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Implications of infrared instability in a two-dimensional electron gas
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We consider the tight-binding energy band in sq lattices and determine that in the half-filled
case there exists an infrared instability in addition to the 2kr (nesting)-type instability. In view

of the pseudo-two-dimensional band structure of La2 — Ba„Cu04 recently proposed by Jorgensen
et al. and by Mattheiss, our conclusions should be relevant to this material which demonstrates
the remarkable phenomenon of high-T, superconductivity. To further analyze it, we devise a
two-dimensional bosonization scheme. Three-dimensional bosonization is also briefly discussed.

In recent Letters, 3orgensen et al. ' and Mattheiss'
presented detailed descriptions of the structural and elec-
tronic properties of the family of materials Laq Ba-
Cu04, of which the composition x =0.15 demonstrates
"high-temperature superconductivity" with T, = 35 K.
The discovery of this property by Bednorz and Miiller
and its subsequent confirmation has set ofI a flurry of ex-
perimental and theoretical activity, and has stimulated the
discovery of a number of other high-T, materials.

Now the Letters in Ref. 1 propose a simple pseudo-
two-dimensional band structure for the undoped (barium
free, x =0) material, with the Fermi level at

~ k„~
+

~ k» ~

=tr. This band structure allows nesting in the
[110] and [110] directions and suggests that a distortion
with Q = (tr, tr, 0) or ( —tr, tr, 0) will occur in this material.
This is, in fact, observed and leads to an energy gap form-
ing at the erstwhile Fermi surface, and hence to semicon-
ducting behavior. However, doping with Ba shifts the ini-
tial Fermi surface eliminating nesting, thus presumably
permitting BCS-type pairing to occur (although the pre-
cise mechanism causing superconductivity in these ma-
terials remains speculative or controversial).

The present Brief Report is a contribution to the theory
of interacting electrons in tight-binding (TB) band struc-
tures which "nest" easily, such as the materials of Ref. 1.
The archetype of this is the following well-known form:
eTa(k) = —t(cosk„+cosk»). For a half-filled band, the
Fermi level lies along straight-line segments defined by

~
k„~+

~ k» ~
=tr as illustrated in Ref. 1. The states of

t.' & 0 are all occupied; those with e & 0 are unoccupied in

the ground state. Now it will be shown that the instability
noted in Ref. 1 with respect to the above Q's is not the
only instability caused by this band structure, and indeed
that there exist important infrared (q 0) instabilities.
In the absence of a firm theory, it is supposed that these
infrared modes may be somehow related to the high-
temperature superconductivity, but this point cannot be
addressed at present. This paper is in two parts. At first,

the phenomenon will be demonstrated, and in the second
part a model will be set up to deal with it semiquantita-
tively, by means of some familiar bosonization techniques
extended into new territory.

Suppose we apply a perturbation V(q) with q= (q„,q»)
and calculate the response to second order, BE
= —

—,
' Z(q) ~ V(q)

~
. We find the following for the long-

wavelength ("infrared") response function or susceptibili-
ty Z(q) at low temperatures T:

f[peTa (k —q/2 )] —f[pe Ta (k+ q/2) ]
Zq =

eTa(&+ q/2) —era(k —q/2)

which, upon Taylor expansion of the Fermi functions, be-
comes

Z(q) = —g t)f [peTa(~)]/cleTa(k)

=(A/I t
I )ln(( t

I )/(kT+Bt
I q [ )

(A, B being appropriate numerical constants). This long-
wavelength divergence at T=O reflects the well-known
logarithmic singularity of the density of states at the
center of the two-dimensional (2D) tight-binding band
structure.

Once X is singular, one can imagine higher-order terms
being even more singular, and perturbation theory itself
becomes suspect. The question is how to proceed? The
many-body problem cannot be solved in general.

My approach is to simplify the form of e so as to
achieve an exactly soluble model, and with it some in-
sights into the effects of electron-electron interactions, the
electron-phonon interaction, pairing, etc. Our model will
be based on the observation that eTB is separable —i.e., is
written as e(k„)+e(k»). Let us take the behavior of eTa
near the Fermi surface as a guide, linearize so that energy
transfer becomes proportional to momentum transfer
everywhere, and define the following four-component field
theory:

Ho= vpg[( tr+k +k»)(att ~att +) —(tr+k +k»)(ag -ag, —)

+(—tr+k„—k»)(bg*pbt, +) —(tr+k„—k»)(bg btr —)]- (2)
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with k=(k„,k~) a two-dimensional vector and + refers
to right and left going. It is now necessary to fill the nega-
tive energy states of four Fermi seas; i.e., to occupy all
states of type a(k, + ) with k„+kY & tr, all states of type
a(k, —) with k„+k~ & —tr, all states of type b(k, +)
with k„—k~ & tr, and b(k, —) with k„,k~ & —z. The
typical two-body interaction is

H ' = (2trk/L )g U (q)p* (q)p(q),
the p's being the charge-density Auctuation operators:

p(q) —=g(aQ+q +ay + + aQ+q —a~—

+bi+q, +b~, + + b~+q, -b~, - )

(3)

the sums being over all q, while

p(q) (L/2tr) t g'(q„+qy) t [a*(q)+a(—q)]

+ (L/2tt) 't'g" (q, —q, ) ' '[P*(q)+P( —q)]

(6)

where (') indicates that the first sum is over the half-plane
(q„+q~ ) & 0 and (") indicates that the second sum is over
the half-plane (q„—q~) & 0.

Equation (5) for Hp, and (3) for H' [using the p's given
in (6) with the coupling constant set at X =1] may be con-
sidered either as an approximate reformulation of the
original tight-binding model in the presence of interac-
tions (in the spirit of Tomonaga or of random-phase ap-
proximation) or as an interesting, linearized, model in its
own right, one which is exactly soluble, in the spirit of
Luttinger. In any event, it allows us to make use of the
simplifying features of the 1D electron gas in 2D, reduc-
ing the calculations to the diagonalization of a quadratic
form. The two dimensionality has not disappeared —it is
reflected in the mixing of a and P operators at every q.

We now evaluate a secular determinant to establish the
eigenvalues which diagonalize this quadratic form. Omit-
ting algebraic details, we obtain

H = t Fr [to+ (q) a*(q)a(q) + to- (q)P*(q)P(q) ] —Wp,

(7)
in which the sum is again over all q, WD is the change in
zero-point energy as X is increased from 0 to 1, and the
e+ are

For notational simplicity, the electrons spin coordinates
have been omitted, although this lack is easily remedied
by doubling the number of fields. Now, following the
well-known procedures of Tomonaga and others we re-
place the operators in (2)-(4), which are quadratic in fer-
mions, by expressions in boson creation and annihilation
operators a*(q),a(q), and P*(q),P(q), as follows:

Hp t'Fg[I q. +q, I a*(q)a(q)+
I q. —q, IP*(q)P(q)]

Here u = u (q) —=XU(q)/UF and

e=
I q' q—,'I/q'=

I cos(20)
I

Within the context of the given model, Eqs. (7) and (8)
are exact to all orders.

The to+(q) normal modes along the (~ 1, + 1) direc-
tions (e =0) are never unstable. The cp —(q) =0 modes
in these directions, which persist at all values of the in-
teraction parameters u indicate a (harmless) degeneracy
built into the model. In all other directions, the cp (q)
modes can become complex when u & —4, in which case
the linearized theory is without a ground state and must
be replaced by a more realistic Hamiltonian.

Since superconductivity is understood to be an instabili-
ty of the Fermi sea against electron pairing, requiring ar-
bitrarily weak, but attractive forces, it should already be
exhibited in the range —

4 & u ~0, i.e., for attractive
forces within the range of validity of our model. In exten-
sions of the present work, I intend to examine the elec-
trons spins, their interactions with short-wavelength
(q = tr) phonons, and the electron operators for evidence
of electron-pairing or other superconducting phenomena.

On the other hand, the present model does not exhibit
the standard instabilities [spin-density waves (SDW s)
and charge-density wave (CDW's)] against repulsive
forces and even appears to be qualitatively (if not quanti-
tatively) indifferent to them. This may not be a real prob-
lem at all. The ad hoc modifications (the model used in
Ref. 10) required to incorporate such terms into the boson
Hamiltonian are well known, "' and it is not even neces-
sary to take the space to discuss them here. We should
also note the recent and most persuasive computational'
and theoretical' evidence that the repulsive 2D electron
gas is indeed featureless in many respects, exhibiting nei-
ther ferromagnetic nor antiferromagnetic short-range or
long-range order (SRO, LRO). ' What is more, Mermin
and Wagner's most basic theorem' rigorously precludes
CDW's, SDW's, and any other form of LRO in the 2D
electron gas at any finite temperature, except insofar as
such distortions are mediated by 3D phonons (or by fully
three-dimensional, interplanar, electron-electron interac-
tions).

The generalization of the above to the 3D tight-binding

e = —t (cosk, + cosk~ +cosk, )

is feasible. The Oat areas of the Fermi surface are con-
nected by Q = (tr, tr, tr). It is necessary to double the num-
ber of distinct fields [one for each of the orientations:
(+'k„, ~k~, ~k, )]. To include the electrons' spin de-
grees of freedom requires additional doubling of the num-
ber of the fields. Although such embellishments pose no
difficulty in principle, they do complicate the notation
and, in a minor way, the algebra, so I regretfully leave
them for future examination.

to~ (q) =
~ q ~

[(I + 2u) + [(1+2u) —e (I+4u)] 't ] '
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