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Collective excitation spectrum of the v= —, fractionally quantized Hall state
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We diagonalize a model Hamiltonian for up to eight particles. The collective excitation spec-
trum is significantly different from that for v= 3. Results for the two-particle distribution func-

tion are also presented.

While considerable progress has been made in the
v= 1/n fractionally quantized Hall effect, ' much less is
known about other fractions. In the absence of a com-
plete analytic theory, numerical diagonalization remains
a very useful tool.

The following model Hamiltonian describes interact-
ing electrons in the lowest Landau level:

(l)

where Cz creates an electron in the jth Landau orbital
The A's are matrix elements of the Coulomb in-

teraction. A square geometry together with periodic
boundary conditions are assumed. PJ is a momentum
eigenstate in the y direction. The total y momentum is a
good quantum number.

The operator T which takes PJ into Pi+, for every j
leaves H invariant. For a simple rational fraction
v=p/q the qth power of T conserves the total y momen-
turn because of the periodic boundary conditions.
Eigenvectors of T~ are x-momentum eigenstates. The
low-lying excitations can be classified according to their
momentum. The collective excitation spectrum for v= —,

'

was correctly computed this way in the rectangular
geometry by Haldane. Good convergence was seen in
the data for 4—7 particles. The spectrum exhibits a sim-
ple minimum near kl = l. 5 (the roton minimum).

The corresponding spectrum for v= —', is shown in Fig.
1 for four, six, and eight particles. For the eight-particle
case only the lowest eigenstates are given due to comput-
er time limitation. The convergence is not as good as
the v = —,

' case. We have therefore drawn solid and
dashed lines to guide the eye. The overall shapes of the
two curves are very much alike. While a ten-particle
calculation is needed to be de6nitive, we believe that the
solid line is very close to the true collective excitation
spectrum.

In contrast to the v= —,
' case, the dispersion curve here

shows two minima, one at about kl =0.8 and another
one at about kl =1.6. The energy gap measured from
the second minimum is about 0.024(e /I ). In an earlier
publication by one of us, only excited states with zero x
momentum were calculated for eight particles.

To gain some insight into the nature of the ground
state and low-lying excited states, we have calculated the
pair distribution function g(r) for four particles. The

qualitative features are similar to those of v =—,'. The
ground state is liquidlike. To get a quantitative measure,
we expand g(r) in powers of r for small r &~I [I is the
magnetic length which is set equal to l in formula (2)]:

g(r)=c)r +czr +c3r + (2)
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FIG. 1. Low-lying excitation spectrum at v= —,. Squares,
crosses, and triangles are used for the four-, six-, and eight-
electron data, respectively. The solid and dashed curves are
guides to the eye.

The coe%cients c&, c2, and c3 are plotted in Fig. 2 versus
excitation energy. A positive correlation between c& and
the energy is obvious. This suggests that the good
short-distance behavior in g(r) is at least part of the
energy-lowering mechanism in the ground state.

Girvin, MacDonald, and Platzman have shown that
the collective modes at v= —,

' are density oscillations.
The density operator projected to the lowest Landau lev-
el is proportional to

pq ——exp( ——,'k I )

)& g exp[2n. is(j +t /2)/m )CJ.+,Ci,
J
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FIG. 2. Coefficients defined in Eq. (2) are plotted vs excita-
tion energy for a few low-lying eigenstates.
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where kl =&2m. /m (s, t). s, t, j, and m are integers. vm
is the total number of electrons. Operating on the
ground state pk creates an excited state with momentum
k. We have verified that for a small system (six parti-
cles) the operator p does reproduce the collective excita-
tion spectrum very well up to kl =2.0.

Carrying out the corresponding calculations for v= —',
and eight particles we obtained the data points (the tri-
angles) in Figure 3. The solid curve is a guide to the
eye. Compared to the exact results in Fig. 1 we see the
density-wave description of the collective excitation is

good only for very small k/. Although there is a
minimum at kl = 1.6, the energy is too high (almost
three times the exact energy). The peak at kl =1.2 al-

ready merges with the continuum. The local minimum
at kl =0.8 in Fig. 1 is hardly reflected in the density-
wave excitation.

For reference we have also shown the projected static
structure factor S(k) in Fig. 3. The circles are data
points, whereas the solid curve is a guide to the eye. As
usual, S(k ) is the norm of the state created by pk.

S(k)=

FIG. 3. Collective excitation energy in the single-mode ap-
proximation (triangles) and the projected static structure factor
(circles). The solid curves are guides to the eye.

As in the case of v= —,
' the minimum at kl =1.6 is due to

a peak in S(k ) at the same momentum.
Overall, the single-density-mode approximation is

rather inadequate for v= —', . Since Girvin et al. have

shown the backflow correction to be absent for any
filling fraction, one probably has to consider higher
powers of the density operator.

In summary, we have presented a finite-size study of
the neutral collective excitations of the v= —', fractional
quantized Hall state. More numerical data are desirable
for better convergence. The results so far suggest that
the v = —', quantum Hall effect is suSciently different

from that at v= —,
' that new approaches are needed to

understand the former.
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