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Calculations of the transmission of ultrasonic energy through ferromagnetic metallic slabs in the
normal conductivity regime have been compared with experimental results. The longitudinal
sound was generated by incident microwaves at the slab's front surface and subsequently detected
by the reemission of microwaves at the back surface. The configuration studied was the one in
which the applied magnetic field and microwave magnetic field were parallel and both were in the
slab's plane. The sound was generated through the stress arising from the inhomogeneous Zeeman
energy at the slab's surface. The reemission at the back surface was proportional to the volume
magnetostriction and bulk modulus. Neither the magnetoelastic constants B& and Bz, the imbal-
ance between the Lorentz force and the electronic collision force on the lattice, nor the antisym-
metric stress tensor terms played a significant role in the transmission. Comparison of the calcula-
tion to experimental data on iron indicate that the electronic attenuation of 9.4-CxHz longitudinal
sound is =0.05 dB/pm at room temperature. The experimental data also suggest that work
hardening iron tends to increase the volume magnetostriction appreciably.

I. INTRODUCTION

This paper deals with the intercon version of mi-
crowaves and sound waves in ferromagnetic metals. The
emphasis is on the configuration in which the microwave
magnetic field is parallel to the static magnetic field and
both fields lie in the plane of the sample surface. This is
known as the parallel-parallel configuration. The case
where these fields are perpendicular is well under-
stood. '

The coupling between microwaves and sound waves
arises from four sources: (l) the spatially inhomogene-
ous Zeeman energy which gives rise to a force on the lat-
tice, (2) the magnetoelastic coupling, (3) the imbalance
between the Lorentz force and the electronic collision
force on the lattice, and (4) the interchange of angular
momentum between the magnetization and the lattice.
The results of the calculations and comparison to experi-
ment which follow show that the dominant source of
coupling for the parallel-parallel configuration is the in-
homogeneous Zeeman energy. The magnetoelastic cou-
pling constants B, and B2 relating magnetization direc-
tion to strain are relatively inconsequential in the
parallel-parallel configuration. This follows from the
fact that the radio-frequency magnetic field is parallel to
the magnetization and cannot exert a torque which
would change the magnetization direction. The volume
magnetostriction, however, plays an important role in
the conversion of sound to microwaves. The other two
types of coupling are relatively ineffective for the materi-
als and frequencies considered.

The aim of this paper is to formulate a description of
the experiments of Alexandrakis and co-workers and
to understand some of the experimental results obtained
by Blackstead and co-workers. ' The background for
this description has been developed by Tiersten, by Vit-
toria, Bailey, Barker, and Yelon, ' by Kobayashi, Bark-
er, Bleustein, and Yelon, " and by Vittoria, Craig, and

Bailey. ' In the experiment ' a slab of ferromagnetic
material forms the common wall between two mi-
crowave cavities. Microwaves are incident on one cavi-
ty. Any energy which passes through the slab and is ra-
diated into the second cavity is sampled by a detector.
The magnetic field dependence, temperature dependence,
and the amplitude of the transmission signal can be cal-
culated and compared to experiment.

The outline of this paper is as follows. Immediately
following is a description of the model used in the calcu-
lation. Next, the equations of motion appropriate to the
model are developed and then the boundary conditions
arising from these equations are derived. After an out-
line of how the transmission calculation is carried out,
the simple case of transmission through a thick slab is
considered. Finally, detailed comparisons of the calcula-
tion are made to experiments on iron.

II. MODEL

The subsequent sections develop the equations which
describe a three-constituent model for the ferromagnetic
metal. These constituents are the elastic medium, the
magnetic continuum, and the conduction-electron sys-
tem. Previous developments of magnetoelastic descrip-
tions of magnetic media at microwave frequencies ap-
plied to nonconductors and have ignored the conduction
electrons '" except for the use of a scalar conductivity in
Ohm's law. ' ' ' ' ' The development here follows
from the application of Maxwell's equations and the
laws of conservation of mass, linear momentum, and an-
gular momentum to an arbitrary volume element of the
coupled elastic, magnetic, and conduction-electron sys-
tems under the assumption that the medium is respond-
ing to a small dynamic field.

The elastic medium is assumed to obey Hooke's law
and to be adequately described by the macroscopic
strain field u=uoexp(ikx itot) This repres—ents a .wave
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moving in the x direction with propagation constant k
and angular frequency co. The magnetic continuum has
a magnetization M which cannot move relative to the
elastic medium. This is essentially a localized model for
the magnetization. The magnetic moment per ion is not
assumed fixed but is dictated by the equation of state for
the magnetization. The conduction electrons are de-
scribed by the free-electron theory. The mean free path
for electrons is taken to be much shorter than the length
associated with waves in the material, and the mean free
time between collisions is much less than 1/co.

The sample geometry for the calculation is presented
in Fig. 1. The sample slab is infinite in the y and z direc-
tions and of thickness d. The normal to the slab is along
the [110] crystal direction and the applied static and
radio-frequency magnetic fields are applied along the z
direction, which coincides with the [111]direction in the
crystal.

The magnitude of the magnetization has a small oscil-
lating component which is driven by the strain field and
the magnetic field. Previous authors '' have assumed
that the magnetic moment per ion is fixed and, since
there is a volume change associated with a longitudinal
sound wave, the oscillating magnetization is

where Mo is the static saturation magnetization. This is
not a good assumption. The volume magnetostriction in
bulk iron gives rise to a term of comparable size and in
invar a term an order of magnitude larger.

The equation of state for the magnetic moment can be
considered a function of magnetic field, volume, and en-
tropy. Small changes in the magnetic moment can be
expressed as

III. EQUATIONS OF MOTION dH+ Bp

H, S
dV+ Bp

V, H
JS,

The description of the response of a slab of ferromag-
netic metal to electromagnetic radiation is formulated
below. The electromagnetic fields inside the material
must, of course, obey Maxwell's equations. The form of
Maxwell's equations used here is

4n.J 1 B(EE)
V&&H=

c c Bt

and

VXE= —— where B=H+4~M .
1 BB
c Bt

where p, V, and S are the magnetic moment, volume,
and entropy, respectively. The magnetic moment attains
its equilibrium value in a time' = 1/co„where co,„ is the
exchange frequency and is much higher than the wave
frequency cu. Thus the magnetic moment is determined
by the instantaneous values of H, V, and S. The fre-
quency is also low enough that the waves propagate un-
der adiabatic conditions so that dS =0. After some
standard manipulation of thermodynamic quantities, and
noting that

The notation used for fields is, for example,
H=Ho+hexp(ikx —icot) where H is the total magnetic
field, Ho is the static magnetic field, and h is the ampli-
tude of the (assumed small) oscillating magnetic field. A
similar notation applies to the total current J, the elec-
tric field E, the magnetization M, and the magnetic in-
duction B.

then

av
V aa„

2

8p ~ +x

V V Vax

V
aP
av

(iso)
sk

JL

BQ
+[(P—1)Mo]

Bx

The susceptibility used in Eq. (4) is

(4)

Ho Ho 4rMo Ho 1 Bp=
V aII „

FICs. 1. Sketch of coordinate axes and crystal orientation
used in the calculation. The x axis is normal to the semi-
infinite slab of thickness d. The applied, static magnetic field

Ho, the static magnetization 4~MO, and the incident and
transmitted microwave fields ho and h, are para11el to the z
axis. k is the waves' propagation constant and is parallel to
the x axis. The crystal is oriented so that the [110]direction is
parallel to the x axis and the [111]direction is parallel to the z
axis.

and the volume magnetostriction, usually measured un-
der conditions of constant pressure and temperature, is

1 BV 1 BV Te Bp
V a~ „=V aII „+C, aT

In Eq. (6) T is the temperature, Cz is the specific heat
at constant pressure and field, and a is the coefticient of
volume expansion. The appropriate bulk modulus in Eq.
(4) is calculated under the assumption that the crystal is
free to move in the [110]direction only. Then
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aI = —(C), +C,~+2C44)/2,
M BM= —y(M XH,s)+ 2

MX
at yM p2 Bt

(9)

where the C;~'s are the elastic constants. P is a con-
venient parametrization of the volume magnetostriction,
namely

1 1 BV

Mp V ~H r s
V

aP
av

The transverse response of the magnetization can be
conveniently described by the Landau-Lifshitz equation
of motion for the magnetization as modified by Gilbert:

Here y =
~

ge/2mc
~

and g is the spectroscopic splitting
factor, A, is the phenomenological damping parameter,
and H,z is the effective field which gives rise to the
torque on the magnetization. H,z includes contributions
from the applied magnetic field, the demagnetizing field,
the exchange energy, the magnetic anisotropy, and the
magnetoelastic energy. ' (Although the demagnetizing
energy in this configuration is zero, the calculation is
easily modified to describe an ellipsoidal sample mounted
in a cavity wall for which this energy is nonzero. ' ' )

After Eq. (9) is linearized and the terms proportional to
ex p(ikx i cut ) —extracted,

Bm 2A c)
Hp —4m.D„Mp-

y Bt Mp Bx'
4K i 4K2

3Mp 9Mp

a v'z a~.
m + (B, B2) —+Mph =0

3
(10)

and

2A
Hp+4n(1 D„. )M ——

p

4E i 4K~

3Mp 9Mp

a 1am
m~-

y

Bialy(B, B2)—
BQ

+ —'(2B, +B~) —Mph„=0 .
3 Bx

» Eqs. (10) and (11)D„ is the demagnetization factor,
A is the exchange stiffness constant, the K, 's are the an-
isotropy constants, and the B s are the magnetoelastic
coupling constants.

The equation of motion for the elastic continuum is
essentially the expression of conservation of momentum
and of angular momentum for the rnediurn. ' The
equations developed here are similar to those of Vittoria
et al. ' but augmented by four types of terms. First, a
body force which arises from the spatially inhomogene-
ous Zeeman energy, V(M. B), is incorporated into the
equation. This force is present for both metallic and
nonconducting ferromagnets and can be thought of as
the Lorentz force acting on the magnetic moment of the
medium. To avoid confusion with the usual Lorentz
force this will be referred to as the Zeeman force. In-
clusion of this type of term in the equation of motion for
the elastic continuum is a major contribution of
Privorotskii, ' although his stress tensor also included a
force which was nonzero for the empty magnetic lattice
and should not be included here. Second, the lattice is

charged and, hence, subject to the Lorentz force in its
usual form:

FL,= ne E+——X(H+4mM)1 Bu

c Bt
(12)

Here, n is the number of conduction electrons per unit
volume, e is the charge carried by each electron, and F„,
is the Lorentz force per unit volume. Third, the conduc-
tion electrons dump momentum into the background
elastic continuum during collisions. This collision force
tends to cancel the effect of the Lorentz force but this
combination of forces gives rise to the direct electromag-
netic generation of sound in the presence of a magnetic
field at megahertz frequencies. ' Fourth, conservation of
angular momentum requires that antisymmetrical stress
tensor terms exist whenever the magnitude of the mag-
netic moment per ion changes with time.

The x-coordinate equation of motion for the elastic
medium is

(C&
&
+C&2 +2C44 ) g2 g2 &2 B

& B2 Bm Bh—, Bm,

2 at' 3 M, ax 'ax ' axP "x +Mp +Hp

1 Bu
ne e„+ — X (—Hp+47TMp)

c Bt
+(F„)„p——0 . (13)
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The first term in Eq. (13) is simply an expression of Newton's second law for the unadorned elastic medium' where p
is the mass density. The C, s can have a small imaginary part incorporated into them to phenomenologically account
for elastic damping. The remaining terms correspond to additional forces on the lattice. The second term represents
the magnetoelastic coupling. The third and fourth terms represent the Lorentz force arising from the inhomogeneous
Zeeman energy. The fifth term is the Lorentz force acting on the conduction electrons and the lattice. The last term
is the force on the lattice due to collisions with conduction electrons and equals the average rate momentum is lost by
these electrons. Only terms linear in small quantities have been retained.

The equations of motion for the y and z directions are

«ll —Cl2+4C44)
6 Bx~ Bt2

—p Q

v'2lC„—C, ~
—2C44) 8 u, v'2 8, —8~ Bm„

6 ax'

1 ~P 1 Bu—ne e~ + — X ( H p+ 477M p)2y'V BxBt ~ c Bt
+(F, ),.„=0 (14)

and

(C„—C,2+ C44)

3

&2(Cll —Clz —2C44) 8 u 1 28l+8z Bm

q
+- ne(e, )—+ (F, )„ll——0 .

6 3 M ()x

(15)

In the fourth term of Eq. (14) y'=
~

g'e/2mc
~

where g'
is the magnetomechanical factor one would measure in a
Barnett experiment or an Einstein —de Haas experiment.
This term is essentially the antisymmetrical component
of the stress tensor which balances the angular momen-
tum dumped into the lattice when the magnitude of the
magnetic moment per ion changes.

The conduction-electron force on the lattice and the
conductivity are calculated in the regime in which the
electronic mean free path I and the mean free time be-
tween collisions, r, are such that (kl) &cur & 1. This al-
lows the collision force to be calculated simply from the
Boltzmann equation in the relaxation-time approxima-
tion by weighting the electronic distribution of states
with the momentum carried by each state. In the coor-
dinate frame attached to the lattice the collision force
density is

JRM+ JSS With J~M i J» (17)

The linearized Boltzmann equation, in the relaxation-
time approximation, for the electronic current is

—J' =ne E'+ —[J' X (H'+4vrM') )
m, , 1

Bt e c

I, Q U
(18)

is much larger than that of ordinary metals and which
scales in temperature with the resistivity squared.
Berger' has pointed out that this effect can be described
as a side step of the electron's wave packet of —10 cm
during each collision. The origin of this side-step
current, Jss, is in the spin-orbit coupling. The total
current, as viewed in the frame attached to the lattice, is

Fcoll ( v ~ JRM
ew

(16)

The primes denote the fact that the fields must be evalu-
ated in the accelerated coordinate system attached to the
lattice. Here m is the mass of the electron and (v') is
the average drift velocity of electrons relative to the lat-
tice. This collision-force density can be rewritten by
noting that ne(v') is the current due to relative motion
of the conduction electrons and the lattice between the
collisions, JRM. The collision force is trivially
transformed to the laboratory frame in which Eqs.
(13)—(15) are written, since F„ll——F,', ll. The transforma-
tion for JRM is given implicitly below.

Similarly, the resistivity can be extracted from a
Boltzmann equation describing the time evolution of the
conduction-electron distribution under the inhuence of
external fields. There is a complication due to the fer-
romagnetic Hall effect. Ferromagnetic metals are ob-
served to have a contribution to the Hall constant which

1 1
8'

Ss + RMX
~

II
(19)

Equation (19) can be transformed to laboratory frame
variables by noting that, since the material has no net
charge and there is no static electric field, J'=J and
H'+4~M'=H+4~M to first order in small quantities.
However, the electric field transforms according to

E'=E+ — X(H +4m.M ) .1 Bu
c at 0

After some manipulation, the relation between the

The third term on the right of Eq. (18) is the relaxation
term and is essentially —F,',&&. The last term is the
frame pseudoforce.

The side-step current is conveniently parametrized in
terms of A, the ratio of the amplitude of the side step to
the electronic mean free path
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amplitudes of the oscillating electric field and the
current can be expressed in the laboratory frame as

( 1 —i cow )Io —A/o B—jnec
e= A/o +B /nec (1 it—or) Io

0 0
—i corn /e —B /nec

(1 ic—or) lo

+ B /nec i c—om /e
0 0 —icbm /e

Bll
ne

at
(21)

FLz+ Fco]]=
—&corn /e

B/c
0

—B/c
—icbm /e

—i corn /e

(22)

Here terms —(cur), A have been omitted. Also
a =ne ~/m, and 8/Bt has been selectively replaced by—1 CO.

Equation (21) is inconsistent with Eqs. (13)—(15) in
that terms proportional to k have been omitted from
Eq. (21) whereas 8 /Bx = —k has been retained in Eqs.
(13)—(15). The motivation for this omission is that this
greatly simplifies the calculations which follow. Com-
parison to more general derivations of the conductivity
by Kjeldaas and Holstein and by Cohen, Harrison, and
Harrison ' show that the primary implication of this
omission is that the diffusion current is not present in
Eq. (21). If the conductivity were correct to order k
then terms which derive from the Fermi pressure would
augment the C, 's in Eqs. (13)—(15). Further, some of
the terms in the matrices of Eq. (21) would be modified
by factors of [1+s(kl) ] where s is a numerical factor
which ranges between ——', and —,'. Since the numerical
calculations ultimately use experimentally measured
values of the C, 's and the model chosen applies only if
(kl) «1 there are no difficulties in principle with this
inconsistency.

The parameter A which characterizes the ferromag-
netic Hall effect does not enter into the expression for
the stress on the lattice. Substitution of Eqs. (16) and
(21) into Eqs. (13)—(15) shows that the Lorentz and col-
lision forces are

to seven pairs of forward and backward propagating
waves. These waves can be regarded as two electromag-
netic waves, two spin waves, and three sound waves.
Several authors have analytically examined these propa-
gation constants as functions of frequency or applied
magnetic field. "' The ordinary electromagnetic wave
and the longitudinal sound wave are of primary interest
in this paper. The relative changes in the magnitudes of
these waves' propagation constants introduced by the
coupling terms due to the Zeeman force, the Lorentz
force, the volume magnetostriction, and the Hall con-
ductivity are ( 10 . This implies that, unlike the
sound generation in the parallel-perpendicular config-
uration, the sound generation is not a resonance
phenomenon associated with a dispersion relation cross-
ing.

IV. BOUNDARY CONDITIONS
AND TRANSMISSION CALCULATION

The boundary value problem we ultimately wish to
solve is one in which an incident electromagnetic wave
on one side of a semi-infinite slab gives rise to refiected
and transmitted waves, of two possible polarizations
each, and seven pairs of backward and forward propa-
gating waves within the slab. These 18 wave amplitudes
are determined relative to the incident wave from nine
independent boundary conditions at the front and back
surfaces of the slab. The boundary conditions simply as-
sert that Maxwell's equations and the equations of
motion hold at material discontinuities.

The boundary conditions for the tangential com-
ponents of e and h are obtained in the usual manner by
integrating the fields along a closed path traversing the
boundary and then using Stokes' theorem. This results
in the conditions that h, h„and e, are continuous
across the slab boundary. The boundary condition for
e is complicated by the fact that the moving ferromag-
net introduces an oscillating magnetic dipole moment at
the surface. The time derivative of the surface dipole
moment is —Mo(Bu„/Bt) and the boundary condition
on ey rs

The reason for this absence is simply that no net
momentum is acquired by electrons due to each side step
and, hence, there is no force on the lattice.

This model does not require that the charge conserva-
tion condition be explicitly imposed. If charge conserva-
tion is required of the electrons and lattice separately,
then one is led to equations which describe a longitudi-
nal plasma wave with a propagation constant

~

k
~

=10
cm '. This is too short a wavelength to be adequately
described in this semiclassical model. In any event, in-
clusion of this wave in the calculations which follow
would lead to insignificant quantitative changes.

Equations (1) and (2), (4), (10) and (11), (13)—(15), and
(21) constitute a system of linear, homogeneous equa-
tions for h, m, e, j, and u. Setting the determinant of
the coef5cients equal to zero yields a seventh degree po-
lynomial in k . The propagation constants correspond

e =eout in
y (23)

The superscripts in and out refer to fields inside or out-
side the material. Equation (23) can also be derived
from Eq. (20) by noting that e' is continuous in the
frame instantaneously at rest with the boundary and
then transforming back to the laboratory frame.

The boundary conditions resulting from the equations
of motion are determined by integrating Eqs. (10) and
(11) and (13)—(15) along an interval which crosses the
boundary, and then taking the limit as the interval's
length shrinks to 0. This corresponds to conserving an-
gular and linear momentum at the boundary and is com-
monly known as the spin unpinned, traction-free set of
boundary conditions. These boundary conditions are
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r)m v'2 B
&

—B2+
Bx 3 Mp

2A Bm„~2 B,—B2+
Mp Bx 3 Mp

u =0,

2B1+B2
M

(24)

u =0,

(C»+C»+2C~)».
2 BX

2 B,—B2
3 Mp

my

(25)

(C][—C/2+4C44) Bu

6 X

+Mph, +Hpm, =0,
&2(C„—C, —2C ) Bu,

6 BX

(26)

2 B i B2 —
1 r)P

m — , =0,
3 Mp 2y'V Bt

(27)

and

(C„—C,2+C44) Bu,

3 BX

&2(C„—C,2
—2C44 ) Bu

6 BX

2B1+B2
+3 M.

m =0 ~ (28)

14f = g Z(f, k, )h, (ki), (29)

where

f E Ih„,h, h„m, m, m„u„,u, u„e,e, I .

A small driving surface stress proportional to the elec-
tric field just inside the metal and to the electron mean
free path could be added to the right-hand side of Eqs.
(26) —(28). These terms' magnitude could be adjusted to
account for the fact that, after collision with the metal's
surface, the inertia of the electrons does not allow the
current to be described by Eq. (20). Thus there is a sur-
face layer of about an electron's mean-free-path thick-
ness in which the lattice experiences a relatively large
electric field which is not canceled by the electronic col-
lision force. Also, depending on whether the electrons
are specularly or diffusely reflected from the surface,
there is a surface stress due to the electron collisions
with the surface. Southgate has shown that this is the
physical mechanism which gives rise to the direct elec-
tromagnetic generation of sound in ordinary metals.
These terms are far too small, however, to account for
the experimentally observed sound generation in fer-
rornagnetic metals.

The fields inside the material are conveniently written
in terms of the z component of magnetic field for each
wave, using the relations

the amplitude of the incident electromagnetic wave. The
determination of the k and subsequent solution of the
boundary-value equations for the wave amplitudes are
easily carried out by computer.

The solutions to the boundary-value problem indicate
that there are four principal types of transmission. For
the configuration with the incident microwave magnetic
field perpendicular to the static field there is a peak in
the magnetic-field-dependent transmission for one elec-
tromagnetic wave if the static field satisfies the ferromag-
netic antiresonance condition. For a limited range of
frequencies there is also an enhancement in the transmis-
sion at ferromagnetic resonance due to sound transmis-
sion through the slab. ' This transmission is attribut-
able to the magnetoelastic coupling and is strongest at
ferromagnetic resonance since that is where the trans-
verse magnetization is largest. For the configuration
with the microwave magnetic field parallel to the static
field, the direct transmission of microwaves dominates
the transmission through thin slabs, i.e., for slabs only a
few skin depths thick. For thicker slabs sound waves
are responsible for the transmission. There is no regime
with the model considered for which the transmission is
determined by spin waves.

V. DISCUSSION OF CALCULATION

The calculated transmission through a ferromagnetic
slab in the configuration of Fig. 1 is dominated by the
ordinary electromagnetic wave and longitudinal sound
wave within the slab. The ordinary electromagnetic
wave is, of course, what one would have in the case of a
simple metal. The sound wave is present largely because
the third term of Eq. (26) allows the electromagnetic
field to exert a substantial stress on the lattice. The elec-
tromagnetic wave is heavily damped and, for a
sufriciently thick slab, the transmission is primarily due
to the relatively unattenuated sound wave.

The role played by the sound wave is most easily seen
in the approximation that the material obeys Ohm's law
with a scalar conductivity o., the electron collision force
and Lorentz force on the lattice cancel exactly, the mag-
netoelastic constants B1 and B2 are zero, and the slab is
so thick that the waves reflected from the back surface
are of negligible amplitude when they reach the front
surface. In this case the relevant equations of motion
decouple and one requires only two pairs of propagation
constants.

At the front surface the incident electromagnetic wave
gives rise to a reflected electromagnetic wave and to a
sound wave and an electromagnetic wave transmitted
into the metal. From Eqs. (23) and (26) and the con-
tinuity of h, at the slab's surface one readily finds that
the amplitude of the sound wave generated at the front
surface is

The Z(f, k. ) in Eq. (29) can be regarded as generalized
impedances and are readily obtained from Eqs. (1), (2),
(4), (10), (11), (13)—(15), and (21) once the k are known.
The 18 boundary conditions result in 18 linear, inhomo-
geneous equations for the two reflected, two transmitted,
and 14 waves within the magnetic material in terms of

2)Mph pux= [1—(1+i' / )cv']o,
(co&pC )

where

~vo
——&2v, /5=4m. cr (v, /c)

(30)

(31)
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In Eq. (31) 5 is the skin depth and U, is the speed of
sound. For iron at room temperature and for sound
propagating in the [110]direction, coo corresponds to 75
MHz. At this frequency the sound wavelength and skin
depth are comparable. Smaller terms in the denomina-
tor of Eq. (30) have been omitted under the assumption
that C»4mMO where C =(C»+C,z+2C44)/2. Equa-
tion (30) is slightly different than Eq. (6) of Alexandrakis
and Dewar since that equation was based on
Privorotskii's' work and his calculated stress improper-
ly included a term proportional to the applied field. The
applied field is included here in the fourth term of Eq.
(13) and it effectively renormalizes the speed of sound.

The source of the sound calculated in Eq. (30) is essen-
tially the third term of Eq. (26). The coupling between
the electromagnetic wave and the sound wave is quite
small and one could calculate to zeroth order the ampli-
tude of the electromagnetic wave transmitted into the
metal without considering the sound. Then the ampli-
tude of the sound wave could be approximately obtained
by treating the Mob, of Eq. (26) as a stress driving the
sound wave, where the h, is basically the electromagnet-
ic wave's amplitude. For an incident electromagnetic
wave of amplitude 1 Oe, the stress on iron is about
3.5)& 10 dyn/cm .

The average acoustic power generated per unit area of
the metal is

P, = —,'&pCco'
~
u„ t

' . (32)

The radiation efficiency gf is the ratio of acoustic power
generated to incident microwave power. Thus

and

16m.MO U,10, —))co ))cooc&pc
(33)

gf =16mMoco /ceno, co &(coo .2 4 2 (34)

The numerical estimate in Eq. (33) applies to iron at a
temperature of 110 K. (See Table I.) This is somewhat
smaller than the efficiency of generation of gigahertz
sound in metals via other mechanisms but is nonetheless
substantial. The upper limit on frequency in Eq (33.) is
imposed by the condition that the electronic mean free
path be much shorter than a sound wavelength. This is
really too stringent (see below) and can be replaced by
the requirement that the mean free path be less than the
skin depth, i.e., c /2mo I

The transmission at the back surface of a thick slab is
easily calculated within the same approximation which
led to Eq. (30). A longitudinal sound wave of amplitude
uo gives rise to a transmitted electromagnetic wave and

X

reflected sound and electromagnetic waves. The ampli-
tude of the transmitted electromagnetic wave is

TABLE I. Parameters used in the calculation of transmission through an iron single-crystal slab at
110 K.

= —1.36& 10 emu/g '

4 29~ 10—10 O —1 h

d =19 pm
co=5.8905 && 10' s

g =2.088'
cr =4.1~ 10' s
p=7. 9170 g/cm
4m.M0 ——22057 G'
g = 1.06)& 10 emu/Oe cm '
X=7.0&(10 s
a=1.88)&10 ' K
C~ =2.39X 10 erg/g g

Bp

H P

av
V BH

4=+3.16)& 10

nec
=+1.1)&10 ' scm /esu

C1, ——2.4044)& 10' dyn/cm '
C, 2

——1.3687)& 10' dyn/cm '
C44 ——1.2113 )& 10' dyn/cm '
K, 5.34)& 10' erg/cm' '

K2 ——0.0 erg/cm'
B, = —3.92)& 10 erg/cm"
B2 = 1.040)& 10 erg/cm '
3 =2.19~ 10 erg/cm
n =5.1&10 cm
1 =4.22X 10 cm

'Z. Frait, Czech. J. Phys. B 27, 185 (1977).
Determined from Matthiessen's rule using the sample's measured residual resistivity ratio of 15.2 and

the data of G. K. White and S. B. Woods, Philos. Trans. R. Soc. London, Ser. A 251, 273 (1959).
'J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 122, 1714 (1961).
F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).

'R. Pauthenet, J. Appl. Phys. 53, 8187 (1982).
S. M. Bhagat, L. L. Hirst, and J. R. Anderson, J. Appl. Phys. 37, 194 (1966).
~K. K. Kelley, J. Chem. Phys. 11, 16 (1943).
"E.Fawcett and G. K. White, J. Appl. Phys. 38, 1320 (1967).
'P. Escudier, Ph.D. thesis, University of Grenoble, 1973.
'E. du Tremolet de Lacheisserie and R. Memdia Monterroso, J. Magn. Magn. Mater. 31-34, 837
(1983).
"M. W. Stringfellow, J. Phys. C 1, 950 (1968).
'This corresponds to 0.6 conduction electron per atom.
R. W. Kla6ky and R. V. Coleman, Phys. Rev. B 10, 2915 (1974).

"Hall constant used only in Eq. (21).
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ECO
8m.Mou oX

1+iso /coo

1+leo /coo
(35)

The radiation efficiency at the back surface, g&, is the
ratio of the transmitted microwave power to the incident
acoustic power. Thus

16~MoI3 =6X10, c /2no1 ))co&&~o . (36)
c i/pc

~~ l2—

~ lO-

8-

(ri 6

0I—

0

~ ~
~ ~

'~ ~ ~ a ~ ~ ~ 4 $4
~ ~

16m.MoPh o
h, = =8X10 ' ho,

c pC

/2~0 l &&co &&co (37)

The amplitude in Eq. (37) should be further reduced ac-
cording to the amount of attenuation the sound wave
undergoes in traversing the slab. The full calculation
yields transmission results which are within 1 part in 10
of that of Eq. (37) provided the attenuation of the wave
as it traverses the sample is properly accounted for.
Thus the transmission in the parallel-parallel
configuration in thick slabs is due primarily to the longi-
tudinal sound wave and depends on the spatially inho-
mogeneous Zeeman energy and the volume rnagneto-
striction. The imbalance between the Lorentz force on
the lattice and the electronic collision force plays a very
small role in this transmission.

VI. COMPARISGN WITH EXPERIMENT

In this section we compare the calculations with the
results of experiments performed by Alexandrakis and
co-workers as well as some experiments of Blackstead
and co-workers ' which are relevant to these calcula-
tions.

The full transmission calculation outlined in Sec. IV is
shown as the solid line in Fig. 2 as a function of applied,

For the case co «coo, replace P with 1 in Eq. (36). Note
that this radiation efficiency at high frequency is in-
dependent of the magnetization of the material, since
MoP is independent of Mo. The numerical estimate ap-
plies to iron at 110 K.

The efficiencies at the front and back surfaces are
clearly not equal, especially if co «coo. Most papers con-
cerned with the calculation of the electromagnetic gen-
eration of sound deal with gI only, whereas most papers
concerned with the experimental aspects of sound gen-
eration contain the assumption g&

——gb. This assump-
tion is based upon notions of reversibility of energy flow.
In the simplified calculation above there are three elec-
tromagnetic waves and one sound wave at the front sur-
face and two electromagnetic and two sound waves at
the back surface. It is impossible to map one set of
waves into the other merely by reversing the direction of
energy flow.

From Eqs. (30) and (35) the transmission amplitude
through a thick slab for which multiple reflections are
unimportant is

Ho (kOe)

FIG. 2. Transmission amplitude vs applied magnetic field.
Experimental data are for a [110]-oriented iron single-crystal
19 pm thick. The data were taken at 110 K. The average
transmission amplitude between 5.0 and 10.0 kOe has been
normalized to 10. The solid line was calculated using the pa-
rameters in Table I. The dashed line was calculated with the
parameters of Table I except the volume magnetostriction was
2.0&10 ' Oe ' and electronic attenuation of 40 times the
free-electron attenuation was added to the longitudinal sound
wave. Both calculated transmission curves have been normal-
ized to 10 at 7.5 kOe.

static magnetic field. Parameters used in the calculation
are given in Table I. Shown also is the experimental
transmission data obtained with a single crystal of iron
19 pm thick at a temperature of 110 K. The sample had
the [110]direction normal to its plane and the static and
microwave magnetic fields were along the [111] direc-
tion. The average experimental transmission between
5.0 and 10.0 kOe has been normalized to 10 as has the
calculated transmission at 7.5 kOe. Both the experiment
and calculation are in good agreement and show very lit-
tle magnetic field dependence for fields above 2 kOe.
Since the [111]direction is a hard axis in iron, the ap-
plied magnetic field must be at least as large as the an-
isotropy field before the sample becomes a single domain
with the magnetization parallel to the applied field. For
this reason the calculation has not been extended below
490 Oe. The plots of transmission versus magnetic field
are similar to Fig. 2 at all temperatures studied (5 —300

The slight dip in the calculated transmission at =1
kOe is due to ferromagnetic resonance. The magnetoe-
lastic coupling allows the sound wave to drive the trans-
verse magnetization, Eqs. (10) and (13). Thus the longi-
tudinal sound wave has some spin-wave character and
ferromagnetic resonance affects the damping of the
sound wave. For applied fields between 1 and 3 kOe the
experimental data lie somewhat above the calculation.
This suggests that the applied field is slightly misaligned
with the [111]axis and some transmission due to trans-
verse sound waves is present.

O'Donnell et al. did pulse echo experiments with
nickel at 4.2 K which demonstrated the generation of
longitudinal phonons in the parallel-parallel configura-
tion. Their samples were polycrystalline and one re-
quires applied fields of several kilo-oersteds to overcome
the rnagnetocrystalline anisotropy and magnetize the
sample parallel to the applied field. Also, their samples
were probably in the anomalous skin effect regime which
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(ne) 1 k 1 tan '(kl)
2O &pC 3 kl —tan '(kl)

(38)

Inclusion of deformation potentials alters and compli-

is beyond the scope of the calculations made here. How-
ever, the physical mechanisms which lead to the inter-
conversion of phonons and microwaves are still present
at these low temperatures. The saturated signal level in
their Fig. 1 for fields &4 kOe is most probably due to
the Zeeman force and volume magnetostriction. At
smaller fields the sample is not magnetized to saturation
and there is a component of the magnetization perpen-
dicular to the applied field. This leads to sound genera-
tion through the magnetoelastic coupling. The variation
of this perpendicular magnetization with field is most
likely the reason for the complicated field dependence of
the phonon signal for 0 kOe & applied field & 4 kOe.

The work of Blackstead and co-workers on gadolini-
um was on single crystals. Their qualitative results,
that the longitudinal phonon power was linearly propor-
tional to incident microwave power and strongest when
the microwave and static magnetic fields were parallel,
are in agreement with the calculations presented here.

The calculated transmission through a magnetically
saturated sample at applied fields far from ferromagnetic
resonance versus conductivity can also be compared to
experiment. However, two modifications must be made
to the calculation in order to make direct comparisons.
First, the samples are not perfect slabs but are, in fact,
slightly convex as a result of the polishing process they
undergo. This nonuniform thickness makes it impossible
for standing sound waves to be set up over the whole
area of the sample exposed to microwaves. In contrast
the calculation shows strongly enhanced transmission if
an integral number of half wavelengths of sound match
the slab's thickness. For the calculations shown in Fig.
3 the transmissions through slabs over a range of thick-
ness were averaged together in order to approximate the
transmission through a sample of nonuniform thickness.
This is a fairly accurate approximation provided the
nonuniformity is smooth, as it is with these samples.
However, care must be taken to ensure that there is no
resonance at any thickness used in the calculation since
these resonances can be quite sharp and large and do not
appear in the experimental data.

Second, the condition that kl «1, where k is the
propagation constant for sound, is not we11 satisfied in
the experiment. (kl = 1 at o = 10' s '.) This results in
the calculation yielding the wrong attenuation for sound.
The propagation constant has a small imaginary part
which is primarily due to joule losses associated with the
sound wave's small electric field and current. This
should be augmented by an amount which describes the
losses incurred by the electronic distribution as it tries to
follow the modulation of the Fermi surface caused by
the passage of the sound wave. Pippard showed that,
within the free-electron model, the ultrasonic attenua-
tion for longitudinal waves can be expressed as

~~ ~

CO

Q
f—
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a0.02-
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FIG. 3. Transmission amplitude (log scale) vs conductivity.
The experimental data are for a 19 p, m thick, [110]-oriented,
iron single crystal. Each data point is the average transmission
amplitude for applied fields between 5.0 and 10.0 kOe. The
calculated curves are the equally weighted averages of
transmission calculations for 100 slab thickness uniformly
spaced between 19.10 and 19.25 pm. The calculations were
done for an applied field of 5.0 kOe and, except as noted, used
parameters from the references in Table I. Curve a is from Eq.
(37). Curve b is the full calculation with electronic attenuation
of 40 times the free-electron attenuation added to the longitu-
dinal sound wave. Curve c is the same as b except the volume
magnetostriction was 2.0&(10 ' Oe '. The experimental data
have been normalized to the calculation by requiring curve c to
pass through the three lowest conductivity data points.

cates this expression. However, Eq. (38) does give an
adequate description of the ultrasonic losses if the right-
hand side is multiplied by a scale factor which is experi-
mentally determined. For example, a scaled version of
Eq. (38) adequately describes the ultrasonic attenuation
in aluminum for a wide range of kl, with the largest
discrepancy being 20% at kl =1. The essential point
for our purposes is that the attenuation is readily shown
from Eq. (38) to be proportional to conductivity2s for
kl « 1 and to be independent of conductivity for kl »1.
(It is possible that other mechanisms contribute to the
ultrasonic losses, for example, dislocation damping, but
the electronic dissipation alone was adequate to describe
the data. )

The calculation was modified so that the C; 's includ-
ed a small imaginary part which, from the first term of
Eq. (13), yielded a k which had its imaginary part pro-
portional to the right-hand side of Eq. (38). This results
in quite small relative changes in k and in Z (f,k), both
of which enter the boundary equations. Since the
difference between the local and nonlocal conductivities
is small for the sound wave, the solution to the boundary
equations of Sec. IV is little changed and is approximate-
ly the same as one would obtain using a fully nonlocal
calculation such as that of Rodriguez and co-workers. '

The electromagnetic wave's impedance is, however, pro-
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foundly affected by whether the conductivity is local or
nonlocal. Thus the calculation is reliable provided
kl &&1 for the electromagnetic wave, i.e., c /2wo. l ~~co.
This condition is reasonably well met in the experiment.

The uniformly weighted average of 100 transmission
calculations at 5 kOe versus conductivity for slab
thicknesses equally spaced between 19.10 and 19.25 pm
is shown in Fig. 3. Curve a is a calculation based on Eq.
(37) and the temperature-independent parameters of
Table I. (The other temperature-dependent parameters
were interpolated from the references of Table I.) For
o. &1&10' s ' the transmission is dominated by the
electromagnetic wave; for o. ~ 3 & 10' s ' the transmis-
sion is dominated by the longitudinal sound wave. Be-
tween these two conductivity values the two waves pro-
duce an interference pattern which is largely washed out
by averaging over different thicknesses of slab. The
slight temperature dependence of the magnetization,
elastic constants, and volume magnetostriction deter-
mine the implied conductivity dependence of the
transmission for o. )3&&10' s '. This accounts for the
weak increase in transmission at the larger conductivi-
ties.

Curve b of Fig. 3 is the full calculation with multiple
rejections and it includes electronic damping of the
sound wave corresponding to 40 times the free-electron
damping. The sound transmission of curve b is greater
than curve a for moderate conductivities because the
sound damping is so light that multiple reAections are
important. Curve c is the same as curve b except the
volume magnetostriction is 2.0&(10 Oe

Experimental data on a [110]-oriented single crystal
are also shown in Fig. 3. Each data point represents the
average transmission amplitude between 5.0 and 10.0
kOe. All but the three lowest conductivity data points,
which are clearly due to electromagnetic transmission,
are from previously published work. The break be-
tween the steep electromagnetically dominated transmis-
sion and the fiatter sound-dominated transmission occurs
at o. = 1)&10' s ' whereas the break in curves a and b
occurs at o. =2/10' s '. Also, absolute calibration of
the transmission apparatus, although imprecise, indi-
cates that the experimental amplitudes are at least an or-
der of magnitude greater than the calculations for curves
a and b.

The calculated sound transmission is primarily deter-
mined by iron s magnetization, elastic constants, and
volume magnetostriction. It is not possible that this ex-
cessive transmission is due to a resonance with the slab's
thickness being an integral number of sound half-
wavelengths. The elastic constants change sufficiently
over the temperature range used to sweep out conduc-
tivity that such a resonance would appear as a peak in
Fig. 3. Such a peak is not evident in the data.

It is plausible that the volume magnetostriction is sen-
sitive to the amount of damage introduced into the iron
during the sample-preparation procedure. After the
samples were cut from an oriented single-crystal iron rod
they were mechanically polished with diamond grit.
This yielded Oat, parallel sides on the samples. The
finest grade of diamond grit used was 3-pm grit and this

produced damage which decreased with distance from
the surface with a scale length of =3 pm. Much of this
damage was removed by chemically polishing the sam-
ples to their final thickness. Unfortunately the chemical
polishing procedure resulted in samples with a slightly
convex shape. In order to preserve the Oat, parallel-
sided sample geometry as much as possible, the amount
of material removed with the chemical polish was judi-
ciously limited and some damaged material remained
after polishing.

In order to get the calculated break in the transmis-
sion curve to agree with the data, as well as to get
reasonable agreement between the relative amplitudes of
the electromagnetic and sound transmission, the volume
magnetostriction used in the calculation must be in-
creased to =50 times the bulk value, as shown by curve
c. The experimental data were normalized to curve c by
requiring that curve to pass through the three lowest
conductivity data points.

The large volume magnetostriction used to fit the ex-
perimental data has little effect on the shape of the
sound transmission curve, as can be seen by comparing
curves b and c for o. & 3&10' s '. This part of curves b
and c is primarily determined by the value of the sound
attenuation. Changing this attenuation to 30 or 50 times
the free-electron value results in curves which clearly
disagree with the data. The sound attenuation of curve c
corresponds to 0.05 dB/pm at 298 K and to 0.2 dB/pm
at 110 K. These values are somewhat lower than those
of Homer et al. since he did not consider the effect of
multiple rejections in that work.

VII. CGNCI. USIQNS

The experimental microwave frequency transmission
through a ferromagnetic metal plate is well described by
a calculation incorporating equations of motion for the
lattice and magnetization. For the case in which the in-
cident microwave magnetic field is parallel to the ap-
plied, static field and the plate is thick, the transmission
is dominated by sound traversing the plate. This longi-
tudinal sound is generated through the stress which re-
sults from the inhomogeneous Zeeman energy at the
ferromagnet's surface. The reconversion of sound to mi-
crowaves at the plate's back surface is crucially depen-
dent on the volume magnetostriction being nonzero.
Neither the magnetoelastic coupling constants 8& and
B2, the I.orentz force and the electronic collision force
on the lattice, nor the ferromagnetic Hall effect play any
significant role in this transmission. Further, the inter-
change of angular momentum between the lattice and
the magnetic carriers necessitated by the n on zero
volume magnetostriction has no discernible effect on the
transmission.

The comparison of the experimental data to the calcu-
lation indicates that the electronic attenuation of 9.4-
GHz sound in iron is about 0.05 dB/pm at room tem-
perature and is proportional to conductivity. The data
are in agreement with the assumption that the attenua-
tion is electronic in nature and is approximately 40 times
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the free-electron value. Also, the transmission is sensi-
tive to the condition of the sample's surface and implies
that the volume magnetostriction can be increased by
damage introduced by mechanical polishing of the iron
crystal.

ACKNOWLEDGMENTS

The author is indebted to J. Nearing and G. C. Alex-
andrakis for valuable advice given during the develop-
ment of the work presented here.

'K. Myrtle, B. Heinrich, and J. F. Cochran, J. Appl. Phys. 52,
2250 (1981).

B. Heinrich and J. F. Cochran, J. Appl. Phys. 52, 1811 (1981).
G. C. Alexandrakis, R. A. B. Devine, and J. H. Abeles, J.

Appl. Phys. 53, 2095 (1982).
4G. C. Alexandrakis and G. Dewar, J. Appl. Phys. 55, 2467

(].984).
5G. Dewar and G. C. Alexandrakis, J. Appl. Phys. 57, 3733

(1985).
R. Homer, G. C. Alexandrakis, and G. Dewar, J. Appl. Phys.

61, 4133 (1987).
7M. O'Donnell, S. C. Hart, J. G. Sylvester, and H. A. Black-

stead, Solid State Commun. 18, 1141 (1976).
M. O'Donnell, J. T. Wang, and H. A. Blackstead, Phys. Rev.

Lett. 36, 606 (1976).
H. F. Tiersten, J. Math. Phys. (N.Y.) 5, 1298 (1964).
C. Vittoria, G. C. Bailey, R. C. Barker, and A. Yelon, Phys.
Rev. B 7, 2112 (1973).
T. Kobayashi, R. C. Barker, J. L. Bleustein, and A. Yelon,
Phys. Rev. B 7, 3273 (1973).

' C. Vittoria, J. N. Craig, and G. C. Bailey, Phys. Rev. B 10,
3945 (1974).

' M. B. Salamon, Phys. Rev. 155, 224 (1967).
"L. Kraus and Z. Frait, Czech. J. Phys. B 23, 188 (1973).

~5J. F. Cochran, B. Heinrich, and G. Dewar, Can. J. Phys. 55,

787 (1977).
A. Privorotskii, Phys. Lett. 69A, 53 (1978).
E. R. Dobbs, in Physical Acoustics, edited by W. P. Mason
and R. N. Thurston (Academic, New York, 1973), p. 127.

'8C. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley,
New York, 1971), p. 145.

~ L. Berger, Phys. Rev. B 2, 4559 (1970).
2 T. Kjeldaas and T. Holstein, Phys. Rev. Lett. 2, 340 (1959).

M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys.
Rev. 117, 937 (1960).
P. D. Southgate, J. Appl. Phys. 40, 22 (1969).
B. Heinrich and V. F. Meshcheryakov, Pis'ma Zh. Eksp.
Teor. Fiz. 9, 618 (1969) [JETP Lett. 9, 378 (1969)].
J. W. Allen and G. C. Alexandrakis, Solid State Commun.
27, 251 (1978).

2~B. Heinrich and J. F. Cochran, J. Appl. Phys. 50, 2440
(1979).
Y. Goldstein and A. Zemel, Phys. Rev. Lett. 28, 147 (1972).
G. Dewar and G. C. Alexandrakis, J. Appl. Phys. 53, 8116
(1982).

A. B. Pippard, Philos. Mag. 46, 1104 (1955).
A. B. Pippard, Proc. R. Soc. London, Ser. A 257, 165 (1960).
B. Berre, Phys. Rev. B 30, 4130 (1984).

~G. Feyder, E. Kartheuser, L. R. Ram Mohan, and S. Rodri-
guez, Phys. Rev. B 25, 7141 (1982).


