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Thermal conductivity and specific heat of glasses
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We present a simple phenomenological model for glasses which fits both the thermal conductivi-

ty ~ and the specific heat C up to roughly 100 K. This includes the plateau in x as well as the
maximum in C/T' which occur between 3—10 K. In addition to conventional tunneling systems
and Rayleigh scattering, we introduce a sharp increase in the density of states due to local excita-
tions. This feature is consistent with both Raman and neutron scattering. The absence of these
states at low frequencies is due to interactions between the local modes and phonons.

Below 1K, a wide variety of amorphous materials ex-
hibit a specific heat C that varies linearly with tempera-
ture T and a thermal conductivity ~ that increases as T .
This behavior can be explained by assuming the ex-
istence of tunneling systems (TLS). At higher tempera-
tures there is an anomalous specific heat, i.e., C/T is
about twice as large as one would predict for Debye
phonons using the measured speed of sound. In fact,
there is a bump in C/T between 3 and 10 K. Glassy
systems also have a plateau in their thermal conductivi-
ties which, for a given material, occurs at roughly the
same temperature ' as the maximum in C/T . At
higher temperatures the thermal conductivity increases
while C/T decreases. Recent theoretical efForts to ex-
plain the thermal conductivity have included fractions
and phonon localization. It is not obvious, however,
in the first case how one can map a glass onto a self-
similar percolating network, or in the second case how
one can explain the rise in ~ above the plateau.

In this paper we present a simply phenomenological
model that fits both the specific heat and thermal con-
ductivity data from low temperatures to about 100 K.
We start with the expression for the thermal conductivi-
ty

quencies, we make the ansatz, which we will justify later,
that there is a sharp increase at energy Eo in the density
of states n (E) of local excitations which scatter pho-
nons. This enhancement accounts for both the rise in ~
above the plateau and the anomalous specific heat. We
will assume that these local modes can be described by
Einstein oscillators' (EO) of energy E. For simplicity
we take the density of states to be a unit step function

n (E)=no[1+SB(E—Eo)j,
where S is te step height, no is the constant TLS density
of states which contribute to the specific heat, and
B(E Eo) is zero—for E &Eo and unity for E ~ Eo. The
specific heat has contributions from conventional two-
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where C(T, co) is the phonon specific heat, v is the veloc-
ity of sound, and l(T, co) is the phonon mean free path.
%'e are assuming that the heat is being carried by pho-
nons. This has been experimentally verified up to 10 K.
One possible explanation for the plateau is to view it as a
crossover from a low-frequency region (co 5 10' ' Hz)
with a long mean free path (1 —150K, ) to a high-
frequency region (co~ 10' Hz) with a short mean free
path (l —A. ) (Refs. 5, 6, and 10) as shown in Fig. 1. Here
A, is the phonon wavelength. In the crossover region
l ~ A. as for Rayleigh scattering. '"

To explain the decrease in mean free path at high fre-
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FICs. 1. Phonon mean free path as a function of frequency
for vitreous SiO2 at 1 K (Ref. 10).
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level systems, local modes, and Debye phonons. Both
the TLS and Einstein oscillators give rise to a specific
heat that is linear in temperature but with different
coefficient. Thus the maximum in C/T may be viewed
as a crossover from one to the other. Fits to the data
are shown by the solid lines in Fig. 2 and the values of
n p (calculated from fits to data below 1 K), Ep, and S,

I

are given in Table I. S, is the step height associated
with the specific heat. A better fit to the minima in
C /T could be obtained by noting that the low-
temperature specific heat of insulating glasses is slightly
superlinear, i.e., C —T'+' where e & 0.

We now consider the thermal conductivity. The total
mean free path is given by the following expression:

I,,s', TLs(T cp)+I I, TLs(T, cp)+I&,'„I„sh(T,co) for fico &Ep,

,TLs ( T, co ) + I „ I, TLs ( T cp ) +I,EQ ( T, cp ) for Rcp )Ep

I,„'TLs(T,co) is due to resonant scattering of phonons
from two-level systems, ' ' and

I „„TLs(T, pi) =acp tanh—1

2 g T

where k~ is Boltzmann's constant and

~Pya=
3

pv

P is the density of TLS states associated with thermal
conductivity. In general no/P —10. The average cou-
pling between TLS and the strain field is y, and p is the
mass density. I,,I'TLs(T, co) is due to TLS relaxation.
This arises because phonons perturb the energy-level
separation and as a result the level population must

readjust to a new equilibrium, and is given by

l,,I,TLs(T, cp)

X

=—co dx ——tan '[cur (x ) ]
p ( X+])2

where x =E/k& T,

2 X'ka T', xs+ s x coth
v, v, 2~pR" 2

=Ax coth
2

is the maximum relaxation rate of a two-level system of
energy E. For co~ &&1,
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FIG. 2. Specific heat C divided by T . The solid lines are
theoretical fits to the experimental data for Si02 (Refs. 13 and
14), Ge02 (Refs. 14 and 15), polystyrene (PS) (Refs. 16 and 17),
and polymethylmethacrylate (PMMA) (Refs. 16 and 17). The
dashed line is derived using the density of states from neutron
scattering (Ref. 18). The dotted line is calculated using the fit
to the thermal conductivity of SiOz without Rayleigh scatter-
ing.

%'e have included Rayleigh scattering below the step
in the form

—1 4Ia,y„,sh( T, co) =Bee

where B is a constant. Although B may be given by
several expressions ' which involve, for example, fluc-
tuations in the density or velocity, we will leave it as an
adjustable parameter. Rayleigh scattering is only valid
in the region ka ~ 1 where k is the phonon wave vector
and a is the "size" of a scatterer. For convenience and
to reduce the number of parameters in our model, we
cut off the Rayleigh scattering at Eo. Table I shows that
the value of a =k ' =A'v /Eo is consistently —25%%uo

larger than the size' of a molecular unit 5. The fit
would not change if we cut off the Rayleigh scattering at
6 since it is insensitive to this parameter. Such a picture
is consistent with neutron scattering experiment. The
strength of the Rayleigh scattering governs the low-
temperature onset of the plateau. Without it Eo could
not have the same value for both the specific heat and
thermal conductivity. For example, the plateau in amor-
phous Si02 would require a rise in n (E) at 3 K whereas
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the maximum in C/T demands an increase at 43 K.
The effect of omitting Rayleigh scattering and moving
the step to ED=3 K is shown as the dotted lines in Figs.
2 and 3. If, however, Rayleigh scattering is not invoked,
and Eo ——43 K, the long-dash —short-dashed line in Fig.
3, results.

At frequencies above Eo it is quite possible that the
phonons probe the internal vibrational modes of the
scatterers. We model these modes as Einstein oscilla-
tors. We take the Hamiltonian to be

O
bQ

CD

H „=nE5 „+y „e(5 +i „+6 |„),
where e is the strain field, and n and m denote the ener-

gy levels of the oscillator. We assume for simplicity that
the coupling y „=y, and that the coupling between
phonons and Einstein oscillators is the same as that be-
tween phonons and TLS. We shall show later that this
is physically reasonable. Phonons can cause resonant
transitions between the oscillator levels. Resonant
scattering from an infinite number of levels results in the
temperature-independent expression

2aS
1,„'E()(T,co) =

7T

«t
I
~- Ehoie&n.

I

—=0
where V„„denote matrix elements of the perturbing in-
teraction between the degenerate states n and n'. Set-
ting y „=yh,i, in Eq. (7), we see that

~=eh. ice (10)

We assume that to lowest order, phonons do not change
the level separation. Thus we will neglect the relaxation
contribution to I from the local modes. The resulting fits
to the thermal conductivity data are shown in Fig. 3 and
the parameters are listed in Table I. S is the step
height for the thermal conductivity. Since the fraction
of Si02 units' involved in TLS is —10, the step
heights cited in Table I imply that at most only a few
percent of all the vibrational modes are involved in these
local modes. In fitting C/T and ~, we have used four
adjustable parameters: Eo, S, S„and B. Notice that
the temperature and frequency dependence are not ad-
justable. S, S„and B merely set the magnitude of their
respective contributions and Eo determines the frequen-
cy range in which the Rayleigh scattering and local
modes contribute. The strength B of the Rayleigh
scattering is that deduced from computer fits to the
low-temperature data. " We have neglected structural
relaxation which involves thermal activation of atoms
over a potential barrier. ' This mechanism involves fre-
quencies which are orders of magnitude lower than those
in which we are interested at a given temperature.

We will now justify the sharp rise in the density of
states. This can be thought of as a hole at low frequen-
cies, and is due to the interaction between the local
modes and phonons. We now show that this interaction
splits any degeneracy that might exist and we calculate
the size of the resulting hole. Recall from degenerate
perturbation theory that the energy shift Eh, &, is given
by
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and n'. They differ from n and n' in the number of pho-
nons. Using Eq. (14) in Eq. (15), we find
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FIG. 3. Thermal conductivity ~ of SiO& (Refs. 26 and 27),
Ge02 (Ref. 28), PS (Ref. 29), and PMMA (Ref. 30). The solid
lines are calculated using infinite-level harmonic oscillators.
The dashed line fitting the Si02 data is derived using the densi-

ty of states from neutron scattering (Ref. 18). The dotted line
is a fit to Si02 without Rayleigh scattering, and with Eo ——3 K.
( —- —-) is for Eo ——43 K, but again with the Rayleigh scatter-
ing term omitted.

where S is an operator acting on the local modes. For a
two-mode system

S=1+cr„,
where 1 is the identity matrix and & is one of the stan-
dard Pauli matrices. The strain field is given by

e =Vu (r)

—g A+k (aI, e'"' —ake ' ')ek,
&n

where ek is the polarization vector, 0 is the volume,
u (r ) is the displacement, and

' l/2

(13)
2pv

2
23 hole

I Ehole I

pv 5
(17)

Setting this equal to Ep, we obtain values of yh, l, which
are in reasonable agreement with those deduced from
thermal conductivity below 1 K. These are given in
Table I. Notice that no such hole exists for conventional
TLS since in that case phonons can either increase or de-
crease the level separation. For TLS the operator corre-
sponding to S in Eq. (11) has a, in place of the identity
matrix. Expressions similar to Eq. (17) can be found for
multiple degenerate states. In general there will be
different matrix elements connecting all the degenerate
states. Again perturbation theory can be used to show
that interactions with phonons splits this degeneracy and
results in a hole in the density of states.

There is experimental evidence for the sharp increase
in the density of states from both neutron' and Raman
scattering. ' Both indicate that the density of states
has a dramatic rise at roughly the same frequency as we
have deduced from the specific heat. Room-temperature
Raman spectra, for example, exhibit a steep rise followed
by a rounded peak and a more gradual fall off. This is
the so-called boson peak which is characteristic of amor-
phous materials. The Raman intensity is given by

where n =X/Q. Since we are considering acoustic pho-
nons which involve vibrations of the molecular units, X
is the total number of molecular units. Thus n =5
In Eq. (16) we have assumed that only one phonon po-
larization couples strongly to any particular set of local
modes. Summing over all polarizations simply intro-
duces a factor of 3. V„'„' is the same for

I
n ) =

I
n

' ) and

I
n )& I

n'). Substituting V„'„' for V„„ in Eq. (9), we
find that the size of the hole in the density of states is
given by

For simplicity set r=O. Then,
coI(ai)= g c;(co)g;(co)[n (co)+ 1], (18)

V= yh„,(1+a„)g&k (ak —ak)ek .EA

&0
(14)

(2) ~ nm mn'VV~(p)(p(,) g
(15)

ln Eq. (9),
I

n ) and
I

n') refer to degenerate states with

the same number of phonons. Because V is linear in the
strain field,

(n
I

VIn') =0 .

Thus V„„should be replaced in Eq. (9) by second-order
matrix elements, namely

where the sum is over the different contributions to the
intensity, g; ( co ) is the density of states of the ith excita-
tion, c;(co) is the coupling of the phonons to the ith exci-
tation, and n (co) = [ exp(A'ai/kii T)—1] '. Since there is
no clear evidence for TLS from Raman scattering, we
need only concern ourselves with phonons and our local
modes. Since c(co) depends on the strain-strain correla-
tion function, we assume that it varies as co . In order to
explain the boson peak which has a room-temperature
maximum around 52 cm ' in amorphous SiOz, Eq. (18)
implies that the density of states must have more struc-
ture than a simple step function. If we use the density of
states deduced from neutron scattering' in Si02, we can
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obtain qualitative agreement with the measured Raman
spectra. The resulting fits to the specific heat and
thermal conductivity using the data of Ref. 18 are shown
by the dashed lines in Figs. 2 and 3. Notice that the de-
creasing density of states reduces the thermal resistivity
at high temperatures and improves the fit. We wish to
emphasize that our use of the density of states from Ref.
18 does not imply our endorsement of the particular
model of vibrational modes which was used to extract
g(co). We merely want to show that the experimental
data from neutron scattering, Raman scattering, specific
heat, and thermal conductivity are consistent with a
sharp rise in the density of states of local excitations.

To our knowledge this is the first time that anyone has
fit both the specific heat and thermal conductivity up to
—100 K with a single set of parameters. We have used
conventional tunneling centers, a rather sudden onset of
local modes modeled as Einstein oscillators, and Ray-
leigh scattering at frequencies below this onset. This
does not solve the problem. Rather it helps to define it.
The microscopic nature of these features is unknown.
One can ask "At what length scale can one determine
the difference between a glass and a crystal?" The ex-
istence of these modes implies that unlike the crystalline

state, the amorphous state is characterized by well-
defined excitations involving intermediate length scales
which are larger than atomic dimensions but smaller
than the size of the system. In other words, amorphous
materials appear to have "clusters" of atoms. The
operational definition of such a "cluster" is a group of
atoms that can sustain local excitations with lifetimes
much longer than their characteristic frequencies. Un-
like other authors, we define these energetically rather
than structurally. If we were to excite a similar group of
atoms in a crystal, the excitation would quickly decay
into extended phonons and be very short lived. Clearly,
any microscopic theory must include more than just
phonons moving in a random static potential. It must
also include the interactions between phonons and local
dynamic structures.
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