4)

&&[ —g'(x, )ik —a, (k, co)]=0 . (3.5)

where a, (k, co) has been defined in Eq. (2.S).
We now invoke the Rayleigh hypothesis and substitute

the expression (3.4) into the boundary condition (3.3).
The result is

dk ikx) —a, (k, cu)g(x()
A(k, co e2'

in the preceding section to both sides of Eq. (3.8) in turn,
and using the fact that A (q, co) =PA (q, co)+QA (q, co):

t 2

a, (k, co)PA (k, co) = f Pg(k —q) kq — QA (q, co)
277 2

——,'5 a, (k, co)PA (k, co), (3.9a)

2

a, (k, co)QA (k, co) = f Qg(k —q ) kq — PA(q, co).2' c 2

With the use of the representations (2.7) and (2.9) Eq.
(3.5) becomes

Nqk—
2

e ' Ia, k, cu q —k A k, co=0.
2m 217 ai(k, co

(3.6)

(3.9b)

In writing Eq. (3.9a) we have used the fact that
(g(k —q)) =0, and that (g( '(k —q)}=5 2n5(k —q).
We have also omitted a term in QA(q, co) from the
right-hand side of Eq. (3.9b) as of second order in g(Q),
since we need QA (k, co) only to first order in g(Q) to ob-
tain a right-hand side of Eq. (3.9a) that is of O(g ). The
solution of Eq. (3.9b) is

When we equate to zero the qth Fourier coefficient on
the left hand -side of Eq. (3.6), and subsequently inter-
change the roles of q and k, we obtain the following
homogeneous integral equation for the Fourier
coefficient A ( k, co ) of the displacement component
uz(x»xi

l
co):

QA (k, co ) = 1

ar k, co

CO

)& f g(k —q ) kq — PA (q, co),2' Ct

(3.9c)

2——,'f qg("(k q) kq—2 277 C
2

Xa, (q, co)A(q, co) . (3.8)

kq

I a, q, m k —q Q q, ~ =Q. 3.7
2m

' ' a, (q co)

Within the Rayleigh hypothesis this is the exact equa-
tion for A(k, co). The solvability condition for Eq. (3.7)
is the dispersion relation for shear horizontal surface
acoustic waves propagating across the surface de6ned by
the equation x& ——g(x) ).

To proceed farther, we invoke the small roughness ap-
proximation (2.12) and study the equation

2

a, (k, co) A (k, co) = f g(k —q ) kq — A (q, co)
277 C

,'5 a, (k, co)( A—(k,co) ), (3.10)

where we have used Eq. (1.5). The dispersion relation
for shear horizontal surface acoustic waves on a random
grating is therefore

a (k co)=5 f l kq-
2m a, (q, co)

2
CO

C
2

where we have again used the fact that (g(k —q)) =0.
When Eq. (3.9c) is substituted into Eq. (3.11a) we obtain
the equation satisfied by ( A (k, co) ):

a, (k, co)( A (k, co) ) =5 f dq g(lk —ql)
2ir a, (q, co)

2
CO

X kq — ( A(k, co) }
C

2

Equation (3.8) [and Eq. (3.7) as well] is a stochastic in-
tegral equation because of the presence of the stochastic
function g(x() in its kernel. The solution A (k, co) is
therefore also a stochastic function. As in our discus-
sion of sagittally polarized surface acoustic waves in the
preceding section we will not seek the probability distri-
bution function of A(k, co); instead we will limit our-
selves to obtaining its first moment ( A(k, co)), which
describes the mean wave propagating across the random
grating. This suffices for obtaining the dispersion rela-
tion of shear horizontal surface acoustic waves on the
random grating.

We begin by applying the operators P and Q defined

——,'5 a, (k, co) . (3.1 1)

However, since a, (k, co) is itself of O(5 ) we can drop
the second term on the right-hand side of this equation
as ultimately of O(5 ), to obtain the dispersion relation
finally in the form

f d«(
l
k q l

)
kq — —

. (3.12)
2m a, (q, co)

Equation (3.12) is the dispersion relation we would have
obtained if we had dropped the second term on the
right-hand side of Eq. (3.8) from the outset.
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When 5=0 (a planar surface), this equation reduces to
aI(k, co)=0. The solution of this equation, co=c,k, is
not the frequency of a surface acoustic wave, but instead
is the frequency of a surface-skimming bulk transverse
acoustic wave. As we will now see, the effect of surface
roughness on this wave will be to convert it into a sur-
face acoustic wave.

We will solve Eq. (3.12) for co as a function of k, by
setting

2

=k —5 b, (k)
C

from which it follows that

3/2 —x Q

d2(x) = f du
(1—u)'

~/2 . 2. 4
dg sin4g e

—x sm 8
0

and we have defined ka =x.
If we write cosH(k) as

IIIsH(k) =cosiHi(k) —ico~sHi(k),

we have
r

cosH(k)=c, k 1 —— x [di(x)—dz(x)]~a4

(3.19b)

(3.20)

(3.21a)

cosH(k) =c,k 1 —54b, (k)
2k

(3.14) 4g4C
~sH(k)= —

4
—x d, (x)d2(x) .~a4 a

(3.21b)

b (k) = b, ,(k)+ id ~(k),
where

~(k) f —
d g(l —ql) (k k )

2m(q —k )'

+f dq (kq —k )
2~(q2 k2)1/2

~ (k)
"

dq
g(lk q I) (k

—
k )

2~(k2 2)1/2

(3.15)

(3.16a)

(3.16b)

to lowest order in 6. If we make the changes of vari-
ables k —q =2ku and k —q = —2ku in the first and
second integrals on the right-hand side of Eq. (3.16a), re-
spectively, and the change of variable k —q=2ku in the
integral on the right-hand side of Eq. (3.16b), we obtain
the simpler expressions

2k ~ u /g(2ku)
(u —1)'

to lowest nonzero order in 5. The subscript SH here
denotes shear horizontal. When Eq. (3.13) is substituted
into Eq. (3.12) the equation for b, (k) that results can be
written as d, (x)- —

—,'lnx +0(1),
X

d2(x)- — x +O(x ) .
3m 35m , 4

8 128

It follows that in this limit

(3.22a)

(3.22b)

2.0 i.

I .0

0.0

—
I 0

-2.0

The asymptotic forms of d, (x) and d2(x) for small x
are readily obtained. We find that

u / g(2ku )+ du (u+1)'
2k i

d
u g(2ku)
(1 —u)'

(3.17a)

(3.17b)

0.0
~ I ~ I I ~ I I

I ~ l I ~ g
'I I I

I ~ I 4 I ~ I ~

I ' I ' I I

2x4
b, , ~(k) = d, 2(x),

&7ra '

where

(3.18)

If we assume for g( Q l
) the Gaussian form given by

Eq. (1.9), we obtain finally that

—0.8

—l.2
N

D
—l.6

—2.0

3/2 —x Q 3/2 —x Q

d, (x)= f"du" ' „, + f"du"
(u —1)'" o (u+1)'"

—2.4

-2.8
1 I I I I I I I I I I I 1 I I I I I

=2 f d8cosh He
0

2 4 6 8 IO

QO+2 dOsinh Oe
0

(3.19a) FIG. 4. The functions d&(x) and d2(x) defined by Eqs. (3.19)
of the text.
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.8, ~ I, ~ s I, i, s, s, I se2.

2.4

2.0

1.6

1.2

0.8

0.4

0.0

I I I I i I I I I I I I I I I l I I I04
0 2 4 10

FIG. 5. The functions co&(x) and co&(x), defined by Eqs.
(3.24) and (3.25) of the text, for shear horizontal surface acous-
tic waves on a random grating.

4

cosH(k)-c, k 1 ——
~ x(i) 2 5

vl a
(3.23a}

4

rosH(k) -c,k — x(~) 3 & 4

2a4 (3.23b)

In Fig. 4 we have plotted d, (x) and dz(x) as functions
of x, while in Fig. 5 we have plotted the universal func-
tions co, (x) and coz(x) defined by

g4 g4
cosH(k) =c,k 1+ cubi(x) —

& coz(x)a4 a4
(3.24)

so that

co, (x ) = ——x [d, (x ) —d z (x )], (3.25a)

coz(x)= —x d, (x)dz(x) . (3.25b)

These results will be discussed in the following section.

IV. DISCUSSION

The most striking difference between the results ob-
tained in this paper for the propagation of a Rayleigh
wave across a random grating and the results of Refs. 1

and 3 —5 for the propagation of a Rayleigh wave across a
two-dimensional, randomly rough surface is in the
roughness-induced attenuation rate of the Rayleigh
wave. In contrast to an attenuation rate that is propor-
tional to (ka) in the limit of small ka obtained in the
latter case, we find here an attenuation rate that is pro-
portional to (ka) in the same limit. This result can be
seen from the following evidence. The contribution to

Imdo '(u) from the region
~

u
~

& g, given explicitly by
Eq. (2.53), has delta-function contributions at u =El.
The remainder of the integrand in the definition (2.44b)
of I(x) is real for these values of u. It follows that the
contribution to Iz(x)=ImI(x) from this range of in-
tegration is nonzero and finite at x =0. Similarly, the
results of a numerical integration yield a nonzero, finite
value for Iz(x) as x —+0 (Fig. 2). The factors of x, multi-
plying I(x) in the definition of coz(x), Eq. (2.57), together
with Eq. (2.55) yield the above-mentioned proportionali-
ty of the attenuation rate to x =(ka) in the limit as
k 0.

The physical origin of the difference between the re-
sults obtained in the present work and that of Refs. 1

and 3—5 lies in the fact that the frequency dependence of
Rayleigh scattering in d dimensions is co"+'. The ridges
and grooves responsible for the scattering of a Rayleigh
wave in the present case are two-dimensional, since they
are defined by the equation x

&

——g(x, ). The protuber-
ances and indentations responsible for the scattering in
Refs. 1 and 3—5 are three dimensional, since they are
defined by the equation x i =g(x „xz ). Thus the Ray-
leigh scattering law in the present case gives us an co

frequency dependence of the scattering rate in the low-
frequency, long-wavelength limit. The remaining factor
of co arises because the penetration depth of the Rayleigh
wave into the solid is of the order of its wavelength
parallel to the surface.

A similar explanation can be given for the (ka)
dependence of the attenuation rate of shear horizontal
surface acoustic waves on a random grating in the long-
wavelength limit, Eq. (3.23b). It just has to be remem-
bered that the penetration depth of this wave is propor-
tional to the square of its wavelength parallel to the sur-
face [a,(k, co) is proportional to k in this case; see Eqs.
(2.5), (3.13), (3.18), and (3.22)].

Apart from the difference in the x dependence of the
attenuation rates the results obtained in this work and in
Ref. 5 for Rayleigh waves are quite similar. The func-
tion ar, (x} is negative here, as it is in Ref. 5. This means
that the Rayleigh wave on a random grating is slower
than it is on a planar surface. The function co,(x) also
displays structure in its dependence on x that is similar
to that found in Ref. 5. The function coz(x) also has a
dependence on x that is similar to that found in Ref. 5.
It tends to zero (as x ) when x ~0 and also when
x —+ m, and has a maximum at an intermediate value of
x that is close to the value of x (=8) at which coz(x) has
a maximum in Ref. 5. This behavior is accounted for by
the fact that as x ~0 the wavelength of the Rayleigh
wave is much larger than the transverse correlation
length a and it therefore sees a planar surface on which
it is undamped. In the opposite limit of very short
wavelengths the Rayleigh wave rides adiabatically over
what it sees as a locally flat surface and is again un-
damped. Finally, as in Ref. 5, the dominant contribu-
tion to the attenuation rate of a Rayleigh wave on a ran-
dom grating comes from the scattering into bulk elastic
waves rather than into other Rayleigh waves (Fig. 3).

In connection with our results for shear- horizontal
surface acoustic waves on a random grating, we note
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A1, (k, ro) =2' g A„""(q,co)5(k —q„) (4.1)

that they coincide with those obtained by Bulgakov and
Khankina, except for a factor of 2 difference between
the numerical coefficients in eos(H)(k) in our Eq. (3.23) and
their Eq. (15). We also note that, since in the absence of
surface roughness a shear horizontal surface acoustic
wave cannot exist in the approximation maintained
here, the attenuation of the roughness-induced shear
horizontal surface acoustic waves studied here is due en-
tirely to their scattering into bulk elastic waves. These
waves also display the phenomenon of wave slowing
[co,(x) (0] for small x, and indeed it is this wave slowing
that binds them to the surface [Rea, (k, ro)) 0]. It fol-
lows that for larger values of x (x & 1), when eo, (x) be-
comes positive, we no longer have a surface acoustic
wave.

We also note that in order to obtain a dispersion rela-
tion that is correct to O(5 ) in both the sagittal and
shear horizontal polarizations, it suffices to expand the
integrand in the integral I(a

i Q) defined by Eq. (2.8)
only to first order in g(x1). In each case the term of
O(g (x, )) which would seem at first glance to contribute
to O(5 ) has been shown in fact to contribute to the
dispersion relation in a higher order in 5 . A similar re-
sult had been obtained earlier for the propagation of
Rayleigh waves across a two-dimensional randomly
rough surface, and for the propagation of surface polar-
itons across a classical grating. '

We also note that if we substitute the expansions

8, Eqs. (2.11) and (3.7) could provide a convenient start-
ing point for theoretical investigations of acoustic sur-
face shape resonances. These are vibrational modes that
are spatially localized in the vicinity of an isolated ridge
or groove on an otherwise planar surface of a semi-
infinite elastic medium. Although the electrostatic, '

electromagnetic, ' ' and magnetostatic' versions of
these modes have been studied by now, their elastic
counterparts are as yet untouched.
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APPENDIX

We record here the expressions for d0(u), n'&(u), and
R' '&(u) that enter Eq. (2.43):

(u) 4u 2(u 2 /2/2)1/2(u 2 $2)1/2 (2u 2 $2)2

n1'p)(u)=2(1 —g )' [2u +g (1—2A, —u )]
—(2 —g )(2u —g )(u —A, g )'

n (0)(u ) —2( 1 g2)1/2(2u g'2)(u 2 g2)1/2

—(2 —g )[2u —g (1+u)],
into Eqs. (2.4) and (2.11), and the expansion

A (k, )r=o2n. g A„(q, ro)5(k —q„)
n = —oo

(4.2)

n,(101(u)= —(2 —g )[(1—2A, )g —g u+2u ]

+2( 1 g2g2)1/2(2u g2)(u 2 g2(2)1/2

into Eqs. (3.4) and (3.7), where q„—=q +(2m.n/a), and
represent g(x1) in tl;e form

g(x, ) = g g(n)e (4.3)

the resulting equations for the amplitudes I A„""(q,co)]
and [A„(q,ro)I yield the displacement fields and disper-
sion curves for Rayleigh waves and for shear horizontal
surface acoustic waves propagating across a classical
grating of period a. The equations obtained, in fact,
coincide with those obtained in Refs. 11 and 12, respec-
tively.

Finally, it should be mentioned that in the case that
g(x1) is a deterministic, but nonperiodic function of x1,
that is sensibly zero for

~
x,

~

greater than some length

n,', '(u)= —(2 —g )(2u —g )(u —g )'

+2(1—A, g )' [2u —g (1+u )],
& 1110'(u)=2u(u —g )' [u[2+.(1 —2A, )g ) —g ]

—(2u —g )(2u —g )(1—A, g )'

fi' (0)(u ) 2u (u 2 g2)1/2(2u g2)( 1 g2)1/2

—(2u —g )[2u —g (1+u)],
8'I1)(u)= —(2u —g )[u [2+/ (1—2k )]—g ]

+2u(u 2 g2g2)1/2(2u g'2)(1 g2g2)

R'I, '(u)= —(2u —g )(2u —g )(1—g )'/

+2u(u —A, g )'/ [2u —g (1+u)] .
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