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We diagonalize a model Hamiltonian for up to eight particles. The collective excitation spec-

trum is significantly different from that for v=

tion are also presented.

While considerable progress has been made in the
v=1/n fractionally quantized Hall effect,! much less is
known about other fractions. In the absence of a com-
plete analytic theory,? numerical diagonalization remains
a very useful tool.

The following model Hamiltonian® describes interact-
ing electrons in the lowest Landau level:
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where CjT creates an electron in the jth Landau orbital
¢;. The A’s are matrix elements of the Coulomb in-
teraction. A square geometry together with periodic
boundary conditions are assumed. ¢; is a momentum
eigenstate in the y direction. The total y momentum is a
good quantum number.

The operator T which takes ¢; into ¢, for every j
leaves H invariant. For a simple rational fraction
v=p /q the gth power of T conserves the total y momen-
tum because of the periodic boundary conditions.
Eigenvectors of T9 are x-momentum eigenstates. The
low-lying excitations can be classified according to their
momentum. The collective excitation spectrum for v=1
was correctly computed this way in the rectangular
geometry by Haldane.* Good convergence’ was seen in
the data for 4-7 particles. The spectrum exhibits a sim-
ple minimum near k/ =1.5 (the roton minimum).

The corresponding spectrum for v=2% is shown in Fig.
1 for four, six, and eight particles. For the eight-particle
case only the lowest eigenstates are given due to comput-
er time limitation. The convergence is not as good as
the v=1 case. We have therefore drawn solid and
dashed lines to guide the eye. The overall shapes of the
two curves are very much alike. While a ten-particle
calculation is needed to be definitive, we believe that the
solid line is very close to the true collective excitation
spectrum.

In contrast to the v=§ case, the dispersion curve here
shows two minima, one at about k! ~0.8 and another
one at about k/=1.6. The energy gap measured from
the second minimum is about 0.024(e2/!). In an earlier
publication® by one of us, only excited states with zero x
momentum were calculated for eight particles.

To gain some insight into the nature of the ground
state and low-lying excited states, we have calculated the
pair distribution function g(r) for four particles. The
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. Results for the two-particle distribution func-

qualitative features are similar to those’ of v=1. The

ground state is liquidlike. To get a quantitative measure,
we expand g(r) in powers of r2 for small r << [/ is the
magnetic length which is set equal to 1 in formula (2)]:

glr)=cri+crt+er®+ - . )

The coefficients ¢, ¢,, and c; are plotted in Fig. 2 versus
excitation energy. A positive correlation between ¢; and
the energy is obvious. This suggests that the good
short-distance behavior in g(r) is at least part of the
energy-lowering mechanism in the ground state.

Girvin, MacDonald, and Platzman® have shown that
the collective modes at v=1 are density oscillations.
The density operator projected to the lowest Landau lev-

el is proportional to

pv= exp(—Lk%?)
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Low-lying excitation spectrum at v=z.

FIG. 1. Squares,
crosses, and triangles are used for the four-, six-, and eight-
electron data, respectively. The solid and dashed curves are
guides to the eye.
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FIG. 2. Coefficients defined in Eq. (2) are plotted vs excita-
tion energy for a few low-lying eigenstates.

where ki =V27/m (s,t). s, t, j, and m are integers. vm
is the total number of electrons. Operating on the
ground state p, creates an excited state with momentum
k. We have verified that for a small system (six parti-
cles) the operator p does reproduce the collective excita-
tion spectrum very well up to k/ =2.0.

Carrying out the corresponding calculations for v=1%
and eight particles we obtained the data points (the tri-
angles) in Figure 3. The solid curve is a guide to the
eye. Compared to the exact results in Fig. 1 we see the
density-wave description of the collective excitation is
good only for very small kiI. Although there is a
minimum at k/=1.6, the energy is too high (almost
three times the exact energy). The peak at k/=1.2 al-
ready merges with the continuum. The local minimum
at k/=0.8 in Fig. 1 is hardly reflected in the density-
wave excitation.

For reference we have also shown the projected static
structure factor S(k) in Fig. 3. The circles are data
points, whereas the solid curve is a guide to the eye. As
usual, S(k) is the norm of the state created by py:
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FIG. 3. Collective excitation energy in the single-mode ap-
proximation (triangles) and the projected static structure factor
(circles). The solid curves are guides to the eye.

As in the case of v=1 the minimum at K/ =1.6 is due to
a peak in S(k) at the same momentum.

Overall, the single-density-mode approximation is
rather inadequate for v=2. Since Girvin et al.® have
shown the backflow correction to be absent for any
filling fraction, one probably has to consider higher
powers of the density operator.’

In summary, we have presented a finite-size study of
the neutral collective excitations of the v=2 fractional
quantized Hall state. More numerical data are desirable
for better convergence. The results so far suggest that
the v=1 quantum Hall effect is sufficiently different
from that at v=1 that new approaches are needed to

understand the former.
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