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Theoretical description of spin-density waves in heavy-fermion systems
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Taking into account intersite f-electron interactions, we present a theoretical model which ac-
counts for the appearance of a possible spin-density wave in heavy-fermion systems. We discuss
the characteristics of such a description for all Bravais lattices.

Recent neutron difrraction measurements' have indi-
cated the possibility of spin-density-wave (SDW) itin-
erant antiferromagnetism in some heavy-fermion (HF)
systems, the existence of which is strongly claimed by
other experimental data too. While much attention has
been focused upon the superconducting properties of HF
materials, up to now no theoretical model has been
developed to account for the emergence of the SDW or-
dering in the above-mentioned systems. In this Brief Re-
port we attempt to remedy this.

We have to point out that the magnetic state which
comes into being in these cases differs from the classical
SDW phase: s The specific heat (Cz) well below the
transition temperature (Ttv ) has a T form and the gap
in certain crystallographic directions must still be zero at
T=O. The large C~ jump at Ttv (Ref. 2) (of the same
magnitude as in the HF superconductors) is a sign show-
ing that the heavy f electrons are responsible for the mag-
netic properties in the studied materials. Thus, using our
model as a starting point, we take into account a narrow
heavy-electron band, the microscopic description of which
originates ' in the Kondo lattice:
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where i and j denote the nearest-neighbor (NN) sites,
t =2Tlc/ttz with T~ as the Kondo temperature, and z the
number of NN sites. The last term represents the T~-
dependent on-site repulsion between the heavy electrons.
The single-particle energy gt, is connected to the Fourier
transformation of the first two components of H ~,

gt. = eq
—p, where ek = —t y(k), and ttt is the chemical po-

tential. y(k) is defined as a sum over the NN site posi-
tions Rb. y(k) =+~exp(ik Rb). In a study of the SDW
phase the spin-dependent interactions between the NN
sites are of great importance. These are connected to the
strong k dependence of the gap, because of which the pair-
ing must be intersite in origin. ' For the SDW phase
these contributions may have diferent nonphononic ori-
gins (see Refs. 11-13) as we will discuss later on. We
have come to the conclusion that the following Hamiltoni-
an terms greatly contribute to a possible SDW state:
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The first two terms from H2 were tested some years ago'
in a description of an SDW state, and the second term has
already been successfully used in the explanation of the
1/T t relaxation rate in HF superconductors. ' Such
terms can be deduced taking into account (i) virtual tran-
sitions to the excluded. doubly occupied states in the limit
of large on-site repulsion and treating the hopping term as
a perturbation, " and (ii) the exchange of the virtual
electron-hole pairs with use of the Schrieff'er-Wolf trans-
formation for an extended periodic Anderson model in
which Coulomb scattering terms are also taken into ac-
count. ' The last term from Hq has a phenomenological
character at this stage but, as will be seen later on, the in-
troduction of such a term is necessary if we want to take
into account stable odd-k-dependent gap functions for
Bravais lattices. In order to see the eA'ects of the
electron-phonon interaction, we also take into considera-
tion, in a Hamiltonian term H3, the phononic contribu-
tions described by the gt, gq, and g3 coupling constants (in
our notation g;) in Eq. (8) from Ref. 8. The Hamiltonian
we use is H~+H2+H3. For simplicity we neglect the
spin-orbit coupling.

It is known that to have a SDW phase appear, there
must be a Q value for which the nesting property has to be
satisfied. Since it is assumed that one rare-earth or ac-
tinide atom supplies one virtual bound state each, the
heavy-electron band is half filled. Under these conditions
we analyze at first (in the case of all Bravais lattices) the
nesting property for half-filled bands. The relation which
must be satisfied in this case is

+ [I+exp(iQ Rs)]exp(ik Rt;) =0 . (3)

If, for a given Q, Eq. (3) is satisfied for any k, then we
have a perfect nesting along the whole Fermi surface (FS)
and thus the SDW can open a gap along the entire FS. In
six cases such a Q can be obtained for any lattice parame-
ter, e.g. , Q =itr/a+ jtt/a+ktr/a for simple cubic (sc),
Q =2itr/a+2jtt/a+2ktt/a, for base-centered cubic (bcc),
etc. (The other four cases are the orthorhombic P and C,
the tetragonal, and monoclinic P.) For hexagonal, trigo-
nal, face-centered cubic (fcc), and face-centered ortho-
rhombic lattices, Eq. (3) is satisfied only for fixed k direc-
tions which define regions of the FS where nesting occurs
and where the SDW gap appears (e.g. , Q = + itr/
J3 a+j tr/a+k trc/at k~+ 43k„=tt/a for the hexagonal
case). In the cases of base-centered tetragonal (bct),
base-centered orthorhombic, and base-centered monoclin-
ic, nesting can be obtained for the whole FS, or along
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fixed k directions, depending on the lattice parameters.
For example, in the bct case nesting on the entire FS
occurs only if c/42 & a & J3c/J2, i.e., Q =i+/a+jr/a
+km/c. The results for the triclinic system are strongly
dependent on lattice parameters. That is why we do not
give them here. In every situation where not pll the FS is
opened by the SDW gap, the gk sum must be taken only
for the regions which satisfy the nesting. ' ' The nesting
is satisfied even if the band is not half-filled. For example,
if at p =0 the nesting is satisfied for a Qo, and applying + 2g2 g sin (Rb. k) sin(Rb k') . (7)

lyze with Eq. (6) the concrete k dependence of hs(k) in a
given compound and the concrete properties of a possible
SDW phase which could appear. We exemplify this pro-
cedure in the situation where the system has inversion
symmetry (as in the case of all Bravais lattices). In this
case we can write

gs (k, k ') =go+ 2g ~ g cos(R~ k) cos(R~ .k')

+ g [gs(k, k')g (k')aking ak +H c ],
2N k, k

(4)
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where

(5)

gs(k, k') =go+ 2 (gi+g2)y(k —k')

+ —,
' (g, —g, )y(I +k'),

with go=U —y(Q)(V+ J+g~), gi -V —g2 I, and—
g2=V g2+I. Using sta—ndard methods, for As(k) we
get

~s(k) = ggs(k k )[~s(k')/E(k')]
2N k,

x tanh[pE(k ')/2]

where E(k) = [()+As(k)] '~ . Equation (6) was deduced
without any specification concerning the lattice structure,
so this equation holds for any lattice structure. If the lat-
tice is specified [through y(k —k')] it is possible to ana-

I

y(k+k')+y(k —k') =2y(k)+0(ik'i )

for
~

k'
~

&& 1, it can be demonstrated that for a small pWO
the nesting is satisfied as well (gk ~ g

= —gk). But in this
case we have Q =Qo —2k„, where k„represents the varia-
tion of k» at the nesting points.

In the following, we suppose that the nesting is satisfied
at least for a given Q value and a given direction in the k
space. Because we are interested in a possible SDW
phase, we neglect other types of ordering within the sys-
tem. Under these conditions and using the average
g (k)-(ak aking &, the effective Hamiltonian and the
SDW gap hs(k) become

Hc,ff=g gkQk Qk
k, a

6' now covers half of the NN sites. In Eq. (7) we have
two sets of functions C = [cos(Rs k)j and
S [sin(R~ .k) j which, for any lattice structure, contain
linearly independent terms. Because the neighbors reAect
the lattice symmetry, C and S represent separately com-
plete symmetrical sets, being invariants under the symme-
try operations G; of the point group G which describes the
analyzed lattice. The study of the transformations within
C and S which occur under G; reveals the irreducible rep-
resentations (yj) among which the mentioned sets span
their subspace. For example, I g =A ~ g +Eg, I s =F

~ „ for
sc' I c =A )g+F2g +s A2 +FI„ for bcc I c=A ~z+Eg
+Fzs, I s =F~„+F2„ for fcc; etc. , where I ~ =QJ y~
represents the reducible representation associated with C
or S in G. Now we can obtain symmetrical orthogonal
functions F~, situated along a fixed irreducible representa-
tion yj by projecting the components of the C or S set on
y~. This can be done' with idempotent projection opera-
tors which represent, in fact, a linear and ortho onal
transformation (r;) from the C or S set to the [F„set.
Thus, after a proper normalization, Eq. (7) becomes

gs (k, k ') = go+ g i g F
& q, (k )F»,. (k )

+g 2+ F2„,(k)F2„,(k '), (s)
J

where [F~„j=z~C and [Fz„,j =r2S Using Eq.. (8), the
gap equation (6) becomes

d) =
gg ~F ~ „(k)bs(k)/E(k) ]tanh [PE(k)/2], (9)

2N k

where hs(k) =g, AJ'F~„, (k) and l 0, 1,2 [Fo„,(k) =1].
We mention that if the lattice does not have inversion
symmetry, a similar analysis can be made. But, in this
case, the gap is, in general, a complex variable and the
even- and odd-k contributions cannot be separated. ' Fur-
ther on, some F~„,(k) expressions are given. For the sc
case

and

F ~ ~, =J2 [cos (ak„)+ cos (ak» ) + cos (ak, ) ]/J3, F i E i
= [cosak„+cos (ak» ) —2 cos(ak, ) ]/J3,

Fi~ 2 cos(ak„) —cos(ak»), F2», ~ J2sin(ak„), F2», 2=csin(ak»),

F2p-, 3=csin(ak, ) .

In the bcc case, for instance,

F i ~, = [cos [ —,
' a ( —k„+k» +k, )]+cos [ —,

' a (k„—k» +k, )] +cos [ —,
' a (k„+k»

—k, )1+cos [ —,
' a (k„+k» +k, )]j /J2,

F2~, = [sin[ —,
' a( —k„+k»+k, )]+sin[ —,

' a(k„—k»+k, )]+sin[ —,
' a(k„+k» —k, )]—sin[ —,

' a(k„+k»+k, )]j/J2 .
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In the hexagonal system, we have

F~F, ~
=[cos[ —,

' a(k~+ 43k, )]+cos[—,
' a(k~ —&3k )] —2cos(ak~)I/J3,

F~~, 2 =cos[ —,
' a(k, , +&3k, )] —cos[ —,

' a(k~ —&3k„)]

Fq~, ~
=[sin[ 2 a(k~+ 43k„)]+sin[ —,

' a(k~ —J3k„)]+2sin(ak~)1/J3,
and

FqF. ,
2=sin[ —,

' a(k~+ J3k, )] —sin[ 2 a(k~ —43k, )]

In view of the gap equation (9), the phase diagram (PD) can be constructed. In order to make an energetic stability
analysis too, we must obtain the expression of the free energy (F). For the case in which Eq. (6) can be reduced to Eq.
(9), following Leggett, one has

F =F0++ (d~') /g~
— gin[cosh[PE(k)/2]/cosh(P(t, /2)} (10)

1 k

where Fo is the free energy of the paramagnetic state. We
exemplify the results for the sc lattice at T=O (see Fig.
1). In this case we have go =U+6(V+ J+g~) and we use
the notation V= V —g2. As can be seen, the importance
of the phononic contributions is greatly (g&,g2) or totally
(g3) diminished. The PD contains three energetically
stable phases: Ao&0; 54&0; and 52~0, 63&0, respective-
ly. The notations corresponding to Eq. (9) are 60=50,

Apl A2 Ap 2 A3 Ap ~, and

A4 =J2 [hF, „sin(ak, ) +AF, ~ sin(ak~ ) + d F, , sin(ak, ) ].

We denoted by h4 the vector (AF, „, hF, ~, AF, , ). We
looked for all solutions of the coupled gap equation (9).
The results show that in agreement with Balian and Wer-
thamer ' mixed hz' terms cannot appear unrestricted in
the stable phase due to the differences which exist between
the symmetry of the F~r, (k) terms. We have to mention
that an unstable phase appears for V/t ) 6, i.e., h~ AO, but
this is unstabilized by the h2, h3 phase. For T&0 in the
PD a paramagnetic domain appears around the I/t axis,

the volume of which increases with temperature. For the
other lattice structures the qualitative image of the PD
remains unchanged. In every case the increase of I favors
the presence of odd-k-gap solutions, while its decrease al-
lows for the appearance of the stable classical Fedders and
Martin-type (Ao) and even k-dependent order parame-
ters. The competition between these two possible solu-
tions is determined by the go/g~ ratio. As far as the cou-
pling constants from H2 are concerned, the neutron
diffraction data' suggest a great V contribution. In the
materials studied so far the value of I is estimated to be
small. Under these conditions, for any Bravais lattice
structure, an even-k-dependent stable gap formation be-
come favorable, analogous to the h2, h3 phase from the sc
system. Considering the Cp of these phases, we mention
that for the general expression we obtain Eq. (6.1) from
Ref. 20. For T 0, the contribution of dE(k)/dP is
negligible. Considering the sc case with the integral vari-
able transformation x =Pcos(ak, ), y =Pcos(ak~), and
z =Pcos(ak, ), and using a T power-series expansion, for
T 0 we get

CP (T) = (T /2 K )„
p+OO

dzE cosh (E/2)+0(T ),
where

E ' =4t '(x+y+z) '+ a22(T=0) (x —y) '

+a32(T=O)(x+y —2z)z/3 .

The T dependence of Cp is characteristic not only for the
sc lattice. It is determined by the fact that the gap van-
ishes on points on the FS, and thus it has a more general
character. Analogous transformations of that which
determines x, y, and z in the sc case can also be deter-
mined in all the other cases, where the gap has even k
dependence. [For instance, in the hexagonal system, for
the Q=2jtr/a+km/a case, the proper transformation is
x =Pcos[ —,

' a(ky —43k„)], y =Pcos[ —,
' a(ky+&3k„)],

and z =Pcos(ck, ). In the bcc lattice we can use x=P
xcos[ —,

' a( —k„+k~+k, )], y =Pcos[2 a(k„—k~+k, )],
and z =Pcos[ —,

' a(k„+k~ —k, )].]
In conclusion, the presented model shows that itinerant

antiferromagnetism can appear in HF systems. Depend-
ing on the coupling constants, this magnetic long-range

V/t 3.0

FIG. 1. The phase diagram at T=O.
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order may have a k-dependent gap which reflects the sym-
metry of the lattice, a property which cannot be obtained
within the classical SDW description. The results are
in agreement with the experimental measurements and
thus the model represents a possible explanation of the
magnetism in some HF materials. But we must mention
that the presented description is a simple one. It neglects
the spin-orbit coupling and considers for the gap equation
(6) only those cases where the lattice has inversion sym-

metry. These situations must be analyzed in the future.
Note added in proof T.he detailed analysis of the SDW

phase for the simple cubic system is given in Ref. 23.
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