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We study the plasma modes of a two-dimensional electron gas in which the equilibrium electron
density is a periodic function of both coordinates in the plane of the electron gas. The special case
of a square symmetric modulation of the equilibrium density is calculated numerically. The
plasmon dispersion displays a band structure similar to that found for single-particle energy bands.
The results are compared with those obtained from perturbation theory valid for a weak electron-

density modulation.

During the past few years there has been a consider-
able amount of interest in two-dimensional systems in
which the equilibrium electron density is spatially vary-
ing. Mackens et al.! have fabricated metal-oxide-
semiconductor devices in which the oxide thickness is a
periodic function of position along one coordinate axis.
The plasmons of the resulting two-dimensional electron
gas (2D EG) display zone folding associated with the
new periodicity. This allows direct optical excitation of
the plasmon spectrum at k =0, as reported by Mackens
et al.! and Heitmann? in infrared transmission. For a
weak spatial modulation with period d, Krasheninnikov
and Chaplik® have estimated the size of the induced gaps
at k =0 and 7 /d by perturbation theory. They find that
Aw,,~ |N,, /Ny | 0,,, where o,, is the unperturbed plas-
ma frequency for wave vector k,, =mmw/d. Ao, is the
gap induced at w,,, and N, is the mth coefficient in the
Fourier expansion of the 2D EG equilibrium density.

For a large variation of the equilibrium density several
groups have studied theoretically various limiting cases.
Lai and Das Sarma* have investigated the lowest
plasmon miniband for a periodic array of 2D EG strips
separated by insulating strips. The full spectrum of
two-dimensional plasmons for this system was obtained
by Eliasson et al.’> The generalization to systems in
which the equilibrium density is an arbitrary periodic
function of one coordinate, i.e., ny(x +d)=ngy(x) has
also been investigated.®’

Other systems displaying spatial variation of the two-
dimensional electron density have been studied by Mast
et al.® and by Glattli et al.® These authors have investi-
gated edge modes of a semiinfinite 2D EG and perimeter
modes of a finite 2D EG in the presence of an applied
magnetic field. A number of mathematical refinements
in the calculation of the dispersion relation of the edge
magnetoplasmon of a single 2D EG layer,'®!! and exten-

sions to a periodic array of 2D EG layers'*!® have ap-
peared in recent literature. In addition, there has also
been a considerable amount of work on thin wires.* 41

In the present article we study the plasmon spectrum
of a two-dimensional electron system in which the equi-
librium density ny(x,y) is an arbitrary periodic function
of both coordinates. This is particularly interesting be-
cause it is, to our knowledge, the first case in which real
band-structure effects (point-group symmetries and over-
lapping bands) occur for collective, instead of single-
particle, electronic excitations. In addition, a number of
groups'®!7 have been able to fabricate periodic two-
dimensional arrays on a submicrometer scale, so that ob-
servation of the two-dimensional plasmon band structure
discussed here via infrared spectroscopy and Raman
scattering appears within reach.

We consider a two-dimensional electron gas confined
to the plane z =0 which is embedded in a dielectric with
constant €. A magnetic field B=B?Z is applied perpen-
dicularly to the electron gas. The equilibrium density
no(x,y,z2)=nqy(x,y)8(z) is expanded in Fourier series

nolx,y)= 2 Nmneiamxeiﬁny s ()

m,n=—o

where a,, =2mm /d,, B,=2wn/d,. d, and d, are the
periods in the x and y directions, respectively, and m,n
are integers.

The equilibrium density is perturbed by a fluctuation
in the density of the form

n(x,y,z,t)=n(x,y,0)8(z)e ~°" . ()

One can find the scalar potential ¢(x,y,z,0) due to n,
from Poisson’s equation. On the z =0 plane ¢ can then
be written

n(x',y', o) 3)

(x,y.z =0,0)=d(xp,0)=—< [ 7 dx' [~ W'
— o0 — o X

_xl)2+(y _yl)2]1/2 :

By using the equation of continuity V-J(r,w)= —iewn,(r,w) and the constitutive equation J(r)=g(x,y)E(r), where
a(x,y) is the local magnetoconductivity for a 2D EG,!3 one can obtain an integrodifferential equation for ¢(x,y):
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(x,y)=——"""7>F7"+— dx .
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X 1 ng(x',y' NV )V d(x",p" )+ V'ng(x',y" )\V'(x

wt’
——[Vynplx',y’ WVyd(x',y")—
[0)

Here w,=eB /m,c is the cyclotron frequency and m,
¢(x,y) can be written as a Bloch function, i.e.,

ad ia, x i3,y
> Ape e ",

— ©

ik, x ik, y
d(x,p)=e *e”

m,n

is the effective electron mass.

V,no(x',y W od(x',y")] | . @

Since the system is periodic,

(5)

where |k, | <w/d, and |k, | <w/d, are the Bloch wave vectors. We now substitute the Fourier expansions of ng

and ¢ into Eq. (4).

This results in an infinite set of equations for the Fourier coefficients 4,,,.

For the sake of simpli-

city we restrict our consideration to the case of zero magnetic field; then the equations can be written as

0

o Apn= 3

m',n'=—

Cmn,m’n'Am’n’ ’

(6)

where =w/Q, Q*=2wNye’/em,d, N, = NooN,.m With Nog=1, and

Cmn,m’n'=
LlI'=—o

Here we have introduced &6=d,/d,
Dmn,m’n (kx:ky ) is given by

and d=d,.

1 SMm'ann
2 [(kod +27m)*+(k,d +2mn /8)*]'/ .

Dm,n,m’n'

In the case of a finite magnetic field, Eq. (6) is not a sim-
ple eigenvalue problem, since both  and ©? appear.
This can however be resolved by formulating the matrix
equation as a generalized eigenvalue problem. We refer
to Ref. 10 in this matter.

In the following we will consider only a square sym-
metry, ie, d,=d, =d. When the density is uniform,
ie, N, =8,,08,0 then Cpnn,m'n is diagonal. The set of
equations has a nontrivial solution when the determinant
of the matrix multiplying the column vector 4,,, van-
ishes. In this case, det[1—(Q2/w?)C]=0 gives

o*=wk, =Q(k.d +27m)*+ (k,d +2mn)*]'"* . (9)

This is the well-known two-dimensional electron gas
plasmon in the reduced zone scheme. Figure 1 shows
the dispersion relation for the plasmon. The notation
for the irreducible representations is the same as in Ref.
18.

We now assume that the modulation is weak,
| Nn | << 1 for (m,n)=(0,0). Equation (6) can now be
solved in perturbation theory near the band edges. This
was first done for a one-dimensional modulation by
Krasheninnikov and Chaplik.> Here the problem is
identical to the textbook case of an electron moving in a
weak periodic potential. By using standard methods of
group theory, one can easily estimate the size of the
band gaps. In the general case when the modulation is
not small, Eq. (6) has to be solved numerically by trun-

i.e.,

S DunmsinsrNupllked +2mm’ )2 +(k,d +2mn’ /8) + 2wk, dl 427k, dl’ /8 +4m*(m

T+n'l'/8%)] . (D

T

cating C.
We have performed calculations for a system with

equilibrium density given by

n,(1+a),

ng(l—a

lx [,y | <d/4

) otherwise . (10

nolx,y)=
Then, Noy=(1—a/2)n; and N,,, =N, =N (1. In
the model calculation we keep terms up to
|m |,|n| =3, and the secular equation is solved nu-
merically. In order to achieve convergence, the order of
C is larger; we truncate the matrix at |m |, |n | =9.
Figures 2 and 3 show the plasmon dispersion for
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FIG. 1. Dispersion relation of a two-dimensional electron

gas in the first Brillouin zone of a lattice with square symme-
try. The notation for the irreducible representations is the
same as in Ref. 18. @=w(2mn,e/em.d)~ "%
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FIG. 2. Plasmon band structure for a =0.3. The arrows in-
dicate the energies given by perturbation theory. The two
upper arrows indicate double degenerate levels. The lower of
these arrows correspond to the two levels below it and the
upper arrow to the two levels closest to the arrows.

a=0.3 and a =0.5, respectively. Since all Fourier
coefficients N,,, with even m,n=<0 vanish, the gaps at
the ' point are very small. We compare the results with
perturbation theory at the points labeled 4 and B in Fig.
1. The fourfold degeneracy at B breaks up into two
double-degenerate levels. The degeneracy is accidental
and breaks in our numerical treatment. In Fig. 2 the re-
sult given by perturbation theory at the X point are indi-
cated with arrows. One finds that already for a =0.3
the results given by perturbation theory deviate
significantly from the actual frequencies. Perturbation
theory gives a too high position of the band gap, and the
size of the gap is too small. This effect was also noted in
the case of a one-dimensional modulation.® A further in-
vestigation reveals that perturbation theory gives a good
quantitative result for @ <0.2. We also note that as a
grows, the bands become narrower and the gaps larger,
as expected.

In summary, we have calculated the plasmon disper-
sion of a two-dimensional electron gas with a spatially
periodic charge density. The equilibrium density is an

FIG. 3. Plasmon band structure for a =0.5.

arbitrary periodic function of both coordinates. We find
that for a small modulation of the equilibrium density,
gaps in the plasmon spectrum open up. As the modula-
tion becomes stronger the bands become narrower and
the gaps larger. For small modulations the results are
well described by perturbation theory. The method used
here can also be used to study the dispersion of magne-
toplasmons, although this requires more computational
effort. In a real system, the periodic variation of the
density is induced by, for example, an external electrode
with a suitable structure or an insulator whose thickness
varies. The presence of a metallic gate parallel to the
electron gas will affect the screening. This effect can be
included by modifying the Green’s function in Eq. (3), as
shown in Ref. 10. This modification will, however, not
change the qualitative results given here. Our results
suggest the existence of “edge” modes of a semi-infinite
system similar to surface states in the electron band
structure. The investigation of these modes as well as
the effects of a magnetic field will be reported in a later
publication.
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