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The various defect theories of the B-a transition in Agl and many other type-I fast-ion conduc-
tors are criticized. Because the symmetries of the two phases are quite different, they are thermo-
dynamically independent and an order-disorder transition in the B phase does not entrap the S-a

transition.

It is shown by a model-free theory and experimental data that there is no critical

value in the defect concentration. Rather, this varies along the length of the phase boundary.
These ideas are illustrated in the very case of Agl, along its rocksalt—a-phase boundary which
traverses a diffuse fast-ion transition in the rocksalt phase.

Recently, Shahi and co-workers'? have suggested that
the first-order B-to-a transition in Agl at 420 K is driven
by a critical concentration of defects in the 8 phase. The
a phase is a fast-ion conductor or solid electrolyte in
which the cation sublattice is diffusive while the anions
remain localized in a bcc lattice. According to many who
espouse the defect model,'~> this highly defective a phase
is anticipated in the lower-temperature g (wurzite) phase
by the high density of Frenkel defects. As the transition
temperature is approached, the concentration of defects
either diverges>~> or approaches a critical level.!'?> In each
of these theories, it is implied that this behavior is general
in its applicability to a number of type-I fast-ion transi-
tions in the scheme of Boyce and Huberman. ¢

I submit, however, that the above notions are not valid,
neither in general nor in the specific Agl system for which
they were developed. The two phases in question have
quite different symmetries, no similarity exists even in
their short-range order, and consequently they are ther-
modynamically independent. The equilibrium transition
point on an isobar occurs just where the Gibbs free ener-
gies of the two phases happen to be equal. Three situa-
tions illustrated in Fig. 1 may be envisaged. The tempera-
ture dependence of the Gibbs free energy is shown
schematically for the defect-free B phase (8-8) and for
the a phase (a-a). As the negative slope at any point is,
by definition, the state entropy, these curves have negative
gradient, as shown, and have a small negative curvature
due to the temperature dependence of the entropy. The
point of intersection is the transition temperature and the
discontinuous decrease in gradient is the transition entro-
py. Lines 1, 2, or 3 describe the perturbed free energy
when the B phase has a fast-ion diffuse transition well
below, near, or well above the B-a transition, respectively.
The decrease in slope around the diffuse transition is by
definition the excess entropy and, most important, the
effect of the fast-ion transition is to displace the 8-a tran-
sition to higher temperature.

We note first of all that Cava and Rietman,’ in detailed
and very careful ionic conductivity measurements on sin-
gle crystals close to the 8-a transition, find no evidence for
pretransition behavior. This suggests that case 3 is the
relevant one, particularly as ionic conductivity directly
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probes the defect density. To this we may add that a
constant-stress molecular-dynamics simulation® of Agl al-
lows one to superheat the 8 phase with no anomaly near
the thermodynamic transition point. Likewise, only when
supercooled to 300 K does the a phase display a diffuse
fast-ion transition to nonsuperionic a-Agl. This is the
true order-disorder precursor to the fast-ion a phase.
Nonetheless, for the purpose of investigating the proposal
of Shahi and co-workers, let us admit the possibility that
case 2 pertains so that the defect density grows dramati-
cally in the vicinity of the phase transition. Two impor-
tant points must be noted. First, even if the defect growth
runs away to first order so that the knee in curve 2 under-
goes a discontinuous change in slope, the point where it
cuts the a-phase curve is quite arbitrary, i.e., an order-
disorder transition in the 8 phase does not entrap the S-a
transition and cannot be said to drive it. Second, were
case 2 to prevail, rather than being driven by a well-

T

FIG. 1. Schematic diagram of the temperature dependence
of the Gibbs free energy of the a phase (a-a) and the defect-
free B phase (B-B). Curves 1, 2, and 3 denote the free energy
where a diffuse fast-ion transition occurs well below, near, or
well above the B-a transition. The transition temperatures 7',
T, and T3 are noted.
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defined critical concentration of defects, the -a transition
temperature can be seen to vary linearly with defect con-
centration along the transition boundary. This point re-
quires some development.

Consider, for initial simplicity, just one defect species
with thermal formation enthalpy %, and formation entro-
py sy with Gibbs free energy of formation gr=h,—Ts,
which in general is a function of the defect density n. The
total free energy is

G =Ggtng(n) —TS.(n) , 1)

where Gg is the defect-free Gibbs function for the B phase
and S, is the configurational entropy of the distribution of
defects. At equilibrium, G is stationary in the density n,
so that

G=Gp+T(nS.—S.)—n’g} , (2)

where the prime denotes derivative with respect to n. In
the vicinity of the order-disorder process Hg and Sg are
weak functions of temperature and pressure in comparison
with the second and third term in Eq. (2). So also are H,
and S, in the a phase. Thus we take AHy=H,— Hg and
ASo=S,— Sp to be constants. The equilibrium transition
occurs at 7, given by

AHO_“T,AS()"T,(HSL{_SC)_nzgf' . 3)
Now consider the variation in 7T, and n along the phase

boundary. Let the zero suffix and superfix denote the
zero-pressure values; then

(TP —T,)[AH o+ nggf]

=(n—n)(TPS) —2g/ —nogf InoTP+ --- . (4)

Thus to first order in n — ng, the shift in transition temper-

ature is linear in the shift in defect density. If there is a -

single critical defect concentration the transition tempera-
ture must not shift with pressure. The fact that it does,
and markedly so (dT/dp = —15.7 K/kbar),® implies that
the concentration varies along the boundary. The above
argument is model free in that neither the defect nor the
concentration dependence of its formation energy is
specified. Our only assumption is that, where case 2 of
Fig. 1 prevails, AHy and AS( are weak functions of tem-
perature and pressure in comparison with the defect
terms. Inclusion of the variation in AHy and AS simply
adds the Clausius-Clapeyron term T,(p —po)AV, on the
right-hand side of Eq. (4). Were this to dominate in gen-
eral, our argument may break down but this amounts to
saying that the defects contribute negligibly to the total
free energy and case 3 prevails as we have already pro-
posed.

Moreover, the sign of the variation is opposite to that
which is observed. Consider, specifically, gr~0 (as in the
early stage of divergence) and the configurational entropy
of n defects distributed over /V lattice sites:

S, =kIn[NV/n' (N —n)!]

=kNInIN/(N—n)l —kninln/(N —n)] , (5)

so that Eq. (3) becomes
T,_IAH()"'AS()‘_—‘-nk . (6)

Consider now the total pressure derivative along the phase
boundary

[T,"2AHo—k(8n/8T),1(dT,/dp) =k(8n/dp)T . (7

As the first term in square brackets is more than six times
the second (~nh,T,”2) the sign of the slope of the transi-
tion boundary is given by the sign of (dn/dp)r which is
positive due to the negative formation volume.® ! In fact,
the boundary slope is negative.!! The above model may
readily be generalized with the same conclusion to the ac-
tual case of a vacancy and interstitial defect.

Shahi, Weppner, and Rabenau? used for their argu-
ments the data of Weiss, Jost, and Oel'2 on the depression
of the B-a transition temperature with Pb2* doping. They
deduced a critical defect density of about 0.8 mole%. In
fact, these data argue rather firmly against the transition
being driven by a critical defect density. They estimate
the intrinsic defect concentration at 7, at ~0.8%, but
then the depression continues to grow monotonically with
Pb2* concentration, C, up to 5 mole%. They invoke 80%
impurity-vacancy binding to account for the difference.
We can easily calculate the free defect densities from the
original data and we will see that, with doping, they rise
well above the intrinsic density at the transition. More-
over, we will see as predicted by Eq. (4) that the
transition-point depression is linear in the defect concen-
tration.

It is important first of all to establish mobilities and to
use data from the one conductivity study rather than draw
from various sources where the absolute conductivities
differ. Shahi et al.? give two sets of interstitial and vacan-
cy mobilities u; and u,. The first of these, based on the
data of Weiss ef al.,'? are

u; =0.042exp[—(0.27 eV)/kT] ,

(8)
uo=3.68exp[—(0.43eV)/kT] ,

and these yield p;(420 K)~u,(420 K)~2.5x1073
cm?V ~'s 7! at the intrinsic transition. Below the transi-
tion the interstitial defect becomes the more mobile of the
two. We consider that Eq. (8) well represents the data of
Weiss et al. Note, for example, that at small doping they
observe a relative conductivity minimum below 400 K.
Lidiard '3 gives for this

(6/60)min=2v0/(1+9¢), o=pilu, , 9)

from which we deduce from their data ¢(323 K)=3.3,
9(343 K)=2.6, ¢(363 K)=2.0, and ¢(383 K)=1.4. These
results agree with Eq. (8) and we note that the minimum
disappears close to the transition point so that u;~u,
there. The alternative set of mobilities quoted by Shahi et
al. has u, a factor of 6 lower at the transition and is quite
inconsistent with the relative conductivity minimum ob-
served by Weiss et al.

We may proceed now to calculate vacancy and intersti-
tial concentrations, x, and x;, from the same conductivity
data. The intrinsic conductivity at 7, is about 2.5x10 ™4
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FIG. 2. (a) The concentration ¢ of Pb?* and the depression AT, in transition temperature as functions of vacancy plus interstitial
concentration x, + x; deduced at 7,(c) from conductivity data of Ref. 9. (b) The depression AT is also plotted (filled triangles) as a

function of total defect concentration xiot =x, + x; +c.

S/cm so that x; ~x,~0.21%, giving a total intrinsic de-
fect concentration of 0.42%, the so-called critical concen-
tration. For Pb2* dopant levels from 1.5% to 5% the con-
ductivity at T, is well into the extrinsic region and there-
fore governed by free, unassociated vacancies only. Using
the conductivities at the impurity-dependent transition
temperatures quoted by Weiss et al. and the above vacan-
cy mobility, the free-vacancy concentrations at T, (c) are
calculated and shown in Fig. 2(a). Both dopant levels ¢
and the transition depression AT, are shown in Fig. 2. At
the highest concentration x, ~2%, well above the “critical
concentration,” and moreover the total defect concentra-
tion of x, free vacancies, x; interstitial defects, x, free im-
purities, and c¢—x, impurity vacancy dipoles is
(240.02+2+3)%=7.02%. Clearly there is no critical
concentration and the transition point depression simply
varies linearly with defect concentration as indicated in
Eq. (4). This is a simple consequence of the defects per-
turbing the total free energy of the 8 phase. Note that the
alternative vacancy mobility quoted by Shahi et al. yields
x, (¢c=5%)=14.7% at the transition. This is impossibly
high as, in the extrinsic region, x, =< ¢ due to dipole associ-
ation.

Figure 2(b) also shows the total defect concentration
Xt =X; +x,+c to illustrate linearity of AT, in x4y also.
Neither of these plots rigorously represents the true

dependence since each defect kind occupies a different
free-energy level. Nevertheless, by extrapolating back to
zero defect density we may deduce that the defect-free
transition temperature lies between 2.5 and 11 K above
the intrinsic transition temperature and closer to the latter
than the former.

All this goes to show that the B-a transition is not
driven by a critical concentration of defects in the 8 phase
nor by an intrinsic divergence of Frenkel defects. The
combined weight of evidence is persuasive. We have
drawn from the anomaly-free conductivity data of Cava
and Rietman,’ computer simulation in the metastable su-
perheated region,® model-free defect calculations, and the
impurity depression of the transition temperature. This
argument is completed by considering the higher-pressure
rocksalt-a-phase boundary. This actually is cut by a
diffuse fast-ion transition in the rocksalt phase!* in con-
trast to the defect model'™> which would have both of
these transitions running parallel to each other. Rather,
on increasing pressure from 0.4 to 1.0 GPa the status
evolves from case 3 in Fig. 1 with a defect density in the
rocksalt phase of less than 10 ™% to case 1 where the de-
fect density is a few percent. Of course, the diffuse fast-
ion transition inevitably perturbs the phase boundary, '’
but in no way can the rocksalt-a transition be said to be
driven by a critical concentration of defects.
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