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The dynamics of a particle interacting with the electrons of a metal and moving through a lat-
tice has been investigated. A scaling scheme based on a path-integral formulation of the problem
is given which is valid for a wide range of couplings. We obtain numerical estimates for the im-

portance of the coupling for charged particles moving within the bulk of metals or at their sur-
faces. Particles of charge one have couplings which lie below the threshold for self-trapping, al-

though their values are large enough to ensure a significant inAuence on their dynamics at low
temperatures. Finally, it is shown that a transition to a self-localized situation is in principle pos-
sible, and may be of relevance to situations where the screening cloud is slow enough as compared
with the dynamics of the external particle.

INTRODUCTION

The motion of a heavy particle interacting with the
electrons in a solid has always attracted a great deal of
attention, both from the experimental and the theoreti-
cal point of view. For a sufficiently massive particle at
high temperatures a classical approach is sufficient, and
an effective friction coefficient can be defined to account
for the dissipative processes associated with the interac-
tion. At low enough temperatures we expect quantum
effects to be important for such light particles as posi-
trons, muons, or protons. Indeed, such a crossover to-
wards behavior can be seen in a variety of experi-
ments. ' However, we also expect the polarization in-
teraction to induce significant deviations from the well-
known properties of a single quantum particle in an
external potential. From a theoretical point of view, the
inclusion of the interaction with the surrounding elec-
tronic medium presents severe complications. It is well
known that models of a localized dynamical impurity in-
teracting with an electron gas are plagued by infrared
divergences when analyzed by conventional perturbation
theory. These difficulties can be overcome by appropri-
ate scaling procedures. An independent approach to
dealing with the quantum-mechanical properties of a sin-
gle degree of freedom interacting with a dissipative envi-
ronment has been introduced to study rather different
systems, namely, the quantum properties of such macro-
scopic devices as superconducting quantum interference

devices (SQUID's) and Josephson junctions. ' Similar-
ly to the dynamical impurity problem mentioned before,
infrared singularities appear, which lead to nontrivial re-
sults such as self-localization beyond a given value of the
friction coefficient and related phenomena. ." ' In the
present paper we will treat the problem of a particle in-
teracting with an electronic (metallic) system by first in-
tegrating out the coordinates of the electrons. That
leads to an effective problem to be analyzed within the
path-integral formalism (second approach discussed ear-
lier), which we will then treat by scaling methods (first
approach) to obtain information about the dynamical
properties of the particle under consideration. ' As in
other models analyzed in the literature, we find a transi-
tion to a self-localized state when the coupling to the
electrons exceeds a given threshold. This result, howev-
er, also depends crucially on the relative time scales of
the screening process and the diffusion of the particle.
Only for "slow" screening, that is, when the cloud which
inhibits the motion of the particle is built up of very-
low-energy electron-hole pairs, can this transition take
place (see Ref. 18 for a careful treatment of this point).
Following the presentation of the method, we will dis-
cuss different choices of couplings and make numerical
estimates of the values in various cases of practical in-
terest, like charged particles within simple metals or at
surfaces. It will be shown that coupling of particles of
charge one lies close to the critical value for a localiza-
tion transition. Details of the approximations involved
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and comparisons with other theoretical' ' approaches
will be given along with the method and the results. We
mention, in particular, Ref. 21, which follows a scheme
close to the one presented here.

THE METHOD

The Hamiltonian of a particle interacting with an elec-
tron gas can, in general, be written as

p2H= + V(R)+ f v(
~

R —r
~

)p(r)dr+Ho,
2M

where P and R are the coordinates of the particle, M is
its mass, and we assume that the particle couples to local
fiuctuations in the electronic density via the potential v.
Thus p(r) is an operator which describes the charge den-
sity of the electron gas, and which can be written in
terms of electronic creation and annihilation operators,
in the language of second quantization. The choice of
coupling in (1) ensures translational symmetry, and Ho
describes the electronic system, and can also include in-
teractions between the electrons. The form of v(r) de-
pends on the type of coupling to be considered. For the
case of charged particles it is the Coulomb potential, but
other choices, such as dipolar or multipolar couplings
for neutral particles, or even short-range contact poten-
tials, can also be considered.

In order to define an effective action for the external
particle we will closely follow the procedure outlined in
Ref. 17. We can formally write an expansion of the path
integral for the whole system in powers of the coupling
potential v, as shown in Fig. 1. All those diagrams
which only have self-energy insertions decoupled among
themselves, such as Figs. 1(a), 1(b), and 1(c), can be
resumed and expressed as an exponential of the simple
graph 1(a). This is the lowest term in a cluster expan-
sion. Higher-order terms, such as l(d), are left out at
this order. We are interested in the low-energy behavior
of the external particle, which should be determined by
the leading long-time dependence of the graphs shown in
Fig. 1. From purely phase-space arguments, it can be
shown that the diagrams which are associated with the

(c)

FIG. 1. Some diagrams appearing in an expansion of the
path integra1 of the particle in powers of the coupling to the
electrons. Double solid lines are the propagators of the parti-
cle, while single solid ones denote electron and hole propaga-
tors. Diagrams (aj, (b), and (c) contribute to the leading terms
at long times of the eft'ective action, and are included in the
scheme discussed in the text. Diagram (d) is not included in
our calculation.

creation of a single electron-hole pair should have a
linear dependence on co as ~~0. Those which involve
the coherent excitation of two or more pairs depend on
the corresponding convolution of the density of pairs at
small frequencies, leading to higher powers of ~ and re-
tarded interactions which decay faster in time.

It is worth comparing this procedure with previous
work on impurities hopping between two sites and in-
teracting with the electron gas. The diagrammatic ex-
pansion presented in this work resembles Inost closely
the scheme outlined in Ref. 18 (note that there the
diffusion problem is treated as a succession of hops be-
tween nearest neighbors). If we neglect the momentum
dependence of the coupling potential, and replace it with
an effective contact potential, we obtain the same results
as when using a bosonization approach. On the other
hand, by treating the path integral with the Nozieres —de
Dominici scheme, the square of the potential obtained
here is replaced by a phase shift at the Fermi level.
The appearance of this phase shift seems to imply that
this procedure goes beyond linear-response theory, but it
can be ascribed to the indefiniteness of a 6 potential act-
ing on the electrons at the Fermi level. This potential
can only be defined within a given regularization pro-
cedure. The most commonly used ones give rise to the
above-mentioned phase shift, but others reproduce the
results obtained within linear-response theory. This
point is discussed in detail in Ref. 22.

An alternative way of reproducing these results for
contact potentials is given in Ref. 18, where a method
based on the decoupling of creation and annihilation
operators is used. To go beyond linear-response theory,
the use of Anderson's orthogonality theorem has also
been suggested, assuming that the particle and its screen-
ing cloud are fixed at different lattice sites. This
procedure is very appealing, although, as it is not formu-
lated in terms of path integrals, a scaling analysis to
leading order is difficult to perform. It is worth noting
that a full treatment of the motion in a periodic poten-
tial within the Nozieres —de Dominici scheme is not
feasible. ' As a heuristic intermediate approach, we sug-
gest definition of the coupling potential needed to obtain
the retarded interactions in terms of phase shifts and
functions dependent on the distance traveled by the par-
ticle, in such a way as to satisfy Anderson's theorem if
the particle is restricted to movement only between two
sites. Comparisons between this scheme and the
linear-response approach discussed before will be given
in the next sections.

Finally, it is worth noting that self-interacting effects
among the electrons can be included by replacing the
pair propagator in Fig. 1 by the corresponding dressed
one. Provided that the low-energy behavior of the elec-
tronic system can be described in terms of weakly in-
teracting quasiparticles, the analysis presented above of
the long-time decay of the propagators should hold, and
the leading dependence will come from the dressed coun-
terparts of the diagrams shown in Figs. 1(a), 1(b), and
1(c).

Thus, in order to analyze the dynamics of the particle,
we will replace the effects of the coupling to the elec-
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+ d~ d~'8' R ~ —R ~', ~—~' (2)

where the function W'(R, r ) is the Fourier transform of

~(k ~)=va (pap a)—
and (p~p ~ ) is the density-density correlation function
of the electron gas. As discussed before, this function
depends linearly on co for small values of co, so that we
can approximate W(R —R', r —r') at long times by

W( R—R', r —r' ) = fi f (R —R')
(r r')—

2

f(R—R')=
(2m )"+'

(4)

ik (R—R') I —1 g ydgk ~ 7

60~0

where we have written the density-density correlation
function of the electron gas in terms of the dielectric
function (d is the dimension of the space). As discussed
in Ref. 17, this effective action shows the same time
dependence as that proposed on general grounds to de-
scribe the effects of a dissipative environment on a quan-
tum variable. The spatial dependence is different, sincef (R) as defined in (5) is always bounded and decays to-
wards zero at long distances; in other treatments f (R) is
chosen to be quadratic on R to keep the model as simple
as possible. On the other hand, if we expand f (R) for
small values of R, we obtain, apart from a numerical
constant,

f(&)=f(& ) —f(0)=-
4m%

where

2
2 af k vq Ime '(k, co) d k

(2n. )"d

is the value for the friction coefficient of a classical parti-
cle coupled in the same way to the electrons. This is the
same result as the quadratic action discussed before, and
can be traced back to the fact that the classical friction
coefficient is defined for massive particles which move at
very low constant velocity. Such linear trajectories devi-
ate very slowly from the origin, so that the dissipative
processes associated with them depend only on the
small-distance, long-time behavior of the effective ac-
tion. '

The formalism we have presented so far is appropriate

trons by the retarded interaction arising from the lowest
self-energy diagram, Fig. 1(a). In a formulation in terms
of path integrals, this means that we have to weigh each
path of the particle by the efFective action (in imaginary
times)

2

$[R(r)]= f dr+ f V(R(r))drM BR
2 a7

for systems with full translational invariance. Extension
to other situations is straightforward, provided that
correlation functions for the electron gas can be calculat-
ed. We will discuss the case of surfaces when we present
our numerical estimates.

In order to proceed further, we will make the extra as-
sumption that the potential V( R ) (which should be
periodic and have the symmetry of the underlying lat-
tice) is strong enough so that, in the absence of interac-
tions, the particle is well described by a tight-binding ap-
proximation, and the tunneling between sites lies in the
Wentzel-Kramers-Brillouin (WKB) regime. That implies
that the particle is localized most of the time in the vi-
cinity of the minima of V(R), and the hopping matrix
elements of the Hamiltonian between neighboring wells
are small compared with other typical energies, like the
variational level spacings associated with these minima.
This approximation should be valid for massive enough
particles, like protons and muons, while it is more
doubtful that it can be applied to positrons inside metals.
Calculations of the quantum energy bands of nonin-
teracting protons on metal surfaces support this view.
It is also worth noting that in our treatment we are only
including the effects of low-energy electron-hole pairs, as
they are the only excitations which may lead to nontrivi-
al changes in the behavior of the particle. Other excita-
tions like phonons, plasmons, or high-energy electron-
hole pairs only renormalize the effective mass of the par-
ticle, but this effect also decreases the tunneling rates
across energy barriers, making it more likely that a
tight-binding description is appropriate. The presence of
low-energy polarization modes is not sufficient for non-
trivial effects to appear. A proper spectral distribution
is also needed. In particular, spectra of the type
5(co —ck) (corresponding, for example, to acoustical pho-
nons) only give finite-mass renormalization. This is con-
sistent with the fact that the classical friction coefficient
induced by such systems is exactly zero.

Within this approximation, the paths of the particle
will stay typically close to one of the wells of the poten-
tial for long times, with eventual excursions to neighbor-
ing wells, as depicted schematically in Fig. 2. Each sin-
gle hopping process between sites is called an instanton.
The inverse of the widths of these instantons will be of
the order of the vibrational frequency around one of the
wells (r, '-co, ), if the tunneling is well described by the
WKB approximation. In this regime the instanton
width is essentially independent (with logarithmic accu-
racy) of the height and width of the barrier because of
the particle spends most of its tunneling time in the
outermost regions of the barrier, which at low energies
are well characterized by the curvature near the
minimum (and thus by the intrawell level spacing). In
the semiclassical regime, corrections to the above instan-
ton width are of order A' over the instanton action [see
Eq. (10b)]. When calculating path integrals, each path
has to be weighted by a factor whose exponent is simply
the action (2) divided by —A'. To avoid complications
with the retarded interactions within each jump, we will
assume that we have first integrated out all those
electron-hole pairs with energies above the inverse of the
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7
I

I (~)
by Cardy. We first subtract a path-independent contri-
bution to the effective action and work with
f(R ) =f(R ) —f (0). The term f (0) does not affect the
dynamics of the particle; by neglecting it, we only need
to calculate interactions between parts of the path at
which the particle is in different wells. Let us now as-
sume that between times v.; and ~;+& the particle is in
the mth well, and between j and r,.+, in the nth [see Fig.
2(b)]. Then, we can integrate in (2) the contribution
coming from interactions between these two parts to ob-
tain

A m X

FIG. 2. Typical paths for the particle within the tight-
binding approximation. Solid lines describe the path x (~).
Dashed lines denote retarded interactions. See text for details.

instanton width, leaving us with an effective action in
which the retarded potential left has a short-time cutoff
of the order of the width of the instantons.

It can be argued on general grounds' that those
screening processes which take place at time scales
shorter than the instanton width (or, equivalently, whose
frequency is higher than the intrasite level spacing ~, )

follow adiabatically the motion of the particle and only
contribute to the renormalization of the coupling be-
tween the particle and the environment. This statement
applies equally to high-energy electron-hole pairs and to
bound states or resonances which lie farther than co,
from the Fermi energy. This effect is more pronounced
for heavier particles, and can lead to a significant weak-
ening of the pseudopotential. Thus the phase shift for
the electrons at the Fermi surface will not exceed vr/2
unless bound states or resonances whose energies lie
within co, from the Fermi level take part in the "slow"
screening process.

We are left with a sum over paths which can be ex-
pressed in terms of a set of discrete variables (the posi-
tion of the minima of the potential) which includes a
self-interaction decaying at long (imaginary) times like
1/(r —r') . From the knowledge of the average lluctua-
tions of these paths we obtain information which, when
analytically extended to real times, leads to quantities
directly related to the long-time dynamics of the parti-
cle, such as the mobility and the diffusion coe%cient.
For the case of the quadratic action, this analysis has
been carried out within different schemes, which can al-
ways be related to effective scaling equations for the pa-
rameters entering in the theory (the hopping rate and
the friction coefficient). The main result of these studies
is that a transition to a self-localized regime, character-
ized by zero mobility at zero temperature, takes place
when the value of ga /A' (g being the friction coeflicient
and a the distance between neighboring wells) exceeds a
critical value. ' ' ' '

In the following, we will take a similar scaling ap-
proach, although, due to the change in the dissipative
term of the effective action, the scaling equations will be
different. A general outline of scaling schemes when
Iong-range 1/~ interactions are present has been given

S,„,= +2[f(R )+f(R„„)—j(R „)

—f(R„)]ln
ic

(9)

where the short-time cutoff corresponding to the instan-
ton width ~, has been introduced for convenience.
When r; =~~, we substitute r, for r; —r, =0 (or,
equivalently, we introduce in the instanton gas a hard-
core repulsion of width ~, which accounts for the renor-
malization of the retarded interaction mediated by e-h
pairs with energy co&co, =r, '). Note that in this way
we are also including contributions from the interactions
between neighboring parts of the path.

We have to add to (9) the contribution to the action
coming from the noninteracting part of the Hamiltonian.
Within our tight-binding scheme, the corresponding part
of the Hamiltonian is expressed in terms of hopping ma-
trix elements 6 „. They can be related to the effective
action, as we can write

b. „=co,exp( —S „/A'),

R„
S „=f [2MV(x)]' 'dx,

(10a)

(lob)

where S „ is the action of a given instanton. Hence, in
the language of Ref. 34, these matrix elements (in dimen-
sionless form, b, „=6 „/co, ) play the role of fugacities
associated with each of the kinks in the path, while from
(9) we obtain an effective logarithmic interaction be-
tween them. For a general function f(R), this interac-
tion cannot be factorized and expressed in terms of
"charges" associated with each kink, as can be done for
a quadratic retarded potential. The scaling analysis pro-
posed in Ref. 34 is rather general and does not need this
requisite.

We now analyze the effects of a change in the cutoff
from ~, to ~,e', I small, on the action. Such a change of
scale has to be compensated by a redefinition of the pa-

bS =2f(R „)ln
rj 7[+] rj+] 7[

where R „ is the difference between the positions of the
two wells.

In our approximation, a trajectory of the particle is
defined by a discrete set of times ~; at which the particle
hops from the well m, to the well n, (m, +&

——n; ). By
rearranging terms, we can write the contribution from
the retarded interaction to the effective action as



36 BULK AND SURFACE DIFFUSION OF HEAVY PARTICLES IN. . . 7779

rameters E „and f (R „) entering in the action. No
new parameters need to be introduced except for a trivi-
al constant term in the free energy. The scaling equa-
tions thus obtained are

dA

d7
=[1 2f(R—„)]b, „+g b, b, „, (1 la)

df(R „)
q [f(R „)+f(R ) f(R„—)]

—gb, '„[f(R „)+f(R„)—f(R )].
(1 lb)

These equations arise from a rescaling of the interaction
plus the replacement of instantons closer than ~,e' by
effective interactions.

It is instructive to compare Eq. (11) with the corre-
sponding equations obtained in the case of a quadratic
action' or a cosine retarded potential; in both cases
the scaling equations were obtained by exploiting the
translational invariance of the model and working in
momentum space. In the first case, the effective interac-
tion between two kinks shown in Eq. (9) can be factor-
ized and expressed in terms of charges associated with
each kink. %'hen higher-order charges are neglected
(they are irrelevant in the renormalization-group sense),
and Eqs. (11) are expressed in terms of these charges, we
obtain the scaling equations derived previously. In the
case of the cosine dissipative action, we need to keep the
possibility of having long-range jumps, which are gen-
erated according to (11). Because of the periodicity of
the cosine, jumps between wells which are second neigh-
bors do not interact (they are "neutral" and carry no
charge). A transition to a truly localized state cannot
take place, although a transition to an intermediate state
in which the "particle" only occupies even or odd sites
does occur. Thus both cases are contained as particular
situations in the generalized scaling equations (11).

These scaling equations have been studied by several
authors. ' ' ' We comment briefly below on some of
their properties. It is clear from Eqs. (11) that b, „=0
is an attractive fixed point. If we assume that initially
(at 1 =0) E „&&I (or S „»A') for all sites m and n,
which is consistent with the WKB approximation, then
we can neglect quadratic terms in Eq. (11) and the scal-
ing equation can be easily integrated for each 5 „. If
f(R „)& —,', then b, „will scale down to zero at T =0.
At finite temperature the scaling process must stop at
Rcu, -k~ T, since A'/k~ T acts as a long-time cutoff'. The
final renormalized hopping parameter 6„„ is
h„„-b,(k&T/fico&) ~, where we have removed the sub-
script mn If f & —,', the. n the scaling process must be
stopped at 5-1, when the initial assumption 6 «1 is
no longer valid. The self-consistent renormalized width
is ~„„-~(~/~ )'j'~"-'f~ K(R ~0)= gR

2~%
(13a)

the screening cloud around an impurity in our metallic
system. We conjecture, on the basis of the Anderson's
analysis of the orthogonality between the screening
clouds originated by different external potential,
that an essentially exact treatment of the low-energy dy-
namics of the particle can be obtained if f(R „) in (11)
is replaced by K/2, where

~ (g
~
g„) ~

=K is the
overlap between the electronic ground states

~ P ) and

~ g„) corresponding to the particle located at sites m
and n, respectively, and N is the total number of conduc-
tion electrons. Several authors ' have studied the
diff'usion of a charged particle in an electron gas in terms
of the dimensionless parameter K defined above and
have reached similar conclusions about the renormaliza-
tion of the hopping matrix element. We recall here that
the use of the bandwidth D as a high-frequency cutoff in-
stead of the intrawell level spacing Ace, is only legitimate
when Ace, &D, which is almost never satisfied for heavy
impurities in metals, since m, is of the order of the De-
bye frequency. ' '

In principle, the knowledge of the phase shifts 6~ asso-
ciated with the partial waves of angular momentum /

should allow one to calculate K(R) (R is the distance
between sites). However, in practice this turns out to be
a very difficult task and no closed expression has so far
been obtained for K (R ) in terms of 5t. The obvious
source of difficulty is that in the calculation of

~
(g j g„) ~

each partial wave centered around the site
m mixes with all the partial waves centered around the
site n. So far only a few limiting cases have yielded
analytical expressions

Oguchi and Yosida have derived expressions for
K (R) (arbitrary R) under the assumption that, on each
site, only two partial waves, l and l', with arbitrary
phase shifts 6~ and 6&, contribute to the screening. They
have rederived the results obtained previously by Yama-
da et a/. , ' who only considered one channel on each
site and two channels with 6& «6&.

The limit R ~~ admits a closed expression that takes
into account the scattering of all the channels:

2
QO 6tK ( oo ) = g 2( 21 + 1 ) (12)

1=0 7T

The hopping between very distant wells is essentially
equivalent to the creation or annihilation of the impuri-
ty. In such a limit, the problem recovers an effective
spherical symmetry that inhibits the mixing of channels,
each of which contributes an amount (5ilvr) to the pa-
rameter K( oo ).

The limit R ~0 with the inclusion of all partial waves
has not been considered yet. Although there is not yet a
direct proof, we find it most plausible that, from Eq. (6)
and the identification f =—K/2, K (R ~0) will be

NUMERICAL ESTIMATES
3g oo

(l+1) sin (5( —5)+i),
kJ' 1's 1 =o

(13b)

In order to make further progress, we need to have a
model for f(R). This function describes the nature of

where g is the friction coefficient obtained from a
phase-shift analysis and r, =(3/4mp)', p being the
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electron density. In Eq. (7) we have given the friction
coefficient obtained in linear-response approximation.

The constraint on the phase shifts imposed by the
Friedel sum rule

Z =—g (2l + 1 )5(
2

7T
(14)

implies the identify K( oo )=Z /2(2l +1) when only the
l partial wave is present, and, in general, the inequalities
51 (vrZ/2(2l +1) and E( oo ) & Z /2 (Z is the charge of
the diffusing impurity). These considerations rule out
the possibility of localization for particles of charge
Z = 1 (for finite R the oscillations should be unusually
high to reach twice the saturation value), but leave the
problem open for Z )2 and, for any value of the charge,
do not provide by themselves an estimate of K =2f at
arbitrary distances (unless the above-mentioned approxi-
mations are introduced), which is of interest in learning
about the renormalized dynamics. Realistics phase
shifts for a number of impurity charges and electron
densities are given in Ref. 40.

The main advantage of a linear-response calculation is
that it allows us to obtain, with great simplicity, reliable
numerical estimates of f(R) for realistic metallic densi-
ties and arbitrary hopping distances. In addition, as we
will see, a linear-response calculation can be readily ap-
plied to geometries without spherical symmetry, such as
that encountered in the surface of a metal, where a
phase-shift analysis is not useful. A linear-response cal-
culation overestimates the coupling for high Z, but then
Z can be replaced by an effective charge or by a suitable
electronic density distribution which accounts for the
binding of electrons (analogously, in a phase-shift ap-
proach, one would subtract a phase shift ~ for each
efFectively bound electron).

In general, the function f(R) calculated from Eq. (5)
will rise quadratically for small values of R, as discussed
in connection with the classical friction coefficient. It
wi11 possibly have Friedel oscillations when R -kF
and settle to a constant value. Note that, because of the
sharpness of the Fermi surface of a metal, f(R) has
Fourier components only up to k =2k+. As the Friedel
oscillations have a decaying envelope, it is most likely
that f(R) is always positive.

In order to analyze the possibility of a localization
transition, we have to estimate f(R ) for all values of R
which connect wells in the periodic potential acting on
the external particle. If all these values are larger than
—,', then all hopping elements will scale down to zero, and
the particle will be localized in a single potential well at
zero temperature. If we further assume that the Friedel
oscillations are very strongly damped, then f(R) will
have a monotonous dependence on R, and the threshold
for localization will be given by f(R ~ ), where R

&
is the

nearest-neighbor distance.
If we describe the coupling in terms of phase shifts,

values of f(oo ) & —,
' correspond to phase shifts greater

than ~/&2. Such phase shifts cannot be derived from
weak pseudopotentials. That means that they can only
be achieved when the electron-hole pairs responsible for
the localization phenomenon feel the full unscreened po-

tential. These e-h pairs have energies of the order of, or
less than, typical ionic kinetic energies (see Ref. 18), so
that, for charged impurities to induce strong phase
shifts, the full screening cloud should be built up of these
low-energy excitations. Otherwise, the high-energy elec-
tronic modes would dress the external particle, thus
weakening its interaction with the low-energy e-h pairs
responsible for friction. We suggest the qualitative cri-
terion that renormalization will be strong when the elec-
tronic plasma frequency is much smaller than the in-
trawell level spacing. As discussed in detail below, this
is not the case for typical metals, either in the bulk or in
the surface. On the other hand, there are a variety of
metallic systems, like doped semiconductors, organic
conductors, graphite intercalation compounds, etc. ,
where the screening takes place within a narrow band; a
well-studied case is a doped semiconductor, where, for
reasonable doping levels, the plasma frequency and the
Fermi energy of the extra carriers are comparable to the
phonon frequencies of the host material. We think that
these systems are possibly good candidates for observa-
tion of the localization transition mentioned earlier.

We now look to numerical estimates of f(R) for a
particle moving through a three-dimensional (3D) elec-
tron gas. The dielectric function is calculated within the
RPA, and the coupling potential is assumed to be the
Coulomb potential. Note that, because of the self-
consistency inherent to the RPA, the effective potential
acting on the electrons at the Fermi level is a screened
potential. This means that the replacement of the bare
potential by a pseudopotential, mentioned before, is tak-
en approximately into account. We will use atomic units
in the following, 6=m =e =1, and express the density
of the electron gas in terms of the parameter r, defined
above. We expect the RPA to be most accurate at high
electronic densities, i.e., for r, small.

The quantity entering in (5) is

8 Ime '(k, co)

Bco

2k

2 2k +kTFg
2

2

&TF =
' 1/2

(15)

g(x)= —1+ ln
1 1 —x 1+x
2 2x 1 —x

Simple estimates of the behavior of f (R) in the small-
density limit (kT„«kz) are also discussed in Ref. 21.
The full dependence of f(R) on R is given in Fig. 3 for
typical metallic densities. Here, as in the rest of the pa-
per, we give our numerical results for Z =1. Within the
linear-response approximation our results for f(R )

should be multiplied by Z, where Z is the charge (or a
suitable effective charge) of the impurity. Note that the
parabolic dependence assumed in the Ohmic dissipation
model is only valid for distances small when compared
with kz . We plot, in Fig. 4, the friction coefficient as a
function of the metallic density, which is directly pro-
portional to the second derivative of f(R) at R =0, as
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0.2 atoms contributions with ZQ electrons to the conduction
bands, this distance is such that

1/3
3ZQ

k,d =~~& (fcc lattice),2'

0.1
1/3

ir&3 6ZO
kFd =

2 7T
(bcc lattice) .

For instance, Al has the fcc structure and ZQ ——3,
while for the alkali metals, ZQ ——1 and the lattice is bcc.
Hence

0.0

kF R

10
ICFd =5.01 (Ai),

kFd =5.38 (alkali metals) .

FICi. 3. Values of the function f(R) for a particle of charge
1 interacting with the bulk excitations of an electron gas. Solid
line, r, =6; dashed line, r, =4; dotted line, r, =2.

discussed earlier. These values agree with previous esti-
mates of the linear-response friction coeScient for an ion
moving in an electron gas. ' Echenique et al. ' have
estimated nonlinear effects in the friction coeScient from
a phase-shift analysis based on a local-density approxi-
mation to the electronic charge surrounding the ion.
They find nonlinear corrections to be important when
the screening is weak enough to allow bound states. In
the metallic range, the linear response tends to underes-
timate friction by a factor of 2 or less in the case of pro-
tons, and overestimates it (-20% for r, =2 and around
1 order of magnitude for r, =6) in the case of helium
ions. This overestimation is still larger for heavier
ions. Although we lack at present a nonlinear calcula-
tion of f(R ) for R ~ kF ', an educated guess can be
made by extrapolating the results obtained for the fric-
tion coefficient (which correspond to R ~0).

If we assume that the particle hops between interesti-
tial sites in the metallic lattice, then the typical hopping
distance will be given by the lattice spacing d. If each

For the metallic densities it means that f(d) lies close
to its asymptotic value (see Fig. 3). We plot in Fig. 5 the
function f(R = ao ) as a function of the metallic densi-
ties. This dimensionless number describes the intensity
of the coupling to the electron gas in the absence of
strong Friedel oscillations, provided that the hops are
such that the minimum hopping distance is much larger
than kF '. As expected, it is very small at high electron-
ic densities. In this case, the screening is very effective,
and only a weak residual potential acts on the quasipar-
ticles near the Fermi level. As the electronic densities
decrease, this effective potential grows, and the low-
energy excitations of the electron gas become more per-
turbed by the presence of the external particle. Because
of Friedel's sum rule for the phase shifts, the value of
f ( oo ) should always be below —,

' in the absence of bound
states or resonances. Our approximation violates this
bound for small electronic densities (namely for r, ~ 16),
when the RPA is expected to fail; note that even the as-
sumption of linear response will become invalid in this
limit. However, for typical metallic densities, our ap-
proximation gives presumably reliable estimates of the
coupling between a charged particle and the low-energy
electron-hole pairs of an electron gas.

It is worth noting that the density dependence of

04 0.20

0.3 0.15

0.2 8 010

0.1 0.05

0.0
2 4 6

0.00

FIG. 4. Values of the friction coeKcient (in atomic units)

for a particle of charge 1 moving within an electron gas plotted
as a function of the electronic density parameter r, .

rs

FICx. 5. Values of f(R = oo ) for a particle of charge 1 mov-

ing in an electron gas, plotted as a function of the electronic
density parameter r, .
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f( oo ) is the opposite to that of the friction coefficient
(see figures), so a sensible approximation to the coupling
strength can only be obtained from the complete shape
of f(R).

We will now consider the case of surfaces. We assume
that the particle is localized in the perpendicular direc-
tion to the surface, trapped in a potential well near the
surface. For charged particles interacting with a metal-
lic surface, an attractive image potential for large dis-
tances from the surface always exists. On the other
hand, hard-core repulsive potentials possibly dominate at
short distances. The particle is, in the absence of the
coupling to the e-h pairs, free to diffuse in the direction
parallel to the surface. We further assume, as before,
that this diffusion process takes place by successive tun-
neling transitions between neighboring potential wells,
an assumption which is well supported by detailed calcu-
lations for the case of protons.

In order to calculate the retarded potential experi-
enced by a particle at a fixed distance from the surface
we will use the semiclassical infinite-barrier approxima-
tion (SCIB) (Ref. 44), which mimic the response of the
surface by assuming that the quasiparticles are reAected
specularly in the inner wall of the surface. This approxi-
mation correctly reproduces the bulk screening proper-
ties of the material and leads to the image potential out-
side the metal. It has been used to obtain reliable esti-
mates for quantities such as the energy loss of a parti-
cle, and the sticking of a neutral atom to a surface.
Despite its limitations, the SCIB approximation is highly
valuable, since it offers a simple way of estimating the
surface response.

Within this approximation, the surface counterpart of
f(R ) can be shown to be

f(z R)= f d k(e'"'" —1)
8 k

Xe p k, c) lmg(k, co)

(k )
1 —e(k, co)

1+a(k, co)

k dqe(k, co)=-
(k +q ) (ekq, co)

(16)

where R is now a vector parallel to the surface, z is the
distance perpendicular to the surface, and e(k, q, co) is
the three-dimensional dielectric function of the bulk
(which we have modeled again by the RPA). Note that,
because of the integral which defines e(k, co), all bulk e-h
pairs with the same parallel wave vector k contribute to
the screening. On the other hand, a weighting factor

appears, which comes from the bid jmensjonal
Fourier transform of the Coulomb potential. By analyz-
ing the behavior of f at a given value of z and small R's
we can calculate the friction coefticient as a function of
the distance to the surface, rI(z), which is done in Fig. 6
for typical metallic densities (note that we are now scal-
ing distances in terms of k TF, the inverse screening
length, which is a more natural parameter). Our results
are in good agreement with previous estimates of g(z)

0.08

0.04

0 pn I I I
~ MM

0.5

kTF z

1.5

FIG. 6. Values of the friction coefficient for a particle of
charge 1 moving outside the surface of an electron gas, plotted
as a function of the distance from the surface. Solid line,
r, =6, dashed line, r, =4; dotted line, r, =2.

obtained in the linear-response approximation.
Results for f(z,R ) are plotted in Fig. 7 for two

different electronic densities of experimental interest:
r, = 1.62 (W) and r, =3.02 (Ag). As before, this function
deviates strongly from a quadratic behavior at typical
ionic separations, and approaches a limiting value at
long distances. We take this latter value as representa-
tive of the coupling of the electron gas to a charged par-
ticle. These values are plotted in Fig. 8. They decay
sharply as a function of the distance between the particle
and the surface, and decrease with decreasing metallic
density like their bulk counterparts. It is finally worth
noting that, because of the e

—
I I weighting factor in

(16), the effective cutoff for surface screening processes
lies below the bulk value (which is of the order of the
Fermi energy). Thus we can expect couplings at the sur-
face to be smaller than those in the bulk. This is con-
sistent with recent experiments showing evidence that H
diffuses in a bandlike motion on some metal surfaces.

While we have already studied the most common
cases for particles interacting with metals, it is also
worth mentioning some more unusual situations which
may arise. As discussed earlier, a localization regime is
only possible in narrow-band metallic systems. The
function f (R) for these materials can exceed —,

' for some
values of R and particles of charge greater than 1. It
can also be possible for this function to show strong
Friedel oscillations, as the screening cloud is built up
from electron states within a narrow range of wave vec-
tors. Thus, in these systems it is feasible that, while
nearest-neighbor jumps are suppressed, the particle can
hop between sites which lie further apart, as this process
involves no significant change of the screening cloud.
Then a new phase might appear, in which the particle
would be delocalized within a given sublattice, but re-
stricted not to leave that particular sublat tice. This
phase is closely related to the situation which can arise
in a Josephson junction with dissipation and
exemplifies rather well the difference between the quad-
ratic ("Ohmic" ) dissipation model and others more ap-
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ticles with charge 2) and the induced screening cloud is
slow as compared with the dynamics of the particle;
such a situation may present itself in doped semiconduc-
tors, with a narrow band and a small plasma frequency.
A third possible phase in which the particle can be local-
ized in separate sublattices, but is free to move over the
whole space, is also possible, if the Friedel oscillations in
the screening cloud are large enough. When defects are
present, situations are also conceivable where, due to the
local modification of the screening cloud, the particle
would only be allowed to tunnel in a region near the de-
fect or far from it.
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