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Phase transitions in asymmetric Potts models: Breakdown of the
classical mean-field picture
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It is shown that mean-field theory fails to give a correct qualitative picture of the thermo-
dynamic behavior of the q-state Potts model when the exchange interaction is anisotropic in spin
space. The correct picture is recovered either by introducing a single-particle anisotropy or by
taking correlations into account via a Bethe-Peierls approximation. This analysis helps the inter-
pretation of previous renormalization-group results for asymmetric Potts models.

I. INTRODUCTION

The Potts model ' of a ferromagnet has been extensively
studied either in its original lattice formulation or in the
continuum version as a Euclidean p field theory. Ex-
tensions of the model have also been introduced that al-
low for anisotropy in spin space. These are used, for ex-
ample, to describe structural phase transitions in
perovskites. '

In a recent paper, Barbosa, Gusmao, and Theumann
discussed the phase transitions in the continuum version of
the q-state Potts model with symmetry breaking, using a
form of the renormalization group (RG) suitable for
studying the crossover behavior when some components of
the order-parameter field remain massive through the
transition. '

The purpose of this work is to complement the analysis
of Ref. 9, where the interpretation of the RG results was
based on a mean-field theory (MFT) which, as I shall dis-
cuss below, is not appropriate for the anisotropic case. In
particular, the MFT predicts the existence of a disordered
phase with zero magnetization even when the exchange
anisotropy favors only one of the q states against all the
others. The existence of such a phase is obviously not ex-
pected on physical grounds. This failure can be explained
by the fact that an asymmetry in the exchange interaction
manifests itself through correlations, which are neglected
in MFT. Indeed, when a single-particle (crystal-field) an-
isotropy is introduced (Sec. III) it appears as an effective
magnetic field in the Landau free energy and, consequent-
ly, the disordered phase is not present. I also show that in
the case of purely exchange asymmetry the introduction
of correlations through a simple Bethe-Peierls approxima-
tion" (Sec. IV) results in the absence of a disordered
phase. This precludes a paramagnetic-to-ferromagnetic
second-order phase transition, although a first-order tran-
sition between a weakly and a strongly magnetized phase
is not ruled out. It also explains the absence of a non-
trivial fixed point of the RG for this case, since the
mean-field minimum at zero-order parameter, around

which the perturbation expansion is performed, is no
longer a minimum when the asymmetric interaction is
taken into account.

A controversial point concerning the continuation of the
results for small noninteger q that is important to under-
stand the role of the RG fixed point and critical exponents
is also addressed (Sec. V).

II. THE MODEL AND RG RESULTS

The Hamiltonian of the q-state Potts model in a lattice
with only nearest-neighbor interactions is usually written
as

H= —Jgb, ,
(ij )

where b, is the Kronecker 8 function, (ij ) denotes a pair
CTi lXj

of nearest-neighbor sites, and the o s can assume q
different values. The relationship between this model and
the Ising or Heisenberg models can be made explicit by
writing down a spin Hamiltonian for it, namely,

(2)H= —J$S;.S, ,
(ij )

where the "spins" S; can be in any one of the q states de-
scribed by the position vectors e, (r = I, . . . , q) of the ver-
tices of a hypertetrahedron in n q

—1 dimensions.
Apart from a constant shift in energy, (I) and (2) share
the sample spectrum.

The second form of the Potts-model Hamiltonian is
more suitable for the introduction of anisotropy. The gen-
eralized or asymmetric' Potts model is defined by

H= —g g J,SPSJ,
&ij) a-&

where the J 's can assume diA'erent values for each com-
ponent of the spins. The continuum version of this model
is described by the Landau-Ginzburg-Wilson Hamiltoni-
an

—P =—gg~ dk(k +m2)y (k)y ( —k) ——g u p„D,p„JI dkdk'y (k)yp(k')y„( —k —k')+O(y ),l 1

a ' + P. )'

where the tensorial coefficients D,p„are defined in terms of the components of the vectors e, as D p„=g,e,'ege„".

(4)
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I will be interested in the case of uniaxial anisotropy.
The vectors e, will be chosen in a particular arrangement
so that one of them, say ei, lies entirely on the symmetry
axis. It is easier to visualize in the four-state model, in
which these vectors define a tetrahedron in three-
dimensional space. Then e~ is the position vector of the
upper vertex, lying entirely on the z axis (here chosen to
be the symmetry axis), while e2, e3, and e4 define the basis
vertices and have nonzero projections on the xy plane. It
is clear that an anisotropy that favors alignment of the
spins parallel to the symmetry axis will favor ei against all
the other states. Following the notation of Ref. 9, I call
this "longitudinal ordering, " in contrast to "transverse or-
dering" when the preference is for alignment perpendicu-
lar to the symmetry axis, thus favoring the q

—1 states
with nonzero transverse components.

The RG treatment of this model, within an e expansion
for d =6 —e dimensions, has been developed with consid-
erable detail in Ref. 9. I will only state here the results I
wish to discuss.

(i) For longitudinal ordering, no stable fixed point has
been found. In the study of the crossover under variation
of the mass of the noncritical transverse components, '

the fixed point was seen to run away from the symmetric
value, without crossing over to a finite limit.

(ii) For transverse ordering, variation of the longitudi-
nal mass showed a crossover from the symmetric fixed
point to a nontrivial stable fixed point with both the trans-
verse coupling constant and the critical exponents identi-
cal to the symmetric case for q

—1 states.
I will discuss these results in Sec. V. I turn next to the

mean-field analysis to show its deficiency in dealing with
an interaction asymmetry. Failure to notice this can
mislead an interpretation of the RG results based on
MFT.

III. MEAN-FIELD THEORY

HMF 2 1VzJ~Q —zJ~Q g S —D g (S ) (6)

where N is the total number of spins and z is the coordina-
tion number. It can be seen that there is no information
about the transverse coupling in this mean-field Hamil-
tonian, which for D =0 would be exactly the same as in
the symmetric case J~ =J2.

Defining K, =PzJ, and g =PD, where P= I/kqT, the
free energy per particle,

pFMF 1 —pH„„f= = ——lnZMF= ——lnTre "", (7)
N N N

I will start by rewriting the Hamiltonian (3) for the
case of uniaxial symmetry, introducing in addition a
single-particle anisotropy term:

n

H= —g J S'S'+J g S Sf —Dg(S') (5)
(ij) a 2

I will consider Ji & J2 and D & 0, both conditions favor-
ing longitudinal ordering. Thus, S; is expected to develop
a nonzero average value that I will call Q. The corre-
sponding mean-field Hamiltonian is then

is given by

f=
2 K~Q —lngexp[K~Qe, i+g(e,')2] .

To evaluate the last sum I will use the following represen-
tation for the vectors e, :

q(q —1)
(q —a) (q —a+ 1)

&/2 0 ifr&a,
x 'q —a ifr =a,

—
1 ifr&a,

where the normalization was chosen so that each vector
has magnitude q

—
1 =n. With this

f= —,
'

K~Q —ln(e" ' " +ne ' ) (IO)

h =n(n —1)Kig,
r =K~ jl nK~ l—l+ (n —n+ 1)g]]

w=n(n —1)K~ [1+(n —3n+1)g]

u =n (4n —n —1)Ki
—n(n —1ln +15n —1 in+1)Ktg .

(12)

Equations (11) and (12) show that the single-particle an-
isotropy introduces an effective magnetic field in the Lan-
dau free energy, thus eliminating the disordered phase.
The field term consistently disappears (together with the
cubic term) in the Ising case n =1.

From a physical point of view, the qualitative picture
should be the same for both single-particle and interaction
anisotropy. Nevertheless, as we have just seen, MFT does
differentiate between the two. Although providing a
correct (qualitative) description of the single-particle
case, it completely fails to account for interaction asym-
metry.

IV. BETHE-PEIERLS APPROXIMATION

I now turn to a Bethe-Peierls approximation, " which
does not neglect correlations, to see if the effect of purely
interaction anisotropy is noticeable. In the longitudinal
ordering case it should yield the absence of a disordered
phase.

The Bethe-Peierls Hamiltonian for a cluster with a cen-
tral spin Sp and z nearest neighbors is written as

r
z n z—PHap= g K&SpS; +K2 g SpSP +hp g S; +hSp

i 1 a 2 i 1

In order to write it in the form of a Landau free energy
the logarithm must be expanded in powers of Q. I will
also consider the small-anisotropy limit, keeping only
terms up to first order in g. The result, dropping additive
constants and neglecting terms of O(Q ), is'

f= —,
' rQ ——wQ +—uQ —hQ,1 3 1

3| 4l

where
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where h is an applied field (to be set to zero later) and hp is the effective field on the external spins of the cluster. The
spontaneous magnetization on sites 0 and i are, respectively, mp Zpp (8Z»/Bh )

~ h p and m; = (I/z)Zgp'
x (aZ»/ahp) ~ h -p, where ZBP =Tre "is the partition function. The effective field hp is determined through the con-
sistency condition mo =rn;.

In order to avoid excessively complicated expressions I will restrict the analysis to the three-state Potts model. The re-
sulting equations for the two magnetizations are then

Z ( 2(ho+2K&) +2
(ho+2K&) ) z { 2(ho —K&) +2 h {3K ) (ho Ki) ) z

BpM 0 e e e cos

2(ho+2K&) i ~ (ho+2KI)&z iz~ 2(ho+2K&) —(ho+2KI))
2 Zgpm; = ke +2e i2e ' —e

+2[e "' ' +2cosh(3K2)e "' ' ]' '[e "' ' —cosh(3K2) "' ' ]

(14)

There is no need to look for a general solution, since the relevant question is whether a disordered phase is present or not.
So, the solution to be checked is mp =I;=0. This obviously implies hp =0 and Eqs. (14) take the form

ZBpmp = (e '+ 2e ') ' —[e '+ 2 cosh(3K2)e '] '

—,
'

ZBpm; =(e '+2e ')' '(e ' —e ')+2[e '+2cosh(3K2)e 'l' 'fe ' —cosh(3K2)e '] .
(IS)

It can be easily checked that the only case in which the
right-hand sides of both Eqs. (15) become zero is for
K~ =K2. Thus, there is no disordered phase in the asym-
metric case K)WK2, which is the expected result. Al-
though the calculation was restricted to the three-state
model the basic point is present here, namely, the fact that
the anisotropy favors one state against the others (in this
case two), whose equivalence is maintained.

V. DISCUSSION

I have clearly demonstrated the failure of the usual
MFT to cope with a situation in which the exchange in-
teraction is anisotropic. In the case of the Potts model,
this failure yields the prediction of a disordered phase in
the presence of an anistropy that, by favoring one single
spin state, rules out the possibility of zero magnetization
at finite temperatures. That this failure is related to the
neglect of correlations is confirmed by the fact that it can
be corrected through the introduction of a single-particle
anistropy, or by resorting to an approximation that does
not neglect correlations, as the Bethe-Peierls scheme.

The above analysis is relevant for the interpretation of
the RG results stated in Sec. II, since the MFT is the clas-
sical limit of the eA'ective quantum field theory for the
problem. As far as the (I) theory is concerned, there is no
possibility of studying the first-order transition, and the
RG deals with fluctuations around the mean-field
minimum at (I) =0 (a local anisotropy was not considered
in the RG treatment of Ref. 9). For the case of longitudi-
nal ordering the asymmetric interaction displaces this
minimum, so that no massless fluctuations around (I) =0
are possible. This yields the absence of a stable fixed point
of the RG. For transverse ordering, although the
minimum in the (massive) (I)) component is also displaced
from zero, the massless transverse fluctuations remain
around (I) =0 and a fixed point is found which essentially
describes a symmetric system with q

—1 states. This is
also an expected result, since the anisotropy should
"freeze out" the state e~, without affecting the equivalence
between the remaining q

—
1 states.

The relevant concern here is whether the transverse

l

fixed point and the corresponding critical exponents de-
scribe a second-order phase transition or not. I now turn
to a discussion of this point for the symmetric theory,
since the same conclusions apply for the asymmetric case
(transverse ordering) with a shift in the number of states.

Equation (11) for g =0 (h =0) is the Landau free ener-

gy of the symmetric model {now free of problems of the
anisotropic case). The cubic term, which is not present
only for n =1 (Ising model), is responsible for the ex-
istence of two minima and the consequent first-order na-
ture of the phase transition. For n & 1 (q & 2), the large
order-parameter minimum occurs for Q & 0, and it is ac-
cepted that the transition is first order. In this case, the
fixed point of the RG should describe the spinodal point in

the stability limit of the disordered phase. For n & 1

{q & 2), however, the large-~ Q ~
minimum occurs for

Q & 0. The current argument rules out this minimum as
unphysical and considers that the low order-parameter
minimum at Q & 0 is the one that does describe the sys-
tem. The RG fixed point would then actually describe a
second-order phase transition.

The question obviously arising is whether it is possible
to simply neglect the unphysical part of the free energy,
keeping the rest unaltered, or should the whole theory be
revised. Pytte expressed the hope that the negative-Q
minimum would disappear if the Landau free-energy in-
cluded all orders in Q. This, unfortunately, is not the
case, as can be seen from Eq. (10), which does include all
orders in Q. From the minimization condition Bf/BQ =0
(and setting g =0), we obtain

(n+ 1)KQ
Q=n (n+ i)sag+ „ (16)

A simple inspection of the behavior of the right-hand side
of this equation shows that a solution for Q large and neg-
ative is always present for n & 1. There is, however, an
important diff'erence between the positive- and negative-Q
solutions. Since the limiting value of the right-hand side
of (16) is n for Q & 0 and —

1 for Q & 0, the positive-Q
solution always satisfies the condition

~ Q ~

~ n (implied
by the normalization of the vectors e„), while this condi-
tion is violated in the negative-Q solution for n & 1. This
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may be a mathematical indication of the unphysical na-
ture of this solution.

Pytte also claims the instability of the negative-Q
minimum against transverse fluctuations. What actually
happens (and this remained hidden in Pytte's tensorial or-
der parameter) is that the transverse fluctuations become
imaginary for q & 2. This can be understood in terms of
the relation n =q —

1 that makes it impossible to consider
transverse fluctuations for q & 2, when the number of
components n & 1. It appears as imaginary components
e, for q & a in Eq. (9) and yields imaginary tensorial
coefficients D,» in Eq. (4).

It is well known and explicitly manifest in the above dis-
cussion, that the q-state Potts model is not defined for
q & 2. It can only be defined by means of an analytical
continuation. So far no such continuation has been clear-
ly achieved, and even the prescription for obtaining the

percolation limit' '
q 1 is not free of inconsistencies. '

Until a mathematically rigorous continuation is worked
out, the accepted description of a second-order phase tran-
sition in the Potts model for q & 2 (or asymmetric Potts
models for higher values of q) will remain a conjecture.
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