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The band-tail density of states at zero temperature for an electron coupled to a quantized elastic
continuum and static disorder is derived from first principles with use of a variational method
based on the Feynman path-integral representation of the one-electron propagator. In the absence
of static disorder, nonperturbative effects in the electron-phonon interaction associated with
small-polaron formation give rise to an exponentially decaying band tail below the free-electron
continuum. The density of states projected onto the phonon vacuum exhibits three physically dis-
tinct regimes when the electron-phonon coupling is above small-polaron threshold: (i) at shallow
energies, there is a shift of the square-root continuum band edge arising from the perturbative
emission and reabsorption of virtual phonons; (ii) at intermediate energies, there is a linear ex-
ponential band tail of localized states analogous to an Urbach tail arising from quantum fluctua-
tions of the lattice; (iii) at deeper energies, there are strongly localized or self-trapped states associ-
ated with the termination of this band tail at the polaron ground state. In the infinite-effective-
mass approximation for polaron formation, these results are in close agreement with a simple
physical argument based on an optimum potential-well method. In the presence of weak static
disorder and electron-phonon coupling near polaron threshold we find substantial synergetic inter-
play between phonons and disorder. Static potential fluctuations provide nucleation centers for
small-polaron formation and an exponential tail appears for any value of the coupling constant.
The resulting density of states can be considerably larger than that arising from static disorder and
electron-phonon interaction acting individually.

I. INTRODUCTION
The electronic properties of disordered solids is a sub-

ject of fundamental importance in solid-state physics.
The electronic structure of such materials results from
an interplay between order and disorder giving rise to
the phenomenon of band gaps or pseudogaps in the one-
electron density of states (DOS). Associated with this
behavior are the phenomena of band tailing and localiza-
tion. These effects play a central role in determining
both the optical and transport properties of the material.
Theoretical efforts to describe band tailing' ' and local-
ization' ' have been based largely on models in which
an electron interacts with a static random potential aris-
ing from impurities in a doped semiconductor or
structural disorder in the case of an amorphous semicon-
ductor. However, it is well known that in the presence
of a deformable medium which can respond to the
motion of a conduction electron, self-trapping or pola-
ronic effects may occur even in the absence of static dis-
order. ' ' Associated with polaron formation is the
density of excited states of the coupled electron-lattice
system. Recently it was shown by one of us that the
projected density of states onto the zero-phonon sector
of the lattice Hilbert space exhibits an exponentially de-
caying band tail of self-trapped states at zero tempera-
ture even in the absence of static disorder. This is analo-
gous to an Urbach-Martienssen tail observed origin-
ally in experiments on optically induced valence- to
conduction-band electronic transitions in silver and al-
kali halides. It is the aim of this paper to extend the re-
sults of Ref. 22, which describes band tailing in an
infinite-effective-mass approximation for the polaron, to

include the effects of nonadiabaticity of the electron-
phonon interaction. We consider also the combined
effects of static disorder and electron-phonon interaction
at zero temperature.

We find that for a large variety of electron-phonon
coupling strengths, nonadiabaticity parameters, and stat-
ic disorder potentials that the DOS, po, projected onto
the phonon vacuum exhibits a linear exponential band
tail throughout the energy range of experimental in-
terest. Such a projected density of states is relevant to
optical absorption experiments which take place on a
time scale fast compared to the time required for lattice
motion. In the deep tail, po measures the overlap of the
undistorted lattice wave function with that of the dis-
placed lattice in the true polaron ground state. These
results provide insight into the near universality of the
Urbach tails in disordered materials. As in the case of
band tails arising from static disorder alone, the scale of
the localized electronic wave function is comparable to
the interatomic spacing in the solid throughout most of
the experimentally relevant energy range. The effect of
this correlation length in both the static and dynamic
(phonon) components of the disorder is a broad cross-
over regime between a Halperin-Lax band-tail DOS in
which the wave function extends over many lattice spac-
ings and a deep-tail Gaussian DOS in which the wave
function is localized on the scale of 1 A. The ef-
fective-mass approximation for an electron near the
conduction-band edge remains valid throughout most of
the Urbach tail which in some materials may extend
nearly one-quarter of the way into the band gap. Real
band-structure effects such as the presence of the valence
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II. THE POLARON GROUND STATE

Consider the interaction between an electron and
acoustic phonons in a crystal. The Hamiltonian for this
system is'

H=H, +H„+H, „, (2.1a)

band, in general, render the deep Gaussian tail inaccessi-
ble in actual materials.

In the case of relatively weak static disorder, the effect
of electron-phonon interactions is more pronounced.
Static potential fluctuations provide nucleation centers
for small-polaron formation. The result is a synergetic
interplay between static localization and polaron forma-
tion. This leads to a substantial increase in the band-tail
density of states even for electron-phon on coupling
below small-polaron threshold.

The technique used in the calculation of the electron
propagator is the path-integral method introduced by
Feynman' to calculate the polaron ground-state energy.
The effects of disorder and electron-phonon interaction
are simulated by means of a harmonic trial action in
which the electron is coupled to a fictitious mass M„,,&

with a spring constant K„;,~ and first-cumulant expan-
sion of the true action about this trial action is per-
formed. The density of states at any given energy E is
obtained by optimizing the parameters M„;,i and E„;,~
according to a variational technique. These results are
compared to a simple physical argument based on max-
imizing the probability of occurrence of a static potential
well supporting a bound state at precisely the energy E.
We find that this physical argument gives results in
quantitative agreement with the path-integral method in
the static (M„,,~

——oo ) limit. By allowing M,„;,~ to be a
finite variational parameter, the nonadiabaticity of the
electron-phonon interaction is taken into account. This
leads to an increase in the overall density of states as
well as the appearance of a shifted continuum-band edge
associated with the emission and reabsorption of virtual
phonons in the disordered medium. In the vicinity of
the shifted band edge there are two solutions of the vari-
ational problem, one corresponding to a nearly free elec-
tron for which M„;,& &&m, the free-electron band mass,
and one corresponding to a small polaron for which
M„;,~

&&m. Quantum mechanically these two states are
connected by means of a nonzero tunneling amplitude
determined by the nonadiabaticity of the electron-
phonon interaction. A detailed treatment of this tunnel-
ing effect, however, requires the use of a more general
trial action than we have considered here.

In Sec. II we review the behavior of the polaron
ground-state energy as a function of the electron-phonon
coupling strength and nonadiabaticity in the absence of
static disorder. In Sec. III the associated band-tail den-
sity of states is derived by means of a simple physical ar-
gument and comparison is made with the path-integral
method. In Sec. IV we consider the combined effects of
static disorder and coupling to phonons in the band tail.
A derivation of the variational principle used in the
path-integral method is given in the Appendix.

where

He p /2m

is the kinetic energy of an electron of band mass m,

(2.1b)

H..= 2 & (
I ~k I

'+ ~k
I e~ I

')
k

(2.1c)

is the harmonic phonon energy for a lattice of atoms of
mass M, and

Ed ik x
He-Bc X vk

u
(2.1d)

is the deformation-potential - interaction. We consider
for simplicity a cubic crystal at zero temperature con-
taining N atoms. The wave-vector summation extends
over all points in the first Brillouin zone. The normal
coordinate of a longitudinal acoustic phonon of wave
vector k and frequency wk =uk is qk

—=k-qk, where u is
the speed of sound. It is related to the lattice displace-
ment field u through

ik x

u(x)= gq~ &N
(2.2)

Ed is the deformation-potential energy constant and fol-
lowing Sumi and Toyozawa we define a dimensionless
acoustic coupling constant S„ through the relation
AukpS„=Ed/2Mu, where kp ——m/ap and ap is the lat-
tice spacing.

This model has been studied by Sumi and Toyozawa, '

who obtained the ground-state energy of this system in
the strong-coupling limit. They found that as the cou-
pling constant increases, the acoustic polaron undergoes
a discontinuous transition from the nearly free type to
the self-trapped type, where these two polaron states are
separated by a nucleation barrier.

The ground-state energy is a function of two physical
parameters: the nonadiabaticity parameter y =A'ukp /
cz, measuring the ratio of the speed of sound u to the
speed of an electron at wave number kp where
cz ——A kp/2m, and the electron —acoustic-phonon cou-
pling constant S„. A continuum version of this model
may be obtained by replacing the wave-vector sum by a
weighted integral

, f d'k Hc(k) .
(2m )

(2.3a)

Here V is the volume of the solid.
John and Cohen ' considered a cubic Brillouin zone

with sides of length 2~/ap with a soft cutoff on the wave
vectors:

2
kHc(k) = exp

4 kp
(2.3b)

This choice of a cutoff function preserves the volume of
the Brillouin zone of this simple cubic crystal ~ They
showed that the polaron ground-state energy could be
expressed analytically in terms of two variational param-
eters R and k. R is the dimensionless radius of the pola-
ron measured in units of k p

' and can be defined precise-
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ly in terms of the variational parameters K„;,~ and Mt
entering the trial harmonic oscillator action described in
the previous section. Introducing the reduced mass
p,

—= mM„,,&/(m +M„;,&) and the frequency v=(K„;,~/p)', the polaron radius is R =ko 'v'fi/pv .Introduc-
ing the total mass mT =—M„;,&+m, we define a second
parameter A, = (m /m r )' . The scaling form of the
ground-state energy measured in units of the Debye en-
ergy Ruko is then given by

(a)
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(2.5)

and the threshold for small-polaron formation is slightly
lower: S„y=3.S. Thus the incorporation of nonadia-
baticity (A, & 0) leads to higher threshold for small-
polaron formation due to the existence of a competing
large-polaron state.

In summary, nonadiabaticity (A, & 0) results in both

The two parameters R and A. are independent variational
parameters which are chosen to minimize EG(R, k).
Here A. measures the extent of nonadiabaticity, and in
the limit A, ~O, (2.4a) reduces to the Emin-Holstein
scaling expression for the polaron ground-state energy.

For small y, EG has two local minima with respect to
the variational parameters over a wide range of values of
S„. These minima correspond to the nearly free elec-
tron and the small (self-trapped) polaron. The small-
polaron local minimum EGs becomes more stable when
the sum of the electron-phonon interaction energy, the
lattice distortion energy, and the electron kinetic energy
due to localization becomes more negative than the ener-
gy EGL of a nearly free electron with a perturbative self-
energy shift. The zero of the energy has been chosen to
be that of a completely decoupled electron at rest in the
phonon vacuum.

The values of A. and R which minimize E& are deter-
mined numerically. Figures 1(a)—1(c) present the pola-
ron ground-state energy, radius, and effective mass for
choice of a cubic Brillouin zone and cutoff function
(2.3b). The results are qualitatively the same as those of
Sumi and Toyozawa, the quantitative differences being
due to different choices for Brillouin zone shape and
wave-vector cutoffs.

The threshold for small-polaron formation occurs
when EGs =E«. It depends weakly on y: as y goes
from 0.1 to 0.01, the threshold varies from S„y=5. 1 to
3.7. In the static approximation (A, =O),
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FIG. 1. (a) Acoustic-polaron ground-state energy as a func-
tion of the electron-phonon coupling constant. For S„(192,
the nearly-free-electron state has a lower energy EGI than the
small polaron. For S„)192, the small-polaron EGz has the
lower energy. The solid line EG depicts the energy of the
lower-energy solution and the dotted line gives the higher-
energy solution. The small-polaron solution does not exist for
coupling less than S„=168. (b) Polaron radius as a function
of S„. The Debye wave vector is defined as ko=~/ao, where
ao is the lattice spacing. The small-polaron radius is approxi-
mately equal to the lattice spacing whereas the nearly-free-
electron state radius is many times greater than the lattice
spacing. (c) Polaron effective mass as a function of S„. Here,
m is the electron band mass. For the nearly free electron,
M„;,l is of the order of 10 m.
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the static small-polaron and free-electron solutions of
(2.5) becoming unstable with respect to the lower-energy,
finite-effective-mass polaron solutions of (2.4a). The
small-polaron solution is characterized by small positive
A, and R of the order of the lattice spacing, whereas the
nearly-free-electron solution has A, slightly less than 1

and R much larger than the lattice spacing. In the trial
action method introduced by Feynman, the switching of
the ground-state EG from the nearly-free-electron
minimum EGL to the small-polaron local minimum EG&
at a critical value of the coupling constant S„appears at
a kink in the ground-state energy. It also leads to a
discontinuity in the polaron radius and polaron effective
mass. This singularity, however, is an artifact of the tri-
al action method. Quantum mechanically, there is a
tunneling amplitude between the two solutions and the
true ground state is a superposition of the two. The tun-
neling amplitude is proportional to the overlap of the
electronic and lattice wave functions between the two
states. In the static limit (M„;,& ——oo ) the electronic
wave function in the small-polaron state is strongly lo-
calized whereas the free-electron wave function is ex-
tended and has a normalizing factor proportional to
I/&V, where V is the volume of the crystal. It follows
that in the thermodynamic limit V~ ac, the overlap be-
tween the two states vanishes. If, on the other hand

M„;,&
is finite, then the small polaron is free to move and

a nonzero tunneling amplitude between the self-trapped
and extended state exists. It is likely that a more general
trial action would be required to describe this effect.

III. DENSITY OF STATES FOR AN ELECTRON
IN A QUANTUM FIELD

Mcus
PIqk} e"p (3.1)

This is the probability distribution for the lattice in its
unperturbed ground state and is obtained by taking the
product over all k in the Brillouin zone of the ground-
state wave function of the normal coordinate qk.

Op(qk) =(M~I, /m'A')' expl. (M~k /2A')
I qk I l .

We consider a lattice fluctuation of the form

Associated with the small-polaron ground state de-
scribed in Sec. II is the density of excited states of the
coupled electron-phonon system. Previously, the pro-
jected density of states onto the phonon vacuum was ob-
tained in the static (M„;,t ——oo ) approximation by means
of the Feynman path integral. In this section we demon-
strate explicitly that this result for the exponential band
tail of a coupled electron-phonon system in the absence
of static disorder may be recaptured by means of a sim-
ple physical argument. The calculation is then general-
ized to the nonadiabatic case by means of the path in-
tegral.

Consider the quantum-mechanical probability distri-
bution for normal coordinates qk of the lattice at zero
temperature:

lgp k2b2
qk

—— —exp
&N 4

(3.3)

of depth Qp and range b. In order to make contact with
the continuum theory it is convenient to replace the
wave-vector summation in (3.1) by an integral:

J d kC '(k)
(2~)'

(3.4a)

with autocorrelation function C(k) chosen to have a
Gaussian form, with correlation length &2'/kp.

~kC(k)= exp
2ko

(3.4b)

Since it is the cutoff on the wave-vector summation
which determines the spatial correlation of the lat-
tice fluctuations, the autocorrelation function is the
Brillouin-zone cutoff' function (2.3b) squared.

The probability of occurrence of a fluctuation of the
form (3.3) is given by

PIq }k~ exp
4

7T leuko

2~'(e2/2MQ p2 )

' —2

X
(bkp)

(3.5)

+ &~k I qk I
u(r)= IE I

"(")
k

(3.6)

where u(r)=rP(r). Equation (3.6) contains two poten-
tial terms: the deformation potential describing interac-
tion between the electron and acoustic phonons, and the
lattice distortion energy.

Probability distribution (3.5) is maximized with
respect to the variational parameters subject to the con-
straint (3.6). The function u (r) is given the boundary
conditions u (0)= u ( oo ) =0 and the radius coordinate in
the radial Schrodinger equation is discretized. Then
(3.6) becomes a matrix eigenvalue equation which can be
solved for one variational parameter given the other.
The numerical solution method used here chose succes-
sive values of b, each time solving the Schrodinger equa-
tion for Qp, and calculated (3.5) until the value of b was
found which maximized (3.5). The density of states
pp(E) projected onto the phonon vacuum is then propor-
tional to the probability distribution (3.5) with gp and b
chosen in this manner for every value of the energy.
This procedure gives the exponential part of the DOS
provided that the potential fluctuations oscillate on time
scales long compared with the time needed for the elec-

Such a potential fluctuation contributes to the DOS at a
particular energy —

I

E
I

provided the ground-state
binding energy of an electron in this well plus the elastic
distortion energy of the well equal —

I
E

I

. This places
a constraint on the variational parameters gp and b ex-
pressed by the radial Schrodinger equation

2 d2 Ed ik r

+
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Gp(x, O
~

x, t)—:(Pp, x
~

exp( iHt/A)
~

P—p. x), (3.7)

tron to localize. Consider an electron harmonically
bound to a lattice deformation with a harmonic oscilla-
tor frequency v. The radius of the lattice deformation is
then R =t/fi/mv T. he oscillation frequency of this po-
tential well is dominated by the frequency of the associ-
ated phonon of wavelength R: co+

——2m u (m v/A') '

Thus in the very shallow tail, where the electron is
weakly bound, v & co& as v~O so the potential wells may
begin to oscillate on time scales shorter than the time
needed for the electron to localize. Numerically, we find
that except when the electron-phonon coupling is very
strong v ~ co& for all energies below zero.

Figure 4 depicts the DOS obtained by this method
and compares it with the predictions of the methods dis-
cussed next. Here, the electron oscillation frequency is
greater than the well oscillation frequency for all ener-
gies less than zero. The physical argument does not re-
strict the wave function to a particular form whereas the
variational method based on the path integral discussed
next involves the restriction of the wave function to a
harmonic oscillator form. Thus the DOS obtained from
the physical argument is slightly greater for all energies
than that predicted by the variational method in the
static (M„;,) ——tx) ) limit.

A more general formulation which goes beyond the
static approximation follows from the one-electron
Green's function for an electron interacting with acous-
tic phonons. This may be represented using the Feyn-
man path integral. Previously, John defined a project-
ed DOS using the matrix element of the time evolution
operator

pp(&)= f e' ' "Gp(0, 0 O, t) .—~ 2~A
(3.10)

Such a projection is relevant to optical absorption events
which occur on time scales short compared with the
time scales for lattice distortions needed for true self-
trapping.

The Green's function is approximated by a first-
cumulant expansion about a trial action ' which de-
scribes an electron coupled to a trial mass M„;,~ through
a spring with spring constant K„;,&. Both K„;,~ and
M„;,~ are variational parameters. The trial action is

PlS„;,) —— drx (r)
2 0

a
2

X cos[b( i
r —r'

i

—t/2)]
sin(bt /2)

(3.11)

and

4a 4a
trial ~ M trial 3I I

(3.12)

Here, the position of the mass M„;,&
has been eliminated

by performing a trace over its coordinate.
The first-cumulant approximation to the Green's func-

tion is

where x is the electron coordinate and Pp is the ground-
state wave function of the unperturbed lattice. This ma-
trix element has the Feynman path-integral representa-
tion

lS ff/A I ( S ff S '
l )/16

Dx(r) e ' ' =J„;„e (3.13)

iS ff/fi
G()(0,0

~

O, t)= f Dx(r)e ', x(0)=x(t)=0 (3.8)
where

where the effective action S,ff is obtained from the true
action by integration over all phonon coordinates. S,ff
has the form

S,(r —— f drx (r)
2 0

iS - /AJ D + + e trial

' 3/2 3
v sin(bt /2)
b sin(vt/2)

(3.14)

f d~ d t y —ik [x(t.) — ( ')]xt and the angular brackets denote averaging with respect
o S„;a

A&ko
X S l COke

2
(3.9)

Dx(~}
iS . /4

D x(r) e
' trial

(3.15)

As described previously, ' the continuum limit used in
Sec. II is obtained by replacing the wave-vector summa-
tion by an integral with cutoff function Hc(k) given by
(2.3b). The diagonal component of the Green's function
is independent of x due to translational symmetry. The
DOS projected onto the phonon vacuum follows from

It has been shown that '
(S (r

—St, ) ) =Ip( t)+I;„t(t)

where

(3.16a)
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3p vt vt
Ip(t) = cot —1

2m 2 2
(3.16b)

I,„,(t) = ——S„
2

kf dA(t —b, ) f dk k exp — [w —iQ(b, ;t)]—iukA
0 0 2k0

(3.16c)

and

z 2p sin(vb, /2) sin[v(b, —t)l2] (b, —t)h
m v sin(vt l2) +

(m +M, „,„)t (3.16d)

It follows from (3.14) that the approximate Green's function has poles along the real time axis spaced by 2n/v, the
period of oscillation of the trial harmonic oscillator. It is convenient to shift the time contour in (3.10) into the lower
half complex time plane and perform the integration over all real t', where t = —i T+ t' (Fig. 2).

For imaginary time t = iT, an—d with the choice vT » 1, Eqs. (3.16b) and (3.16d) may be approximated by

3p . 3pIp(t) = vit-
4m 2m

Q(b„t) =ifik p
m v

i (6—t)b,
tmT

(3.17a)

(3.17b)

so

e' ' Gp(0, 0
~

O, t)=
mT

2~iht

3/2

sin —exp[F (t) ],~ 3 bt
2

(3.18)

where

F(t) = — +it + — +I;„,(t)3p . E 3@v 3v
2m A 4m 2

(3.19a)

and

2

I;„,(t)= ——S„f db, (tppt —6, ) f"dq q exp — [vr —iQ(b, ;t)] iqb, —
0 0

(3.19b)

Here co0—=uk0 is the Debye frequency.
The second term of the kernel Q allows for the motion

of the center of mass of the polaron with total mass
m +M„,,i through the medium. The function F(t) has
a saddle point along the negative imaginary time axis at
t, = —iT, for energies above the polaron ground-state
energy. If T, is small compared to the time needed for
the center of mass to move a lattice spacing then the
second term of Q can be neglected. This is the infinite-
effective-mass approximation (M,„;,1 ——oo ). Later the
efFects of a finite effective mass will be discussed.

In a saddle-point approximation the DOS becomes -4m /v -277/v 27r/v 4'!v
Re t

where F' '(t, ) denotes the fourth derivative of F(t, ) with
respect to t, . The time at the saddle point is given by
the saddle-point equation

mv T
pp(&) =

2~A 2~A

3/2 1/22'
P[ ( s)]

(3.20)

F"'(t, ) ~ (~pT )' ((1,
8~F (t, ) ~' 6~ S„ (3.21)

which is valid as long as the next term in the expansion
of F(t) about t, is small: FIG. 2. The integrand of the time integral to obtain the

DOS has poles spaced by 2w/v along the real time axis, thus
the time integral is interpreted as a contour integral in the
lower half complex time plane. The contour crosses the imagi-
nary time axis at t = —iT.
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mkco pS„I"(r, ) =0 = E-E—G(v) =
3y2

I 2(P )
2(n /2+a~ /A'v)

(3.22)

where

l60

3%v
EG(v) =

4 3/2
2 ~ 1+2es/~A'v

(3.23)
~ l20

C,

80
is the scaling form of the static polaron ground-state en-
ergy [equivalent to (2.5)]. The parabolic cylinder func-
tion with argument P=iukot(m/2+Es/A'v) ' is

I„(P)= f dq q" exp( —q —Pq) . (3.24)
0

40

1 i & i i i i i i & 1 & s i i I & i t & I i r

The exponential part of the DOS becomes

E EG(v—) rr I)(0)—I)(P)
Rcoo 2 "(n /2+ ss /A'v)

(3.25)

In the limit of small time at the saddle point (P«1),
the DOS behaves as

lo 20 30 40 50
- E/&D

FIG. 3. Band-tail DOS for an electron in a quantum field
with no static disorder. In the infinite-effective-mass approxi-
mation, the DOS is depicted for three different coupling
strengths S„=400, 700, and 1000. The corresponding small-
polaron ground-state energies are EG&lcD = —3.9, —43.4, and
—97.0, where cD is the Debye energy. The DOS time contour
integral is evaluated in the saddle-point approximation.

po(E) —exp
—21. 1IE

I

2S„y cg
(3.26)

over energy ranges where the small-time approximation
is valid. However, the small-time approximation fails in
the deep and shallow tail regions. In the shallow tail,
the small-time approximation loses self-consistency as
the time scale of oscillations of the potential wells be-
comes comparable to the time of oscillation of the elec-
tron in the well. In the deep tail, the electron must dig
its own potential well rather than stabilizing one that al-
ready exists, resulting in the saddle point T, diverging as
the energy approaches the polaron ground-state energy.
Thus a numerical solution is now obtained without mak-
ing any assumptions about the magnitude of the time at
the saddle point. As shown in the Appendix, the
greatest lower bound to the true DOS is obtained by
maximizing the exponential part of the DOS in the
saddle-point approximation with respect to the varia-
tional parameters. For infinite trial mass, the numerical
solution method considers v to be a function of T„ the
time at the saddle point. For a given choice of v, T, is
found by minimizing the exponential part of the DOS
with respect to T, and this is repeated for successive
choices of v until that value is found which maximizes
the exponential part of the DOS.

Figure 3 depicts the band tail DOS for the choice
y =0.01, M«, » ——Do, and several values of S„. As y ap-
proaches zero, the small-time approximation improves
so the DOS approaches its analytic (small-time) values
(3.26) in the Urbach regime. The density of states at
zero energy is a measure of the probability of a potential
fluctuation which results in the total energy being zero,
where the total energy is the sum of the electron kinetic
energy, the deformation-potential energy and the lattice
distortion energy.

As discussed in the previous section, the threshold for
smail polaron formation is given by S„=3.5 in the

infinite-eft'ective-mass approximation. The parameter y
is of the order of 10 in materials with band widths of
the order of 1 eV. ' Figure 3 presents three strong cou-
pling cases beginning with S„y just above threshold.
As S„y approaches threshold, the intermediate Urbach
regime is pinched out but this can be prevented by in-
cluding interaction with static disorder, as discussed in
the next section.

The previous results for the DOS in the saddle-point
approximation are now generalized by allowing M„;,&

to
also be a variational parameter thus taking into account
the nonadiabaticity of the electron-phonon interaction.
For energies below EGL, the nearly-free-electron solution
of (2.4a), there exists a unique solution for the two varia-
tional parameters. However, at energies above EGI but
still below zero two difterent solutions are found, one
corresponding to a nearly free electron (M„;,~ &&m) and
the other to a small polaron (M„;,~ &&m). The small-
polaron solution gives rise to a continuous DOS for
0 & E & EG+, however, a second solution appears for
0&E &EGL corresponding to the nearly free electron.
The DOS for the latter solution is greater than for the
former for energies E &EGL but becomes vanishingly
small for EGI &E. Quantum mechanically, there is a
nonzero tunneling amplitude between the two solutions
which the above trial action and saddle-point approxi-
mation do not take into account.

To improve the treatment of tunneling the time con-
tour integral (3.10) is now evaluated explicitly rather
than in the saddle-point approximation. Integration is
done over all real r', where r = ir+r' (Fig. 2), and T is-
chosen to pass through a saddle point. The two varia-
tional parameters are chosen to maximize 1npo(E). Fig-
ure 4(a) includes the band-tail DOS for S„=700,
y=0.01 where the entire contour integral is done. The
DOS is continuous everywhere and exhibits only a single
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solution for the variational parameters at all energies.
The oscillation frequency of the electron, v, is greater
than the well oscillation frequency m& =2wu/R over
the energy range depicted in Fig. 4(a); thus the potential
wells oscillate on time scales longer than the time re-
quired for the electron to localize. This validates the as-

sumption of static potential wells. At zero energy, the
logarithm of the DOS extrapolates to a value close to
zero in contrast with the result lnpo(0) = —9.7 obtained
in the finite effective-mass approximation. This is a
consequence of the increase of the shallow-tail DOS due
to a downshift of the continuum band edge. Figure 4(b)
is a plot of the polaron effective mass in the band tail.
The trial mass M„;,~

takes on a value intermediate be-
tween its values for the small polaron and nearly-free-
electron states at energies greater than EGI, being 0.63m
at E /cD ———1, 0.95m at E /cD ———2, and 1.9m, at
E /cD ———3.

The effect of allowing nonadiabaticity in the electron-
phonon interaction is to slightly increase the DOS and
to shift the continuum-band edge. The DOS projected
onto the phonon vacuum exhibits three distinct regimes
when the coupling is sufficiently above the polar on
threshold: (i) at shallow energies there is a shift of the
continuum-band edge associated with the perturbative
emission and reabsorption of virtual phonons, (ii) at in-
termediate energies there is linear exponential behavior
of the DOS, where the electron finds a well and stabilizes
it, and (iii) there is a deep tail region, extending to the
polaron ground-state energy, where the electron has to
dig its own potential well.
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IV. COMBINED EFFECTS OF STATIC DISORDER
AND ELECTRON-PHONON INTERACTION

The combined effects of static disorder in the form of
a correlated Gaussian random potential and dynamic
disorder due to zero-point motion of the lattice are now
considered. Generalizing the physical argument of the
previous section to this case, a static approximation to
the band-tail DOS involves the quantum-mechanical
probability distribution for Fourier components of the
static potential and for normal coordinates qk of the lat-
tice at zero temperature: '

3.2

2.8
O

Q
2.4

d k
PI V(k), qq) cc exp —

—,
' f, V(k)B '(k)V( k)—

(2~)'

(4.1)

2.0- Here, the autocorrelation function is chosen to be

IO 20 30 40

k LB(k)= V, , (rrL )' exp (4.2)

—E/ED

FIG. 4. (a) Band-tail DOS for an electron in a quantum field
with no static disorder. The top curve is obtained from the
path-integral method in the infinite-effective-mass approxima-
tion, and is indistinguishable from the prediction of the physi-
cal argument. The bottom curve is obtained from the path-
integral method, with the trial mass of the trial action treated
as a variational parameter. For the latter curve the DOS time
contour integral is evaluated entirely. The small-polaron
ground-state energy is EG&/cD = —44. l when the trial mass is
allowed to be a variational parameter. (b) Polaron effective
mass in the band tail. (c) Polaron radius in the band tail.

p 2

V (r) = —Vo exp (4.3)

The forms of the quantum-mechanical zero-point lattice
fluctuations and their autocorrelation function are

L is a measure of the spatial extent of the short-range
order, and is typically of the order of the lattice spacing.
Reference 25 discusses the effects of other choices of the
autocorrelation function. We consider static potential
wells of Gaussian form characterized by a depth Vo and
range A:
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P{V(k), qkI cc exp

3 /2

(2 —Z)-'"
2V, ,

bkO

AukO

2~ (A' /2MQO)
—2

X
(bko)

(4.4)

where Z=(L/A) .
The constraint on the variational parameters Z, Vo,

Qo, and b is now expressed by the radial Schrodinger
equation

chosen to be precisely those described by Eqs. (3.3) and
(3.4b), respectively.

The probability of occurrence of fluctuations (4.3) and
(3.3) becomes

where the autocorrelation function for the impurity po-
tentials is

8(x(r) —x(r')):—p f dRu(x(r) —R)u(x(r') —R) .

(4.9)
Here, the mean potential has been chosen to be zero:

dRU x ~ —R =0. (4.10)

The impurity potentials are assumed to have a Gaussian
form, thus it follows form (4.9) that the autocorrelation
function is given by Eq. (4.2). As in the previous sec-
tion, the Green's function is approximated by a Grst-
cumulant expansion about the harmonic oscillator trial
action (3.11). Through the inclusion of the static impur-
ity potentials, expression (3.18) gains the factor
exp[Jd;, (t)] where

g2 d2 2/ 2 Ed eik r

2 d' ' „"v'~—Ve

+ X teak I qk I

'
tt (r) = —

I
&

I
tt (r»

k

(4.&)

Jd;, ———f db, (t —b, )
0

(kDL ) V, ,
8A

(koL )'
x ——Q(b. ;t)

—3/2

which contains three potential terms: the static Gauss-
ian potential, the deformation potential describing in-
teraction between the electron and acoustic phonons,
and the lattice distortion energy. As in the previous sec-
tion, the variational parameters are chosen to maximize
(4.4) subject to constraint (4.5).

For an appropriate choice of physical parameters, this
method predicts linear exponential behavior of the DOS
over the energy ranges of experimental interest, in close
agreement with the path-integral predictions to be
disussed next (Fig. 8). Over these energy regimes the ex-
tent of the localized state wave function is comparable to
the correlation lengths arising from static disorder and
phonons, namely the interatomic spacing.

To obtain the more general path-integral predictions
which allow the incorporation of nonadiabaticity in the
electron-phonon interaction, the term

(4.11)

An equivalent static disorder contribution may also be
derived by introducing a frozen-in phonon distribution.

Figure 5 presents the path-integral predictions for the
DOS with the electron interacting with both static disor-
der and acoustic phonons. The physical parameters are
chosen to give behavior close to that of glassy As2Se3
studied recently by Monroe and Kastner. For S„=O
the DOS is close to linear exponential for energies
0.3—0.8 eV into the band gap, and it drops by five de-
cades over this energy interval. V, , is expected to be of
the order of 1 eV. The introduction of electron-
phonon coupling leads to a slight increase in the project-
ed density of states. At coupling to phonons just above
polaron threshold (S„=400),as is observed in some ma-
terials, this increase in the DOS becomes quite notice-

Nd

Ht= gu(x —R, ) (4.6) y =a.a(
V /e =l. l

is now added to the Hamiltonian (2.1), the sum being
over Nd static impurity potentials located at IR~ I. Fol-
lowing the methods of Edwards and Gulyaev and
Sumanthyakanit, the contribution to the averaged
Green's function is obtained by averaging over all
configurations of the static potentials. The erat'ective ac-
tion (3.9) gains the term

30

LIJ

W2O

I

IO

S„=O
Sac 200
S., =~ao

oc

ihip f dR exp ———f dr u[x(r) —R] —1, (4.7)
o

I I I I l I I I I I I

O. 5 l . 0
I

l. 5
I I I I I I I I I I I I

2.0 2.5

f dr f dr'8(x(r) —x(r')),
2A o o

(4.8)

where p—:Nd /V is the impurity density. In the limits of
high density (p~ oo ) and weak scattering (u ~0) where
pu remains constant, (4.7) is simplifie to

FIG. 5. Band-tail DOS with the combined effects of static
disorder and electron-phonon interaction evaluated using the
path integral. The mean static potential-well depth is fixed at
V, , /cL ——1.1 and the effects of increasingly strong coupling to
phonons is presented. The energy Unit is cL —=6 /2mL .
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both static disorder, in the form of a correlated Gaussian
random potential, and dynamic disorder, in the form of
zero-point vibrations of the lattice. For a physically
reasonable choice of physical parameters, this method
predicts linear exponential behavior of the DOS over en-
ergy ranges of experimental interest.

The failure of previous first-principles approaches'
to account for a broad range of linear exponential behav-
ior in the band tail has sparked considerable effort to in-
corporate additional physical effects not contained in the
original models of localization by a static Gaussian ran-
dom potential. The most notable of these are excitonic
effects ' and the influence of finite temperature. ' These
studies have relied heavily on heuristic arguments. The
methods we have employed in this paper will, hopefully,
provide a first-principles framework from which to study
these phenomena and in which the universality of linear
exponential band tails is already apparent. More recent-
ly, "' the use of Gaussian statistics for potential fluc-
tuations has been called into question. Chan, Louie, and
Phillips" have argued that in certain glasses that the
probability distribution of potential fluctuations is itself
a linear exponential in the depth of the potential well.
This is fundamentally different from our approach, in
which we retain Gaussian statistics for potential fluctua-
tions as suggested by the central limit theorem. We be-
lieve that the universally observed exponential band tails
in disordered materials can be explained by the proper
inclusion of the effects of short-range order as described
by the autocorrelation function (4.2) rather than by cal-
ling into question the applicability of the central limit
theorem. Recently, this hypothesis has been examined
by means of a detailed study of the influence of the
shape of the autocorrelation function on the extent and
accuracy of linear exponential behavior of the band tail.
This hypothesis may be tested experimentally by varying
the spatial correlations in the randomness either by the
addition of impurities or by varying the conditions under
which the materials are prepared. Such variations may
be shown to have a direct and predictable influence on
energy dependence of the one-electron density of states.

The continuum effective-mass model used here is ac-
curate for band-tail states where the spatial extent of the
localized state wave function is greater than or compara-
ble to the lattice spacing. This condition is satisfied
throughout most of the Urbach tail.

The high degree of linearity of the exponential band
tail arising from static disorder alone is preserved even
after the introduction of lattice dynamics. These results
provide additional insight into the universality of Ur-
bach tails in disordered solids as measured in optical ab-
sorption experiments. The actual magnitude of the den-
sity of states, however, may be enhanced considerably
due to the interplay between disorder and the polaron
tendency. This is particularly evident for relatively weak
static disorder and electron —acoustic-phonon coupling
just below polaron threshold. Such an enhancement of
the effective electron-phonon coupling arising from dis-
order may play an important role in describing bipola-
ron formation in disordered systems and the nature of
mobility edges in amorphous semiconductors. It may

also be important for a complete description of super-
conduction instabilities in dirty materials.
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Define a function G(t) so that the DOS has the form

p(E): —f dt expG(t) .1

2+6 (A 1)

What is considered here is the case where this time con-
tour integral is dominated by a saddle point on the imag-
inary time axis: t = —iTO. Then

G( —iT() )

2vrfip(E) =e
0)

I

1/2

(A2)

It follows from (3.7) and (3.10) that
Gi —iToi ETo/R, —H ~TO/fi

(A3)

where H, tt is obtained from (2.1) through a trace over all
phonon coordinates. For energies E less than zero, (A3)
has a Feynman path-integral representation

E~ To/ Dx(r) e ', x(0)=x(TO)=0

(A4)

where S,~ is real. The convexity of the exponential for
real values of its argument then implies

G( —iTo) — E
~

To/A
e ' )e ' Dx(r)e

Xe (A5)

where the angular brackets are as in (3.15).
Consider the function

F(TO)—:— (A6)

For real positive To, F(TO) has a local minimum when
To ——T„ thus

F(To) F(T, )

e ')e (A7)

It follows that
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' 1/2

—S„; I/A F(T )Dx(r) e '"" e (AS)

Thus the greatest lower bound to the true DOS is ob-
tained by maximizing F(T, ) with respect to the varia-
tional parameters of the trial action.
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APPENDIX: VARIATIONAL PRINCIPLE
FOR THE BAND-TAIL DOS

IN THE SADDLE-POINT APPROXIMATION
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