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Exchange and correlation effects on screening in a two-dimensional electron gas
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A simple expression for the screening constant in a two-dimensional electron gas (2D EG) of
finite thickness is obtained within the framework of a 2D version of the linearized Thomas-Fermi-

Dirac equation, which includes effects of the exchange-correlation energy. For the case of 2D EG
in an A1„Gal As/GaAs system the role of the correlation energy is shown to be small compared

to that of exchange. Effect of the exchange energy on the screening constant decreases with the

increasing surface concentration n of electrons. For n = 10" cm ' the screening constant in-

creases by 50% compared to its value calculated for noninteracting particles.

I. INTRODUCTION

Behavior of an electron gas in inhomogeneous electric
fields, in particular the effect of screening, represents an
important and complex problem, for which a number of
effective methods have been developed. One of the
rigorous formulations is given by the density-functional
theory of Hohenberg and Kohn. ' In the three-
dimensional case, simple practical realization of this
theory is possible in two limiting cases of (1) weak and
(2) smooth inhomogeneities. The first limit, correspond-
ing to the case when deviations of the electron density
from its average value are small, allows one to describe
the electron gas in terms of a wave-vector-dependent
static dielectric constant and thus consider short-
wave1ength effects such as the Friedel oscillations. The
second limit corresponds to slow (though not necessarily
small) potential variations on the characteristic scale of
electronic wavelengths. If exchange-correlation energy
is neglected, then this limit reduces to the well-known
Thomas-Fermi method. As discussed by Lang, in-
clusion of the exchange energy leads to the so-called
Thomas-Fermi-Dirac (TFD) equation, and correlation
corrections to a generalized TFD (Gombas) equation. '

Implementation of a similar program for a two-
dimensional (2D EG) electron gas encounters consider-
able difficulties, associated with the fact that variations
of the quantum-well energy levels cannot be related to
those in the local self-consistent potential. Neither of
the above limits separately leads to a tractable approxi-
mation. Indeed, even assuming a smoothly varying 2D
concentration and ignoring exchange effects, one does
not obtain a 2D version of the nonlinear Thomas-Fermi
equation. (This difficulty is, of course, rooted in the fact
that the 3D density of a homogeneous 2D ECx is not a
smooth function of the coordinates. ) On the other hand,
no simple description of a real 2D EG in terms of a
wave-vector-dependent static dielectric constant is avail-
able in the limit of a weak inhomogeneity —except for
the case of an "ideal" 2D EG, corresponding to the case

of an infinitesimal thickness of the quantum well. The
1atter case, first considered by Stern for noninteracting
particles and extended by Maldague to include the ex-

change and correlation energies, is tractable because the
bottom of the 2D energy band follows precisely the local
value of the self-consistent potential.

Thus, in order to obtain a local description of the
response of a real 2D EG to external fields, one has to
make both of the above approximations, namely assume
that the perturbing potential varies little on the scale of
kF ' [where kF ——(2mn)'~ and n is the electron concen-
tration per unit area of the 2D EG] and that its effect on
the quantum-mell energy levels can be adequately treated
in a first-order perturbation theory. This was first done

by Stern and Howard for the case of noninteracting
electrons. In the present work, their results are general-
ized to include the exchange and correlation corrections.
It should be noted that this generalization is achieved
without any additional approximations beyond those
made in Ref. 8, except for the fact that our considera-
tion is limited to the case of a degenerate electron gas in
the quantum electronic limit (one subband occupation).
The Stern-Howard theory represents a linearized ver-
sion of the Thomas-Fermi equation extended to the case
of a real 2D EG; our results correspond to a similar ex-
tension of the Thomas-Fermi-Dirac method.

II. THOMAS-FERMI-DIRAC THEORY
OF SCREENING IN 2D EG

Accounting for the exchange and correlation correc-
tions, the single-electron energies of a homogeneous 2D
EG, referred to an absolute "vacuum" level, can be writ-
ten in the form

RkE(k, n)= +E"'(k,n)+Eo2'
where k is the magnitude of the electron wave vector,
E"' is the exchange-correlation energy, and Eo is the
bottom energy of the lowest subband, calculated in the
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Hartree approximation. The energy Eo can be regarded
as a functional of the self-consistent potential P of the
external charges and the other electrons in the 2D EG.
It should be noted that Eo is not the true bottom energy
Eo of the lowest subband since the latter also contains
an exchange-correlation correction:

Eo ——Eo [P]+E"'(O,n) .

The energy E(k, n) can be represented as a sum of (2)
and the total single-electron energy counted from the
level Eo, i.e., the kinetic energy (cf. Fig. 1),

~ AkE"'"(k,n)= +E"'(k,n) —E"'(O, n) .
Zm

According to (1), the Fermi energy of the 2D EG is
given by

A kF
EF =E(kF,n)=— +E"'(k~,n)+Eo [P]2m

In the local-density approximation, corresponding to the
limit of a smoothly varying perturbation, Eq. (3) remains
valid. Consider the response of the system to a small in-
homogeneous perturbation 5$(r,z), where r is the coor-
dinate in the plane of the 2D EG and z is the coordinate
in the normal direction. The variation in Eo linear in
5$ is given by the first-order perturbation theory

5Eo = —e f 5&(r,z)
~
g(z)

~

dz= e—5&(r),

where g(z) is the envelope wave function of the first sub-
band. In the presence of the inhomogeneous perturba-
tion 5P, the concentration of electrons is redistributed so
as to keep the Fermi level constant. To within linear
terms in the variation 6n of the concentration we find

dEF'
0 5n,

m dn

whence we have

+EF"'(&)+Eo (Pl .
m

(3)

m 5Eo (r)
5n(r) =-

irh' 1+P(n) '

where

(6)
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dEF
p(n) =

~h' (7)

Let us assume that the perturbation is caused by an
external charge of volume density 5p(r, z). The induced
charge has the volume density equal 5n(r)

~

g(z)
~

. Us-

ing (6), the Poisson equation for the potential 5$(r, z)
can be written in the form

H
Eo

V 5$(r,z) —2s5$(r)
~

g(z)
~

= —(4~/Ir)5p(r, z), (8)

where ~ is the dielectric permittivity of the medium and

So

1+P(n)
(9)

+SkF
=k

is the screening constant. In this equation, so is the
screening constant for noninteracting electrons, given
by

Eo 2e m 2

R~
(10)

FIG. 1. Schematic illustration of the energies contributing
to the formation of a uniform Fermi level in the presence of an
inhomogeneous self-consistent "potential" P(r). The diagrams
shown correspond to two spatially separated points at which
the local concentration differs by 5n. Dashed lines show the
kinetic energy A k /2m of noninteracting particles, solid lines
the true dispersion dependence of the single-electron energy.
The figure illustrates the difference between the shift of the
true subband bottom 5EO, which includes many-body effects,
and the corresponding level 5EO calculated in the Hartree ap-
proximation.

where R~ is the eff'ective Bohr radius. Parameter p
defined by (7) is always negative, since the exchange-
correlation energy EF"'&0 and the magnitude

~

EF"'
~

in-
creases with the concentration. It therefore follows from
(9) that screening is enhanced by the exchange-
correlation effects.

III. EVALUATION OF THE SCREENING CONSTANT

As will be shown in Sec. IV, the correlation correc-
tions to the screening parameters are negligible in range
of concentrations of practical interest (e.g. , in the range
n ~ 10"cm for a GaAs inversion layer). In this sec-
tion we shall confine our consideration to the effects of
exchange.

To proceed with the calculation, we must assume a
concrete model of the 2D EG. We shall assume the
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a '=R~(2r, /33)'/ (12)

wave function of the first subband in the usual form '
3 //2 —az /2

21//2

where the parameter a is given by (in the case when the
background doping charge can be neglected compared to
the inversion-layer charge):

and r, = I /(nnR~)'/ is the dimensionless gap parameter
of the 2D EG.

In the framework of this model, the exchange energy,
E (k, n) =—E"(k,kF ), was first considered for an ideal 2D
EG by Chaplik" and also by Stern. ' For a finite-
thickness 2D EG the problem was treated by Stern'
who reduced the evaluation of E to a quadrature. It is
more convenient for our purposes to use a different
quadrature form for E, viz:

2 6

E"(kk, )= ' f"
7TK 0 (~ +q )

[(q 2+k 2k 2)2 4k 2k 2]1/2+q 2+k 2k 2

2g
(13)

P (n) = F(a/2kF ),2

vrR~ kF
(14)

The equivalence of (13) to the expression given by
Stern' can be shown by a straightforward though some-
what tedious algebra. Letting k =k~ in Eq. (13),
differentiating EF(n)= E(kF, k—F), and using (7), we ob-
tain an exact analytic expression for the exchange contri-
bution to p:

hence

X Xp pd, .i
=

mR~kF
(16)

To estimate the correlation contribution to p,d„~, we
shall use the interpolation formula of Jonson and
Srinivasan' for the total correlation energy per particle
of an ideal 2D EG:

where
1.103

r, +4.41
(17)

3vr g(2 —5g )

8 2

g2)5/2
1+(1 g2)1/2

(15)

IV. ESTIMATE OF THE CORRELATION CORRECTION
TO THE SCREENING CONSTANT

This estimate will be carried out for an "ideal" 2D
EG, corresponding to the limit of an infinitesimally thin
quantum well, when a~ oo and

~

g(z)
~

~5(z). In this
limit, the function F defined by (15) tends to unity and

[For g& 1 one should use the principal branch of the
function F, i.e., replace the logarithm by arccos(1/g)
and in the prelogarithmic factor change 1 —g to g —1. ]
The concentration dependence of the screening constant
s, defined by (9) and calculated with (14), is shown in
Fig. 2 by the solid line. We see that the screening effect
decreases with the concentration. For n = 10" cm the
screening constant is nearly 50% higher than that for
noninteracting particles.

(in units of fi /2mRs ). Although Eq. (17) was ob-
tained' by an interpolation between the 2D EG correla-
tion energy calculated at a low value of r, and the low-
density result corresponding to a 2D electron crystal, ' it
reproduces reasonably well (to within 25% in the range
0.5 &r, & 16) the more reliable numerical calculations'
based on a 2D version of the local-field theory of Singwi
et al. ' As seen from Table I, the range of practical in-
terest for r, in GaAs/Al„Ga

&
„As systems (where

10"&n &10' cm ) is0.5 r &2.
Evaluating the correlation part of the chemical poten-

tial EF'=d(n E')/dn with the help of (17) and using Eq.
(7) we obtain

0 41r, (r, +1.4. 7)

(r, +4.41)
(18)

The bottom two rows in the table show the values of
p";d„~ and p,'d„& for several concentrations. We see that
the correlation energy plays only a minor role in the
many-body enhancement of the screening effect. Even at
n =10" cm the correlation contribution is less than
4% of p;d„& and at higher concentrations this contribu-

TABLE I. Typical parameters and results for an Al„Ga& As/GaAs 20 EG system.

0. 1

0.5
1.0
1.5
2.0

1.73
0.78
0.55
0.45
0.39

a/kF

1.76
3.02
3.8
4.35
4.79

kF
(10 cm ')

0.82
1.82
2.58
3.16
3.65

(10 cm ')

2.16
1.65
1.47
1.38
1.31

1.78
0.35
0.25
0.20
0.18

n
(10' cm )

0.03
3X10—'
6X 10-4
6 x 10-'
4X 10-'
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tion is still more negligible. A qualitatively similar situa-
tion is expected in any realistic model of the 2D EG.
Moreover, judging from the numerical data by Jonson'
for E' of a real 2D EG, the ratio P'/P" should be even
smaller than in the ideal case. For comparison, Fig. 2
also displays the dependence s/so calculated for an ideal
2D EG. It is evident that the effect of exchange on the
screening constant is much stronger in the ideal than in
the real case.

O

Vl

1.75—

cn g.5—
O

V. CONCLUSION

The method of including the many-body effects in 2D
EG screening described in this paper is strictly valid in
the long-wavelength limit q &&kF, where q is the charac-
teristic wave number for the inhomogeneity of an exter-
nal potential. At low temperatures, this inequality turns
out to be too restrictive compared to the actual validity
range of the results. For an ideal 20 EG in the limit

q ~0, the static wave-vector-dependent polarizability
X(q) is related to the screening constant s as follows:

(19)

0
l I I

sx&o« ~o52 1.5x10&~

ELECTRON CONCENTRATION (CITI ~)
2 x 1012

FIG. 2. Dependence of the screening constant s, normalized
by its value so for noninteracting particles, on the electron con-
centration per unit area of the 2D EG. Dashed line shows the
same constant evaluated (Sec. IV) for the "ideal" 2D EG (of
infinitesimal thickness, o,~~).

Evaluation of X(q) in the noninteracting limit shows
that for T =0 the polarizability remains constant with
increasing q up to q =2kF. A similarly weak q depen-
dence is found in the ideal 2D EG including electron-
electron interaction effects. This gives us grounds to
believe that the simple way of accounting for many-body
corrections to the screening length, proposed in this
work, should be adequately accurate in the description
of various low-temperature phenomena involving screen-
ing. At higher temperatures, however, the short-
wavelength effects begin to manifest themselves at small-
er wave numbers, ' and a user of the long-wavelength
approximation must carefully assess the range of q where

the dispersion effects are still small.
In estimating the role of the correlation energy we had

assumed the 2D EG parameter values characteristic of
an Al„Ga

&
As/GaAs system. In a silicon inversion

layer, the relative role of correlation effects is higher be-
cause of the many-valley structure of the conduction
band and hence of the 2D EG subbands. Therefore,
analysis of the role of correlation energy requires addi-
tional consideration on the basis of more detailed calcu-
lations of c' and c. —from which one would be able to
reliably extract the concentration derivative (7) of the
chemical potential which enters Eq. (9).
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