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Mechanism of the anomalous increase of the specific heat of helium II near the A. point
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We report here results of calculations of the entropy and the specific heat of liquid helium II.
We investigate for T ~ 2. 1 K only. The calculated and experimental values are very close to one
another. We use Brueckner and Sawada's method with several modifications. We postulate that
rotons are almost-free particles except that they have hard-core interactions.

Brueckner and Sawada' applied the t-matrix technique
to a hard-sphere, high-density boson system and calculat-
ed the energy spectrum in fair qualitative agreement with
the experimental results. With the Born approximation,
Parry and Ter Haar included an attractive potential in

the Brueckner-Sawada framework and found that the
dispersion curves in the roton region no longer bend over.
Lu and Chan followed Parry and Ter Haar in calculating
the energy spectrum by taking into account hard-core
repulsions, and hence they did not use the Born approxi-
mation. They obtained an excitation spectrum which

resembled the roton spectrum. Recently Suebka and Lu
have explained and derived the temperature dependence
of the excitation energy spectrum. They have shown that
their derivation is supported by the experimental evidence.

Here we want to report the use of this idea together
with several stated below to derive the entropy and the
specific heat. We can understand, therefore, by means of
the following calculations, the values of the entropy and
the specific heat as T T&.

First we note that the final-state wave function used
here is of the following form:

t, s, [ —ni(ka) ji(kr)+ji(ka)ni(kr)]Pi(cos8)
yk r = 2l+1 i'e

Jn i-p [nt (ka)+jt (ka)]'"

As explained previously, this radial dependence will

vanish at r =a, the size of the hard core. We have, for the
free particles,

of course, is zero or f(8) =0 in

+k (r) ~ eikz+ f eikrf(8) (3)
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since
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The choice of the phase shift e' ' with tan6t =jt(ka)/
[ —ni(ka)] is very important. We will derive this im-
mediately below. The part of the scattering from He II,
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The outgoing part, or the coefficient of e' ', is zero, or
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so we get A( =e

In so doing, we see that all the matrix elements are complex; Tk, we have

Tk Tpk Ok Tpkk 0 Tppop
(2) (2) (2) (2) (7a)

4~
Tpp(p = J drr v (r ) lys „„d(r)

Q a
(7b)
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FIG. 1. S vs T, both experimental ( ) and theoretical (---) results are shown.

and
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For simplicity, we set ys«„„d(r) = (r —a)/r with a the size
of the hard core. It follows, therefore, that 30-

and

f &Ii
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g dr r jp(kr )v(r ) +ground(r )(2) ~ 4+ " " 2.
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Here we will choose 0 (4+R~~/3) and R~~ 4. 1 A. We
have made several calculations with diAerent values of
R

~ ~, ranging from R~ ~
-3.5 to R ~ ~

-4.4 A. These seem
to have a very small effect on the final answers. 0 is the
true volume which each helium atom occupies. VVe notice
that R~~ is chosen to be 2.2 A by Luban and Grobman.
This is much too small, for we have to choose the hard-
core size to be 2.2 A. The numerical values of the hard-
core length, the potential v(r), etc. , are in accordance
with the latest choices, in which there is very little room
for adjustment as the values are taken from experiment.
However, this is a minor point. We see that the excitation
spectrum E ~ (k, T) should be positive; we have, therefore,
(otherwise we conform with Refs. 6 and 7),
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FIG. 2. C, vs T. C„experimental results are shown as open

circles. C, theoretical results are shown as a solid line.
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TABLE I. S vs T.

Entropy S (expt. )
(J/molK)

1.13
1.59
2. 18
2.95
3.93
5 ~ 26

Entropy S (calc.)
(J/molK)

1.40
1 ~ 85
2.38
3.09
3.86
5.21

7 (K)

1.6
1.7
1 ~ 8
1.9
2.0
2. 1

TABLE II. C„vs T.

C„(expt. )

6.42
8.82

12. 1

16.3
22.4
30.0

C„, (calc.)

7.86
9.56

11.5
14.0
18.5
29.4

and
336 sin(ka)

2kma
(lob)

s 15

(»)
, T~,

Such a dependence on temperature is actually for ideal
bosons with no hard-core interaction, as given, for exam-
ple, in Huang's book. Next we consider the quasiparti-
cles. They have an energy given by Eq. (10). We see that
their momentum vector k ~ is defined through

kE, (k, T) = (»)
2Pl

Np=N 1—

~
represents the absolute value of the complex quan-

tities inside. We take here the absolute value only for the
sake of discussion. Namely, we leave the discussion of the
roton lifetime to another paper. Here Np is temperature
dependent and we take it as approximately

r i 56
TNp=N 1—
T~

(i3)

However, this relation can be derived and we will report
the derivation of Eq. (13) later.

Since the energy depends on temperature, we cannot
find, in the conventional way, the average of energy by
differentiating the partition function with respect to tem-
perature. Bendt, Cowan, and Yarnell ' and Donnelly and
Robert" give the entropy as

We postulate here that the quasiparticles also interact
with a hard core. Thus they are not simple particles
anymore but, as interacting bosons, are subject to
Hartree-Fock considerations. This gives not only the
direct, but also the exchange part of the wave functions,
which we will discuss in a later paper. We call this energy
term E(k, T), which is a modification of E((k, T) by
means of the Hartree-Fock method. For the quasiparti-
cles, we use the temperature dependence given by the ex-
perimental fit

—E(P, T)/kqT)
p ap

C,
Ng

4~k " E(P, T)/kgT —In 1
—e

g 3 "p E(P,T)ik+Te

We get, therefore, with P = (I/k~ T), p = h k, and N' Avogadro's number,
r

=C"+C" = ' 'S = ~"'
I

/'E"" k2dk+
" 'E /'Ee" k'dkN„N, BT „2&'p "o (e' i)' — "P ~P (e'E 1)'—

(i4)

In this expression, the second term C„z will lead us to the understanding of why there is a further increase of C, as
T Tz. We see that if we set (BE/9P) =0, Eq. (15) will reduce to the ordinary formula of C„T3.

In these expressions, we see that the calculated and the experimental entropy almost coincide. In Eq. (15), C„,2 leads
us to a further increase of C,, as T T&. This term is of considerable importance in obtaining agreement with the experi-
mental data (see Figs. 1 and 2 and Tables I and II).

The authors want to thank Professor B. P. Nigam of the Physics Department of Arizona State University for his con-
sultations. One of us (P.L.) wants to acknowledge the IBM corporation for financial support, and would like to take this
opportunity to thank Dr. L. Esaki and Dr. L. L. Chang of the IBM Thomas J. Watson Research Center in Yorktown
Heights for their hospitality.

Present address: Physics Department, Ramkamhang Universi-
ty, Banggapi, Bangkok 10240, Thailand.

'K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1128 (1957).
'W. E. Parry and D. Ter Haar, Ann. Phys. (N. Y.) 19, 496

(1962).
3Pao Lu and C. K. Chan, Phys. Rev. B20, 3709 (1979).
4P. Suebka and Pao Lu, Phys. Rev. B 31, 1603 (1985).
5M. Luban and W. D. Grobman, Phys. Rev. Lett. 17, 182

(1966).
6K. M. Khanna and B. K. Das, Physica (Utrecht) 69, 611

(1973).

7L. Liu, L. S. Liu, and K. W. Wong, Phys. Rev. 135, A156
(1964).

sK. Huang, Statistical Mechanics (Wiley, New York, 1963),
p. 265.

9J. C. Crow and J. D. Reppy, Phys. Rev. Lett. 16, 887 (1966).
' P. J. Bendt, R. D. Cowan, and J. L. Yarnell, Phys. Rev. 113,

1386 (1959).
' R. J. Donnelly and P. H. Roberts, J. Low Temp. Phys. 27, 687

(1977).


