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Theory of the phonons and plasmons in mercury chain compounds
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A microscopic model is introduced for the density fluctuations in the mercury chains of
Hg3 —&AsF6. Both the one-dimensional phonons measured by neutron scattering experiments, at
wave vectors close to a chain lattice vector, and the two-dimensional high-frequency plasmon
mode observed in optical reflectance measurements, are recovered. It is predicted that the two
phonon modes of the separate sublattices are replaced by a single higher-dimensional phonon
mode at wave vectors smaller than the smallest reciprocal-lattice vector, and that a new acoustic
plasmon is present.

The first x-ray diflraction' experiments on the mercury
chain compound Hg3 bAsF6 revealed the unusual feature
of intense sheets of diA'use scattering in two perpendicular
directions. These sheets originate from chains of Hg
atoms running through the crystal in "channels" created
by the AsF6 anions and forming two mutually perpendicu-
lar arrays of chains a and b. At room temperatures =300
K, the Hg ions are uncorrelated from one chain to the
next; thus, each chain acts as an intense one-dimensional
(1D) scatterer. ' Further, inelastic neutron scattering
experiments at momentum transfers close to 2tr/d t,
where dt is the Hg intrachain distance, have measured
one-dimensional longitudinal acoustic phonons with speed
c, associated with the Hg chains. Interactions with the
host AsFs lattice are weak because' d~~ (3 —b)aT
where 5=0.18 and is thus, incommensurate with the host
lattice parameter aT. The striking feature of these com-
pounds, therefore, is that, in contrast to other quasi-1D
compounds, both the ions and electrons exhibit 1D char-
acteristics. As the temperature is lowered the two arrays
of chains gradually become more correlated, finally order-
ing to a two-dimensional structure below T,= 120 K.

There are, however, experimental features of these
compounds in which the two-dimensional character asso-
ciated with the two, mutually perpendicular arrays, is ap-
parent, even at room temperature. Optical reflectance
measurements on single crystals support a plasmon
dispersion relation isotropic in the x-y plane. For light
polarized along the z direction, no metalliclike behavior
characteristic of freely moving electrons was observed
since the crystal remained opaque. For light polarized in

the x-y plane, however, the reflectance dropped rapidly at
the plasma edge which was found to be =4.8 ~ 0.3 eV us-
ing a fit to a simple Drude model.

We present a unified microscopic theory of the Hg
chains, in which both the one-dimensional character of the

I

phonons and the two-dimensional nature of the plasmons
are exhibited. We start with a microscopic model of the
room-temperature phase in which the density fluctuations
are well represented by plane waves ' parallel to the
chain axis. Thus, only motion parallel to the chain axis
within a given chain is allowed, the density fluctuations
being restricted to the chain in the transverse direction.
The coupling of the Hg chains to the AsF6 lattice is ig-
nored, the AsFs lattice being treated as a dispersionless
background, and retardation is neglected. ' We show ex-
plicitly how the sublattices decouple in response to an
external potential Vo(p') with p' close to a reciprocal-
lattice vector, while in the p' 0 limit, the collective
modes display the full symmetry of the coupled arrays.

We introduce the microscopic model "for the density
fluctuations,

(Sp'(r, co)) =g hp„', (x', co)w(r~ —R~),

where Spa, is the density fluctuation on the chain labeled

by lattice vector R& of the tetragonal lattice for array s,
and x'= x, x =—y. For an origin on the a array,
R& —=R&(x,z)+O'; D' =—(cT/4)i+(aT/4)x; and

Rf —=Rf (y, z). The density fluctuations appearing in Eq.
(3) are well represented as a product of plane waves
parallel to the chain axis and real-space form factors
w(r~) localizing them to the chains in the transverse
direction. The w(r&) are taken to be Gaussians " for
simplicity:

w(r~)=—(trro) 'exp[ —(~r~ ~/ro) ]—:w(y)w(z),

and similarly for w(r&), where ro is the chain "radius. "
The self-consistent mean-field equations to be solved for
the response functions are thus

and

(Bp'(r, co)) -g Jr dr'gX "(x,x', co)w(r~ —R~)w(r~ —R~) V;„(r',co),
S R~

V;„(r',co) =Vo(r', co)+gzr dr"U"(~ r' —r"
~
)(8p'(r", co)),

(2)

(3)
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where XR". o(x,x', co):—X "(x—x', co), independent of R&, is the one-dimensional Lindhard function. ' v "(r) e /r is
the interaction potential energy between density fluctuations.

The general response function in the model is

X"(p, —q, co)=—P(pf)P*(q~) —g e""'ZR.' „.(p„, —q„', co)e
R~,R~

(4)

where N is the number of chains in each array, assumed equal, and P(p~) are the Fourier transforms of the Gaussians
w(r~). The functions X"(p, —q, co) are the Fourier transforms of Z"(r, r', co) and automatically satisfy the translation-
al symmetry in real space X"(r,r') =X"(r+R~, r'+R~), and X" (r, r') =X" (r+R&,r'+R~) -X"(r+R~,
r'+R~).

Using the above, we obtain a set of coupled equations which can be solved to give the response functions. The analysis
makes use of the restriction of the dynamics of the problem to motion only along the chain axis within a given chain. We
obtain

X"'(p, —
p

—G~, co) e'(p, co)

dete(p, G~, co )

Z ' (p, p G~, co)BGs Gs = ~P(py) ~

'X "(p», —p», co)u' (p)Z ~ (p, —
p —G~, co)

dete(p, G~, co)

and similarly for g ' and g", where

dete(p G~ co):e (p co)eb(p co) ! P(p»y)! X ' (p» p co)u (p)X 'b
(py 'py co)u ' (p)bG

e'(p, co) =1 —u "(p,co)Z" '(p»', —p»', co) .

(5)

(7)

The wave number p„~ = (p„+p~ ) '~ and the form-factor-
ed Coulomb potential energies u "(p) are given by

a-b form-factored potential energy in Eq. (8b) can be
written as

u"(p) =—g I P(p~+G~) I "(p+G~), (8a)
2ze 2 &~,,&&~2 csch(p„~D)sec(p, D)

p, ~r 1+tan (p,D)coth (p„&D)

u"'(p) —=g ~
P(p'+G~)

~
'v(p+G' )e'

GsL

(8b)

where Z" and I' are given by Eqs. (5)-(8). We con-
sider the response to a local' (in momentum space)
external field,

Vp (p, co ) = Vp (p, co )8p @+ Go,a (10)

Therefore, if G~~'=G~'(z)AO then the b array also
responds at some G&' =G&' and the motion is that of the
coupled arrays. If, however, G~' has some nonzero y
component, it is clear that the response of the two sublat-
tices is completely decoupled and the system behaves as
though only the a array were present. The same argu-
ment holds if G~' is replaced by G~ with nonzero x com-
ponent, in which case the response is that of the b array
alone. The motion is also coupled in the limit of p' 0
which corresponds to the case G&'=G~ =0. Finally, the

where v(p) =—4' rIL/p and q is the number of electrons
per unit volume in one array.

Thus we have

(Sp'(p, co)) = QZ" (p, —
p

—G~, co) Vo(p+G~)
G~

+gZ' (p, —p —G~, co)bGb G. Vo(p+G~b),
Gb

4ze Lu'b(p) =," [1+ —,
' (pD)'B(0)+ —,

' (pro)'sin'e],
P

where the corrections to the usual I/p term in the last
equation are obtained from the convenient form of Eq.
(11). In Eq. (12),

C Px 1

p 4

r

0 I'p
ln + y

—1+2
2l'0 a

S
px

and

8(0) = —
—,
' (1+4sin 8) . (14)

The angles 8, & are defined by p=p(sinOcosp, sin8sinp,

where D cr/4 is the minimum distance between the a
and b arrays in the z direction. This shows the relative re-
striction of the density fluctuations ip the combined a-b
system only along the z direction. In this form "correc-
tions" to the continuum I/p term are easily obtained.

The collective modes of the system are given by the
solutions of the equation dete(p, co) =0. In the continuum
limit pro(&1 Eqs. (8) become (xa =A„ the area of a
unit cell of one array)

4 e Lu"(p) = 2" [1+(pa) C(p„'/p)+O(pa) ],
P
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cos8), and y=0.577. The single-chain electronic
response functions are given in both the high-frequency
(ro »p„v~,p~ vz) and low-frequency limits (ro((p„v~,
pyvF ) by

Z "(p' —p' ro)=
ps 2

m(co —vip„' )

for N, electrons (mass m) per unit length on a chain, and
vp is the Fermi velocity for electrons on both a and b
chains. From Eqs. (12)-(15), the high-frequency collec-
tive modes (plasmons) in the p 0 limit have frequencies
given by

co~~ ro~sin 8[1+(pa) [f(8,&) ——,
' sin 2&g(8, &)]]

(15)

and

+vip sin 8(1 ——,
' sin~2p),

ro- = —,
' vip sin 8sin 2&[1+a(8)l,

(16)

(i7)

involving the joint motion of both sublattices. Here,
co~ =4nNN, e /m is the Drude plasma frequency and

II'

Q +y —1

2ro
' 2

+2

f(8,y) =— In
1

4

sin 8(1 —
—,
' sin 2p)

on keeping only the 1/p terms in Eq. (22). The solutions
of this equation in the "phonon regime" (Refs. 9 and 13)
v~ && c && vz where v~ is a typical ionic velocity in the chain,

1P 2

g(8) =—ln
&

+ y
—1+—— (1+4sin 8)1 a2 2 g) 2

2 2rp 3 Q

~o~zg(8)a 8
2(vFa ')'

The high-frequency mode e+ corresponds to an approxi-
mately in-phase motion of the correlated electrons on a
and b chains, while the low-frequency acoustic mode m

corresponds to a "softer" correlated motion in which the
charge-density fluctuations on a and b chains are approxi-
mately out of phase. The mode co+ has been observed ex-
perimentally in optical reflectance measurements. The
new acoustic plasmon co which we predict could be ob-
served by fast electron scattering experiments. It should
be noted that the nonzero a(8) in the dispersion relation
of co makes Landau damping' of this mode less likely,
the conditions co & pz vz, p~vp also restricting propagation
of this mode to a small angular region in the x —y plane
in the vicinity of + p =x/4, 3n/4.

The generalization of Eq. (6) to include the ions
(charge Z, mass M) in the chains gives in the p' 01imit
where p' is the wave vector of Eq. (10).

dete'(p, co) -1—," g [Z, ,
' (p', —p', ro)

4ze gL

p s

+Z'Z"g'(p' —p' ro)] =0

+X "(p' —p' ro)] =0 (20)

In this case, the modes are given by

co =c
& gpz, or co =c ]gpss (2i)

where c~~, the Bohm-Staver velocity in one dimension, is
the single chain phonon velocity, =3x10 ms ' in
reasonable agreement with the value (4.4~0.8) &&10

ms '. A more complete theory would incorporate the
AsF6 lattice phonons, but it should be clear that the for-
malism presented above can be generalized to any number
of interpenetrating incommensurate lattices. At larger
wave vectors the modes would be those of the three
separate lattices since there are no nonzero lattice vectors
in common. In this case, there are none in common in the
x-y plane and no Hg motion is possible along the z direc-
tion, hence, the modes of all three sublattices would be un-
coupled.

To summarize, we have presented a microscopic model
for the density fluctuations on the Hg chains which quan-
titatively reproduces the experimentally observed room-
temperature collective modes. At wave vectors close to an
arbitrary reciprocal-lattice vector, the two arrays decou-
ple, and the modes are 1D. The dispersion relation for the
Hg chain phonons at wave vectors close to 2m/d~~ are
shown to be in agreement with neutron inelastic measure-
ments. These phonons have speed c~p, the Bohm-Staver
velocity in one dimension, roughly in agreement with the
measured sound velocity. ' In the special case where the
external probe has wave vector smaller than any lattice
vector in the system, a single 3D anisotropic phonon mode
is predicted. The dispersion relation for the plasmons is
calculated and exhibits 2D behavior in agreement with the
optical reflectance experiments. A new 2D acoustic plas-
mon associated with out of phase vibration of the joint ar-
rays, is found.

I would like to thank Professor A. Gri%n for many use-
ful discussions on this problem.

are the phonon modes given by co =cps(p„+p~ ) '~, where
cqd= [(Zm)/(2M)] '

vp is the Bohm-Staver velocity in
two dimensions c2d « v~. The phonon regime corresponds
to electronic screening of the ionic charge to a short-
ranged potential necessary for sound waves. Thus, in the
"true" long wavelength limit p'~ 0 the a and b sublat-
tices exhibit coupled-mode behavior in both the high- and
low-frequency regimes. The AsF6 lattice also supports
phonons, ' however, we expect that the longitudina1
modes of this lattice would be mixed in with the pure Hg
mode. Thus, one would observe a 3D anisotropic disper-
sion relation for the phonons, even at room temperature.

In contrast, at wave vectors p' of Eq. (10) close to

G' =x(y) 2nn/[d
~~

(3 8)ar ],
the Hg chain phonons have been measured by neutron
scattering experiments. In this case, the phonons are the
solutions to the uncoupled equations' (p 0)

det(e') ' =1—," [Z'X"g'(p' —p' ro)
4ne L

p
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