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The self-consistent electron densities and the corresponding positron states are calculated for
several metals and semiconductors in the local-density approximation of the density-functional for-
malism. The calculations are performed with the linear-muffin-tin-orbital band-structure method.
The emphasis of this work is on the energy levels of the delocalized positron and the electron
chemical potential which are now calculated with respect to the same potential reference. These
energies determine quantities such as the positron and positronium work functions and the defor-
mation potentials which are important parameters in slow-positron-beam experiments. The
theoretical results are compared to values extracted from experiments.

I. INTRODUCTION

The slow-positron-beam technique is a new powerful
tool for studying solid surfaces and defect profiles as a
function of the distance from the surface.! Positrons
with a desired kinetic energy within a small energy
spread are generated using a moderator crystal and sub-
sequent acceleration in an electromagnetic field. In the
sample, the first stage of the positron-solid interaction,
slowing down and thermalization, results in a certain im-
plantation profile. Thereafter positrons diffuse thermally
in the solid and some of them are trapped by lattice de-
fects. The essential point with respect to the slow-
positron-beam experiments is that a large fraction of
positrons can diffuse back to the surface and be emitted
into the vacuum either as free positrons or (after picking
up an electron from the surface) as positronium atoms.
The trapping of positrons by the image potential at the
surface is also possible.

The positron slowing-down process and the ensuing
implantation profile can be well understood on the basis
of the Monte Carlo simulations.? For the positron an-
nihilation characteristics, i.e., the positron lifetime in
delocalized or localized (trapped) states and for the
momentum distribution of the annihilating positron-
electron pair, there exist reliable and practical calcula-
tion methods,>~® which have proven their power in the
interpretation of experimental findings. On the other
hand, accurate calculations of positron trapping rates to
crystal defects from the golden-rule formula are so far
available for simple metals only.”

The purpose of this paper is to enlighten positron
diffusion and surface emission. We calculate the posi-
tron band structure, in particular the bottom of the
lowest-energy band, parallel with the self-consistent elec-
tron structure. The positron and electron energy levels
in perfect bulk crystal directly give the positronium
work function and, if the surface dipole potential is
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known, also the positron work function. Moreover, the
volume dependence of these levels (the deformation po-
tential) can be used to estimate the positron-phonon cou-
pling strength and thereby the positron diffusion con-
stant.

The basis of the present calculations is the density-
functional theory® in the local-density approximation
(LDA) for exchange and correlation effects. It is first
used in determining the self-consistent electron struc-
tures. The calculation of the delocalized positron Bloch
states leans on the two-component generalization® of the
density-functional theory. Also, in the case of positron
states LDA is called for in the approximation of the
electron-positron correlation. In practice, the electron
and positron states are calculated by the linear-muffin-
tin-orbital method (LMTO) within the atomic spheres
approximation (ASA).!®!' LMTO-ASA is one of the
most efficient methods for electron-structure calcula-
tions. It has previously been used for positron states in
bulk metals in order to determine the momentum distri-
bution of the annihilating positron-electron pairs.!? It
has also been used for calculating positron states in bulk
semiconductors and together with an associated Green’s
function technique for positron states trapped at mono-
vacancies.!> The main emphasis in the latter applica-
tions was the prediction of the positron lifetimes and
binding energies at the vacancies. The positron lifetime
depends on the volume integral of the product of the
electron and positron densities and is therefore rather in-
sensitive to small charge rearrangements in the system.
Even a non-self-consistent electron density constructed
by superimposing free-atom charge profiles can be
sufficient for lifetime calculations.® On the contrary, the
positron energy eigenvalue is very sensitive to the ap-
proximations made in calculating the electron structure.
The sensitivity is reflected, e.g., in determining positron
binding energies at defects. Therefore, the essential
point in the present work is that electron densities used
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as inputs for positron calculations are fully self-
consistent.

II. THEORY

In the density-functional theory the many-body prob-
lem of interacting electrons is cast in the form of a sys-
tem of noninteracting particles sensing the effective po-
tential

Veg(r)=d(r)+v,.(n(r)), (1)

where ¢ contains the Coulomb potential due to the
external charges (nuclei) and the Hartree potential of the
electron density n(r). Equation (1) is written already in
the LDA, in which v, is the exchange-correlation poten-
tial'* depending at a given point r on the electron densi-
ty n(r) at that point only. The states of the noninteract-
ing electrons are solved from the one-particle
Schréodinger equation with the potential (1). Density-
functional theory gives the ground-state electron density
as the sum over the occupied states as

nir)=3 |¢(r)|?. )
1
The charge neutrality requires that these states are filled
up to the Fermi level, which is given exactly as the cor-
responding energy eigenvalue solved from the one-
particle Schrodinger equation.

The practical numerical solution of the above problem
has been performed in this work using the LMTO-ASA
method.!'®!' In ASA the crystal space is divided into
spheres, the total volume of which is the total crystal
volume. Potentials and charge densities are spherical
averages within these spheres. In the case of cubic met-
als all spheres are centered around host nuclei and their
radius is the Wigner-Seitz radius, while for semiconduc-
tors with diamond or zinc-blende structures half of the
spheres are centered at interstitial sites. The use of the
spherical densities and potentials near the nuclei is well
justified. Neither is the geometry violation due to the
ASA in the interstitial regions severe for the determina-
tion of the energy levels.'

The position of the Fermi level is given below with
respect to the crystal zero level, which is defined as the
Coulomb potential far away from a single atomic sphere.
In the case of fcc and bce metals all spheres are neutral
in ASA and the Coulomb potential vanishes on the
sphere surfaces fixing the potential reference. For the
determination of the position of the Fermi level (or the
crystal zero level) with respect to vacuum the potential
due to the surface dipole is needed. This would require
the calculation of the self-consistent electron structure
for the surface. In this work, however, the surface di-
pole contributions are estimated using the experimental
electron work functions and calculated bulk chemical
potentials. This information is needed below for the cal-
culation of the positron work function only. The
different energy levels and the related quantities for elec-
trons are shown schematically on the left-hand side of
Fig. 1. The effective potential is fixed to the crystal zero.
The self-consistent electron density calculation deter-
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FIG. 1. Schematic view of electron and positron energy lev-
els in a solid. A is the dipole potential on the surface, VB the
width of the valence band. ¢_ and ¢, denote for the electron
and positron work functions, respectively. p_ and p, are the
electron and positron chemical potentials, respectively.

mines the actual spatial form of the potential and fixes
the energy levels, first of all the Fermi level, with respect
to the reference potential. Figure 1 shows the surface
dipole potential step (A) and the electron work function
(¢_) as the vacuum-crystal-zero and the
vacuum-Fermi-level differences, respectively. These are
positive quantities, as indicated by the arrows pointing
upwards. The distance between the Fermi level and the
crystal zero determines the electron chemical potential
u_. This is usually a negative quantity, as indicated by
an arrow pointing downwards.

The complete many-body problem of interacting elec-
trons and a positron can be treated in the two-
component density-functional theory.’ In the present
work we are calculating the state of a positron delocal-
ized over the whole crystal. For this situation of a low
positron density the theory reduces to the following
practical scheme. The self-consistent electron structure
is first calculated without the positron as shortly de-
scribed above. Thereafter, the potential sensed by the
positron is constructed as

V)= —¢(r)+V o (n(r), (3)

where ¢ is the same Coulomb potential as in Eq. (1) and
Veorr is the correlation potential, which describes the
effects due to the short-range pileup of electrons near the
positron. Vs treated in LDA as written in Eq. (3).
For metals, the correlation potential ¥EC calculated!®
for a positron in a homogeneous electron gas is used,
whereas in the case of semiconductors the potential is

constructed as!3

Vcorr(n):V(‘:ioGrr(n)[.f(nreg)]1/3 s (4)
where
0.37¢ 3 |V
=1_-——2 =
fin€) 140.187," °° 4mn

The same reduction factor f is used also in the calcula-
tion of positron annihilation rate. The rate calculations
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allow us to fit the “gap” parameter €, so that the experi-
mental positron lifetime in a delocalized state is repro-
duced. It is found that the value of 0.2 for €, describes
well Si, Ge, and III-V compound semiconductors.'>!’
After the potential for the positron is constructed, the
same methods (i.e., LMTO-ASA in this work) as for the
electron can be used in solving the single-particle
Schrodinger equation. The procedure for the positron
states described is strictly valid (within LDA) only for
the delocalized states. The problem of a positron local-
ized due to a crystal defect and interacting with the sur-
rounding electrons in principle requires the simultaneous
self-consistent calculation of the electronic structure and
the positron state.’

The important energy levels for a positron in a solid
are shown schematically on the right-hand side of Fig. 1.
The potential is fixed to the crystal zero and it is deter-
mined by the self-consistent electron density. It is essen-
tial to note that the crystal zero is common for electrons
and positrons. The thermalized positrons are near the
bottom of the lowest energy band at k=0. The surface
dipole potential for positrons is equal in magnitude as
for electrons but opposite (negative) in sign. Therefore
the vacuum level is below the crystal zero. Usually, the
bottom of the lowest band is rather near the vacuum lev-
el. If the vacuum level is the lower one the positron
work function ¢ is negative as in Fig. 1. The positron
chemical potential p, is defined as the difference be-
tween the bottom of the lowest band and the crystal zero
level and is usually negative.

If the solid is a heterostructure formed by different
materials, the requirement that the Fermi level is the
same everywhere in the solid determines the heights of
the dipole steps at the interfaces. The differences in the
positron affinities into different layers of the structure
(““band offsets”) can thereafter be defined as the distances
between ‘“‘the bulk positron energy levels.” For the ma-
terials 4 and B in contact, the positron energy difference
is thus

AEAB—FE4 _E8 =pA —p® 4pt—pf . (5

This equation can be used also for predicting the affinity
of positrons into precipitates in alloys (cf. the differences
in positron pseudopotentials'®).

The important quantities measured in slow-positron-
beam experiments are closely related to the energy levels
described above. The most directly related quantity is
the maximum kinetic energy of positronium (Ps) atoms
ejected into vacuum from the sample. The negative of
this energy is called the positronium work function ¢p,.
Actually, a more proper term would be positronium for-
mation potential, since Ps is usually not stable inside
close-packed solids. In the Ps ejection process an elec-
tron from the Fermi level and a positron from the bot-
tom of the lowest energy band are taken out of the crys-
tal into vacuum. This costs in energy the sum of the
electron and positron work functions but when Ps is
formed the binding energy of 6.8 eV is gained. Using
the notation of Fig. 1 we write
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dps=¢_+¢, —6.8 eV
=(—p_+A)+(—p, —A)—6.8 eV

Thus the Ps work function is a pure bulk property, in-
dependent of the surface dipole A. Another fundamental
quantity is the positron work function ¢_. It depends
on the surface dipole potential A but we may eliminate
A by the help of the electron work function ¢ _ as

b=ty A=, g

In this work we will use the experimental values for ¢ _
in order to determine ¢ .

The positron diffusion stage in a solid is dominated by
the positron-phonon interactions. The coupling between
a free particle and phonons is described in the deforma-
tion potential theory.!® The strength of the coupling is
determined by the deformation potential E;* which for a
positron is the sum of the volume derivatives of positron
and electron chemical potentials

3 du ddp,
v 9Ky i —V¢P. ()

4 =" 3y v FY%

Above, the inclusion of the electron part takes into ac-
count the maintaining of constant chemical potential in
the presence of deformation. The volume derivatives of
the chemical potentials are determined by performing
self-consistent electron structure and positron calcula-
tions for a few slightly different lattice constants. The
deformation potential theory gives the positron diffusion
constant due to acoustic phonon scattering as

1/2 ﬁ4<c“‘ >
(m*)XkyT)'?E}] ’

E

9)

where m* is the positron effective mass, T the absolute
temperature, and (c;) the elastic constant associated
with longitudinal waves and averaged over the directions
of propagation. The calculation of the average in {c; )
is a complicated numerical task and therefore we ap-
proximate it by

(Cii)z—;-(c”—}—clz—l—ZcM) . (10)

This form is strictly valid for the (110) direction, but the
variation corresponding to different directions is rather
small, such that the uncertainty connected with Eq. (10)
is much less than the uncertainty, e.g., due to m* in cal-
culating the diffusion constant. The effective positron
mass m* contains the contributions due to the periodic
lattice (band effective mass m;’) and due to the screening
electron cloud (correlation effective mass my, ). The
effective band mass is easy to determine by calculating
the positron energy in few k points near the bottom of
the lowest energy band and by taking the curvature

aE |
dk?

2

mp = (11)

The determination of the correlation effective mass is a
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difficult many-body problem?>?! and the scatter between

the results of different approximate solutions is consider-
able. The positron effective mass has been estimated
from experiments in few cases. However, the quantita-
tive interpretation of the experimental results is not
unambiguous. Therefore we use throughout this work
the value of m*=1.5 which is a compromise over the
various theoretical and experimental determinations.
This value is also consistent with the experimental order
of magnitude for the diffusion constant, and we focus
below more on the trends seen in the diffusion constants.

The temperature dependence of the electron and posi-
tron energy levels is related to the experimental deter-
mination of the deformation potential from the tempera-
ture dependence of the Ps work function.’>?* The tem-
perature influences ¢p, through (i) thermal expansion of
the volume ¥V of the solid and (ii) thermal vibrations of
the atoms around their mean positions. From Egs. (6)
and (8) follows

ddp, _ar Adp, Odps
dT = dT 3V aT |y
a<7SPs
- + _Ps
BE; + aT |, (12)
|
vib vib vib
a¢Ps _ a/*l'— _ a,u'+
aT |, 3T |, oT |y
:<_£"12 A[S(qQ*  |w(q]?
Vo S Tk |k_+ql?

Above, the summations in q are over the Brillouin zone,
and averages over k_ =k and k _ =(3kzTm* /#*)'/?,
respectively. w(q) is the (local) electron pseudopoten-
tial, and
2 d )
AlQ=1 fndrz In[v(r) 1, (gr) (15)
is the positron “form factor”® [¢y(r) is the positron
(pseudo) wave function and Q the unit cell volume]. The
temperature dependence of the structure factor for a
solid containing N unit cells can be approximated as

1 —

|S(@)|?=|Sol@)| >+ [— |So(@) |2 |(1—e~2"),

N

(16)

where S,(q) is the perfect lattice structure factor and W
the Debye-Waller factor. When temperature rises, the §
function peaks in S;(q) at the reciprocal lattice vectors
K, are scaled down, and simultaneously a diffuse back-
ground develops. For positrons, the net effect is the
change in the summation weight in Eq. (14) to smaller g
which makes p, smaller: (3u, /37T)}°<0. Physically
this means that thermal positrons can lower their energy
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where B=(1/V)(38V/dT) is the thermal expansion
coefficient. Thus a measurement of d¢p,/dT can give
the value of E;, provided that the temperature deriva-
tive (3¢p,/9T ), is known. Unfortunately, a precise
determination of the constant volume derivative is
difficult, as exemplified by the large scatter in the esti-
mates for the corresponding quantity for the electron
work function.?*~2¢
From Eq. (6), we have

au
oT

oy _
oT

a¢Ps
oT

vV

vV

(13)

vV

The purely electronic contribution to (du_ /3T), is pro-
portional to (kgT /e€r)ky and thus exceedingly small.
One is left with the effect of harmonic lattice vibrations
(3u_/dT)y® and (3u, /3T )}®. Let us examine these in
terms of perturbation theory based on weak electronic®’
and positron pseudopotentials.'®2® Since harmonic vibra-
tions do not change the average value of the electron
(positron)-ion interaction, the temperature derivatives
arise from the second-order term, which involves the

structure factor S (q; 7). One finds
2m 3|S(q)|? | A(q) |2 2
>k‘ # qgo 9T k% — |k, +q|2 7 [t

(14)

f

by adjusting to instantaneous ionic density fluctuations.
Because of the larger energy denominators (kp>>k_ ),
diffuse scattering does not affect electrons as much, and
the Debye-Waller damping acts to change the sign of
(du_ /dT)}® from negative to positive.

Accurate numerical estimates are difficult to ob-
tain.?*~26 The point is that while some cancellation be-
tween (du_ /3T )} and (3u , /3T)}® is likely, there is no
a priori reason to assume the second term in Eq. (12) to
vanish identically, as was done by Gullikson and Mills??
when they determined E,; from the temperature varia-
tion of ¢p,. However, if one makes the assumption that
(0¢ps /0T )y =c, a (temperature independent) constant,
the data of Gullikson and Mills seem to be consistent
with a very small value for c. At low T <<®pgy for
metals, B(T)=v T, while at higher T, B~const. Thus the
zero-temperature slope of ¢p, versus T should give B. It
is close to zero for the Al data of Gullikson and Mills.

III. RESULTS AND DISCUSSION

We have calculated by the LMTO-ASA method the
self-consistent electronic structure for several simple and
transition metals as well as for the semiconductors Si



7790
\ A TN/
0 \\ // ™.
‘\ / /\\ €¢
E \\Jr// ‘/\_1
> ~5F
2
]
Q -
wi
-10 +
% L r X W K

FIG. 2. The electron (solid lines) and positron (dashed lines)
band structures for Al

and Ge. The lattice constants corresponding to room
temperature have been used. The calculated electron
band structure and the lowest positron band in Al are
shown in Fig. 2. The positron band is rather free-
particle-like and resembles closely the lowest valence
electron band. Also, the positron effective band mass at
the T point is near the free-particle mass, my =1.01 (for
other metals we find larger band masses, but m; <1.10
in all cases studied). The lattice structures and lattice
constants used and the calculated chemical potentials for
electrons and positrons are collected in Table I. The
electron chemical potential, i.e., the position of the Fer-
mi level, depends on the details of the electron band
structure. For transition metals the values of electron
chemical potential and its volume derivative presented in
Table I are in agreement with the results of Andersen
et al.' The positron chemical potential can be divided
into a correlation (E_.) and zero-point parts (E;)
(Refs. 3 and 29)

0. V. BOEV, M. J. PUSKA, AND R. M. NIEMINEN 36

Hy=Eo+E; » (17)
with
ﬁZ
Eozmfdr¢'+(r)[——%V2—¢(r)]¢+(r), (18)
and
Eeorr=[dr |0 (1) |2V oe(n (r)) (19)

where ¢ is the positron wave function. The negative
correlation energy dominates over the positive zero-
point energy. This dominance is stronger the more open
the lattice structure is. In the volume derivative
V(0u, /0V') the negative zero-point contribution is usu-
ally larger in magnitude than the positive correlation
contribution, but in the case of open semiconductor lat-
tices the latter dominates and the derivative is positive.
From the calculated chemical potentials the positroni-
um work function ¢p, can be directly deduced via Eq.
(6). The values obtained are shown in Table II and com-
pared with the available experimental data from posi-
tronium time-of-flight measurements.’® The experimen-
tal trend is reproduced and also the quantitative agree-
ment is satisfactory when the large experimental error
bars are taken into account. It is interesting to note that
the theory predicts a slightly positive positronium work
function for Si. This theoretical value is calculated with
the electron chemical potential coinciding with the top
of the valence band. If the chemical potential is higher
in the band gap, the positronium work function becomes
negative. Thus Ps emission from Si should be sensitive
to doping. Also in Table II, the theoretical positron
work functions, calculated by the help of the experimen-
tal electron work functions via Eq. (7), are compared
with the experimental ones measured directly in the
slow-positron-beam experiments.’"3? In most cases the
experimental trends are found and the absolute values
are reproduced within few tenths of eV. Si seems to be
an exception: theory predicts that the positron work

TABLE 1. Calculated chemcial potentials and their volume derivatives for electrons [p_ and
V(3u_/dV)] and positrons [, and V(3 /3V)]. The lattice structures and constans (a) used are
also given. They correspond to the room temperature, with the exception of the 5-K value for potas-

sium, for which the melting point is 20 K.

. du duy

Lattice a u_ oy V FY% V Y%

Host structure (units of ag) (eV) (eV) (eV) (eV)
Na bee 7.987 —2.32 —4.80 —1.61 —0.98
K bee 9.877 —2.25 —4.80 —1.77 —1.41
Al fce 7.656 —0.74 —3.35 —6.00 —1.70
Cr bce 5.463 —0.42 —4.57 —9.33 —2.50
Ni fcc 6.654 —1.55 —291 —8.13 —2.36
Cu fcc 6.824 —1.59 —3.22 —7.39 —2.06
Ag fce 7.732 —2.14 —3.22 —7.23 —2.25
Mo bcce 5.955 —0.04 —1.88 —11.25 —3.06
Pb fce 9.357 —1.58 —3.98 —4.81 —1.58
Si dia 10.261 —0.54 —6.41 —17.51 +1.32
Ge dia 10.696 —0.60 —6.19 —7.64 +1.02
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function is clearly positive whereas the experimental
value is —1.0 eV. Si may be a difficult case for slow-
positron-beam experiments due to the charging of the
surfaces causing an extra electric field, and impurities on
the surface may also hinder the accurate determination
of the work functions. However, the rather successful
comparison between the experimental and theoretical re-
sults gives credence to the theoretical models used, espe-
cially to the LDA for electron-exchange correlation and
positron-electron correlation. Previously,>2%3%3% the
positron and positronium work functions have been cal-
culated in a more indirect way than in the present work,
which is the first to accurately solve the electron and
positron states in a crystalline potential. Another
difference is that in the previous calculations the
Schrodinger equation for positron is solved with only the
Coulomb part of the total potential (3) for the ‘“zero-
point” energy E,, and the correlation energy E_ . is
determined using electron gas results with an average
host electron density. The old treatment can be justified
by the fact that the positron wave function is concentrat-
ed in the interstitial regions, where the positron sees an
approximately uniform valence electron density. While
the trends in the work functions are usually the same in
all calculations, there exist differences of up to 1 eV in
the absolute values between the present and earlier cal-

culations. These kind of disagreements exist also be-
tween the different calculations employing the old
schemes indicating perhaps the importance of the self-
consistent determination of the electron structure. The
present direct LDA scheme treats the simple and transi-
tion metals as well as the semiconductors on the same
more fundamental footing provided by the density-
functional theory.

The chemical potentials listed in Table I can be direct-
ly used in estimating the positron affinity to different ma-
terials in heterostructures. For example, for Cu and Ag
in contact, positron favors Ag with the affinity difference
of AES»*8=0.55 eV. This affinity difference results
purely from the dipole step on the Cu-Ag interface, be-
cause the chemical potentials for positrons are equal in
these metals. The lower chemical potential for electrons
in Ag than in Cu reflects the smaller d-band width of
Ag. Experimentally, the affinity difference between Cu
and Ag manifests itself as a “positron-diode effect”? in
the slow-positron-beam measurements. Namely, if a few
layers of Cu are evaporated on Ag the positronium emis-
sion out of the sample is strongly reduced in comparison
to the case when the sample is prepared by evaporating
Ag on Cu.’® In the former case thermalized positrons
are held far from the surface by the potential barrier due
to the Cu coverage.

TABLE II. Comparison of the theoretical positronium and positron work functions with the exper-
imental ones. The theoretical values are calculated from Egs. (6) and (7) using the data in Table I and
the experimental electron work functions listed below.

¢;)hseor ¢<}a));pt a ¢¢2{pt b ¢tl\eor ¢e+xpt c
Host (eV) (eV) Surface (eV) (eV) (eV)
Al —2.71 —2.78+0.28 (100) 441 —0.32 —0.19
(110) 4.28 —0.19 —0.05
(111) 4.24 —0.15 —0.04
Cr —4.10 (100) 4.46 —1.76 —1.76
Ni —2.35 —2.6310.26 (100) 5.22 —-0.77 —1.11
(110) 5.04 —0.59
(111) 5.35 —0.90
Cu —1.99 —2.50+0.25 (100) 4.59 +0.22 >0
(110) 4.48 +0.33 —0.13
(111) 4.94 —0.13 —0.40
Ag —1.44 (100) 4.64 +0.72 >0
(110) 4.52 +0.84
(111) 4.74 +0.62 >0
Mo —4.88 (100) 4.53 —2.65
(110) 4.95 —3.03
(111) 4.55 —2.67 -3
Pb —1.25 —0.73+0.07 (100) 4.01 +1.55 >0
Si +0.15 (100) 491 +2.04
(111) 4.74 +2.21 —1.0
Ge —0.02 (111) 4.8 +1.98 >0

2Reference 30.
bReferences 25 and 31.
‘References 31 and 32.
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TABLE III. Positron diffusion constants at 300 K. Ej "¢ is the deformation potential calculated
from Eq. (8) using the volume derivatives of the chemical potentials listed in Table I. The experimen-
tal values of E;”“*P" are based on the values of d¢p,/dT at T =300 K, and the corresponding values of
thermal expansion coefficient (Ref. 39). The average elastic constant {c; ) is calculated from Eq. (10)
using experimental elastic data (Ref. 38). For the effective positron mass m * the value of 1.5 is used
for all hosts. The diffusion constant D is determined then via Eq. (9).

Ej,theor Ed+.expt <C,-,- > Dtheor Dexpt
Host (eV) (eV) (10" dyncm~—?) (cm?s~1) (cm?s~1)
Na —2.59 0.144 1.29
Al —17.70 —10.8,2—13.4° 1.12 1.13 0.76¢
Cr —11.83 3.10 1.27
Ni —10.49 —9.0,—13.9° 3.25 1.77
Cu —9.45 —10.1,°—14.6° 2.21 1.49 1.06°
Ag —9.48 1.53 1.02
Mo —14.31 4.21 1.24 1.28
Pb —6.39 —6.11¢ 0.61 0.86
Si —6.19 1.94 3.05 2.7,M.56f
Ge —6.62 1.55 2.13 0.5,0.55¢
“Reference 22. 'Reference 31.
"Reference 23. EReference 32.
‘Reference 40. "Reference 42.
dReference 41. Reference 43.
‘Reference 30.
The calculated positron deformation potentials and et al.’” the volume derivatives V(3E_,, /0V) and

diffusion constants are collected in Table III. The defor-
mation potentials for simple metals agree within 1 eV
with the previous estimates by Bergersen et al.*” who es-
timated the deformation potential from derivatives of
positron and electron chemical potentials, the positron
contribution consisting of the zero-point and correlation
energy parts. The three terms were estimated separately
using different kinds of arguments. In contrast with
that, the present results are based on systematic LDA
calculations. Moreover, the present calculations are
straightforwardly extended beyond this simple metals to
include transition metals and semiconductors.

In order to make more contact with the old results by
Bergersen et al.’” we have calculated the zero-point and
correlation energy contributions for Al using Egs. (18)
and (19). The comparison of the results is made in Table
IV. We show also the positron values which we have
obtained by a calculation method® based on the superpo-
sition of free atoms and the numerical solution of the
full three-dimensional (3D) Schrodinger equation. Both
of the present calculations use the same LDA for
electron-positron correlation energy and consistently the
correlation contributions calculated via the simple in-
tegrals of Eq. (19) are very close to each other. The po-
tential calculated from the self-consistent LMTO-ASA
electron density is steeper than that calculated from the
superimposed atomic charges because of the electron
charge transfer towards to the interstitial regions in the
former case relative to the latter one. This tendency is
reflected as a larger zero-point energy in the LMTO-
ASA calculations than in 3D; the values of E, are 4.99
eV and 4.23 eV, respectively. The volume dependence of
E, is for the same reason stronger in the former method
as can be seen in Table IV. In the work by Bergersen

V(0u_/dV) are estimated in the uniform electron gas
model and therefore they deviate somewhat from the
present values. However, the overall agreement is
surprisingly good. Moreover, it is interesting to note
that the simple RPA estimate, E; = —2¢er/3 (g is the
valence electron gas Fermi energy), gives E;=—7.79
ev.

Experimentally, the positron deformation potential in
Al has been determined from the temperature depen-
dence of the positronium work function by Gullikson
and Mills.?> Their value of —11.6 eV is remarkably
larger in magnitude than our result —7.70 eV. While
the reason for this discrepancy is not clear, the omission
of the term (d¢p,/0T), in Eq. (12) may affect the experi-
mental value as discussed above. Table III also includes
other experimental estimates for E; based on the slope
of ¢p, versus T at 300 K, and the values of the thermal
expansion coefficient® at that temperature, i.e., assuming

TABLE IV. The various contributions to the positron defor-
mation potential in Al. In the present calculations (LMTO-
ASA and 3D) the zero-point [V (dE,/dV)] and the correlation
[V (dE ., /dV)] parts are calculated using Egs. (18) and (19).

dEO VdEcorr Vd‘u'A +
dv dv v Ea
(eV) (eV) (eV) (eV)
LMTO-ASA —3.42 +1.72 —6.00 —7.70
3D —2.76 +1.74
Bergersen et al.? —2.2 +14 —7.8 —8.6

2Reference 37.
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(8¢p,/0T), to be zero. The scatter in these numbers is
rather large, as the slope is difficult to determine accu-
rately. However, the calculated values seem to lie below
the experimental ones pointing again to the possible role
of (3¢p,/0T)y.

The positron diffusion constants are calculated using
the deformation potential model via Eq. (9) and shown
in Table III. The value of 1.5 was used for the positron
effective mass m* for all hosts. This value is in accord
with the recent experimental determination?' of the
effective mass in potassium and reproduces well the
overall order of magnitude of the diffusion constants.
The main importance of the theoretical results for
diffusion constant shown in Table III is in the trends be-
tween different hosts. The magnitudes are certainly
affected by the dependence of the effective mass on the
host, especially when the lattice and band structures
differ considerably. However, we are tempted to believe
the overall trends. Unfortunately, the experimental re-
sults collected in Table III are obtained by several
different methods and are therefore not directly compar-
able. The larger value for Ge and the smaller value for
Si are from mobility measurements®! in which a bias
electric field is applied across a semiconductor detector.
The other values are obtained by analyzing the slow pos-
itron data for the Ps fraction as a function of the in-
cident positron energy. Unfortunately, except in the
case of Mo, the slow positron results shown in Table III
may be affected by the incorrect analysis in which the
effects due to epithermal positrons was not suppressed.
Their contribution may even affect the apparent temper-
ature dependence** of the positron diffusion constant,
which is T~!/2 according to the deformation potential
model. This dependence was accurately reproduced in
the recent analysis®? of experimental data for Mo. This
analysis gave for the diffusion constant at 300 K the
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value of 1.2 cm?s~! given in Table III. This is the most
reliable published value thus far, and in excellent agree-
ment with the value calculated here. However, given the
uncertainty in the effective mass, we may conclude from
Table III that theory and different experiments are in a
qualitative agreement (with the possible exception of
Ge).

IV. CONCLUSIONS

We have performed up to date band-structure calcula-
tions for electron and positron energetics in solids. The
principle is simple: First the electron structure, i.e., elec-
tron density, energy levels, and the effective potential, is
solved self-consistently within LDA for electron ex-
change and correlation. Thereafter the potential for pos-
itrons is known in LDA for electron-positron correlation
and the positron energy bands can be calculated. The
values for positron and positronium work functions ob-
tained are compared with the available experimental
data and the good agreement gives credence to the
LDA’s used. The chemical potentials for positrons and
electrons are now calculated for several solids on the
same footing and therefore they are valuable in deter-
mining the positron affinity to different materials or
phases in heterostructures or in precipitate systems.
Moreover, the volume dependences of the chemical po-
tentials determine the positron deformation potential
which can be used to describe the positron-phonon in-
teraction and the ensuing phonon limited positron
diffusion. In conclusion, the scheme presented, being
able to predict quantities directly measurable by slow-
positron-beam techniques, is a useful tool to be em-
ployed as a support to the experiments concerning vari-
ous kinds of problems of bulk solids and solid surfaces.

*Permanent address: Tomsk Polytechnical Institute, Tomsk,
634004, USSR.

tPermanent address: Laboratory of Physics, Helsinki Universi-
ty of Technology, SF-02150 Espoo, Finland.

LPositron Solid State Physics, edited by W. Brandt and A. Du-
pasquier (North-Holland, Amsterdam, 1983).

2S. Valkealahti and R. M. Nieminen, Appl. Phys. A 32, 95
(1983); ibid. 35, 51 (1984).

3C. H. Hodges and M. J. Stott, Phys. Rev. B 7, 73 (1973).

4M. Manninen, R. M. Nieminen, P. Hautojirvi, and J. Ar-
ponen, Phys. Rev. B 12, 4012 (1975).

SR. P. Gupta and R. W. Siegel, Phys. Rev. Lett. 39, 1212
(1977).

M. J. Puska and R. M. Nieminen, J. Phys. F 13, 333 (1983).

M. J. Puska and M. Manninen, J. Phys. F (to be published).

8Theory of the Inhomogeneous Electron Gas, edited by S.
Lundqvist and N. H. March (Plenum, New York, 1983).

9E. Boroniski and R. M. Nieminen, Phys. Rev. B 34, 3820
(1986).

100. K. Andersen, O. Jepsen, and D. Glétzel, in Highlights of
Condensed-Matter Theory, edited by F. Bassani, F. Fumi,
and M. P. Tosi (North-Holland, Amsterdam, 1985).

IIH, C. Skriver, The LMTO Method (Springer, New York,
1984).

12A. K. Singh and T. Jarlborg, J. Phys. F. 15, 727 (1985).

13M. J. Puska, O. Jepsen, O. Gunnarsson, and R. M. Niem-
inen, Phys. Rev. B 34, 2695 (1986).

14D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980); we use their local exchange-correlation functional as
parametrized by J. Perdew and A. Zunger, Phys. Rev. B 23,
5048 (1981).

15D, Glétzel, B. Segall, and O. K. Andersen, Solid State Com-
mun. 36, 403 (1980).

16J. Arponen and E. Pajanne, Ann. Phys. (N.Y.) 121, 343
(1979); J. Phys. F 9, 2359 (1979); we use their data for the
electron-positron correlation potential as parametrized in
Ref. 9.

17M. J. Puska (unpublished).

18M. J. Stott and P. Kubica, Phys. Rev. B 11, 1 (1975).

193, Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

20H.-J. Mikeska, Z. Phys. 232, 159 (1970); M. Baldo and R.
Pucci, Nuovo Cimento 23B, 202 (1974); A. Isii, Phys. Lett.
88A, 417 (1982).

2IT. Hyodo, T. McMullen, and A. T. Stewart, Phys. Rev. B 33,



7794

3050 (1986).

22E. M. Gullikson and A. P. Mills, Phys. Rev. B 35, 8759
(1987).

231, J. Rosenberg, R. H. Howell, and M. J. Fluss, Phys. Rev. B
35, 2083 (1987).

24C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185
(1949).

253, Holzl and F. K. Schulte, in Solid Surface Physics, Vol. 85
of Springer Tracts in Modern Physics (Springer, Berlin, 1979).

26A. Kiejna, Surf. Sci. 178, 349 (1986).

27W. A. Harrison, Pseudopotentials in the Theory of Metals
(Benjamin, New York, 1966).

28p. Kubica and M. J. Stott, J. Phys. F 4, 1969 (1974).

29R. M. Nieminen and C. H. Hodges, Solid State Commun. 18,
1115 (1976).

30R. H. Howell, I. J. Rosenberg, M. J. Fluss, R. E. Goldberg,
and R. B. Laughlin, Phys. Rev. B 35, 5303 (1987); R. H.
Howell, I. J. Rosenberg, P. Meyer, and M. J. Fluss, ibid. 35,
4555 (1987).

31A. P. Mills, Positron Solid State Physics, Ref. 1, p. 432.

32H. Huomo, A. Vehanen, M. D. Bentzon, and P. Hautojarvi,
Phys. Rev. B 35, 8252 (1987).

33R. M. Nieminen and J. Oliva, Phys. Rev. B 22, 2226 (1980).

O. V. BOEV, M. J. PUSKA, AND R. M. NIEMINEN 36

34G. Fletcher, J. L. Fry, and P. C. Pattnaik, Phys. Rev. B 27,
3987 (1983).

35M. Debowska, R. Evertowski, and W. Swiatkowski, Appl.
Phys. A 36, 47 (1985).

36P. Huttunen, A. Vehanen, and P. Hautojirvi (unpublished).

37B. Bergersen, E. Pajanne, P. Kubica, M. J. Stott, and C. H.
Hodges, Solid State Commun. 15, 1377 (1974).

38G. Leibfried and N. Breuer, Point Defects in Metals I, Vol. 81
of Springer Tracts in Modern Physics (Springer, Berlin, 1978).

39Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D.
Desai, Thermal Expansion of Metallic Elements and Alloys,
Vol. 12 of Thermophysical Properties of Matter (IF1/Plenum,
New York-Washington, 1975).

40D. A. Fischer, K. G. Lynn, and D. W. Gidley, Phys. Rev. B
33, 4479 (1986).

41p. J. Schultz and K. G. Lynn, Phys. Rev. B 26, 2390 (1982).

42B. Nielsen, K. G. Lynn, and A. Vehanen, Phys. Rev. B 32,
2296 (1985).

43H. H. Jorch, K. G. Lynn, and I. K. Mackenzie, Phys. Rev.
Lett. 47, 362 (1981); H. H. Jorch, K. G. Lynn, and T.
McMullen, Phys. Rev. B 30, 93 (1984).

44p. J. Schultz, K. G. Lynn, and B. Nielsen, Phys. Rev. B 32,
1369 (1985).



