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Generalized master equations and phonon-assisted hopping
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Time-convolution generalized master equations are solved for the dc phonon-assisted hopping
conductivity in disordered semiconductors, avoiding usual unphysical expansions in powers of the
electron-phonon coupling before performing the dc limit. The explicit result obtained contradicts
that of the lowest-order Markovian rate equations but agrees with that based on rigorous methods
avoiding approximate kinetic equations. With the above-mentioned expansions, standard
Markovian-rate-equation results leading contingently to the Miller-Abrahams network are repro-
duced.

I. INTRODUCTION Hvt, ——Q %co b,b, , (lc)

Kasuya and Koide' were probably the first to derive
(in an approximate manner) an explicit formula for the
dc phonon-assisted hopping conductivity. Starting from
Markovian kinetic equations, Miller and Abrahams
amended their treatment by including local-field-induced
changes 5@~ of the chemical potential at individual sites.
For the standard Hamiltonian (nonrelativistic, without
magnetic field)
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Here p= I/ktt T, 0, nF (nz ), e, to, U"„, and g are the
reciprocal temperature in energy units, normalizing
volume, Fermi-Dirac (Bose-Einstein) distribution, local-
ized site energy, harmonic phonon frequency, electron-
phonon interaction matrix element, and the electron-
phonon coupling constant, respectively. 4 is the exter-
nal field and x = &m (

C.x/
~

8
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m & is the coordinate
of the localized single-electron eigenstate (site)

~

m & of
H, in the direction of C. (Everywhere we assume the
infinite-volume limit Q~+ oo before all other limiting
processes mentioned below; for brevity, however, we do
not designate it explicitly. ) In order to introduce 5p.t, let
us write the mean number of electrons at site l out of
equilibrium as

(2b)

I

changes 5pt in (2a) and 5ft of ft of the form
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Expressing then 5fi as

5fi —— eC «ai at, d—/e;co+i5»= e@G((co+i5—) (5)

(d being the electronic dipole momentum), we obtain
from (4) (Refs. 2 and 3)

In order to determine 5pI, Miller and Abrahams sug-
gested using (3b) and finding 5ft from the linearized
form of the intuitive low-frequency lowest-order Marko-
vian rate equations
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These equations determine [via (5) and (3b)] the changes
5p} in (2a). Clearly, Eq. (6) must be solved before taking
the dc limit. Anyway, the right-hand side of (6) results
from the right-hand side of (4). The latter expression is,
however, correct just to the lowest order in g since, e.g. ,
the transition rate 8' „ itself is just the lowest-order
quantity (in g) which cannot be properly generalized to
higher orders. Hence the standard approach is based on
an expansion of quantities entering relevant kinetic equa-
tions in powers of g before performing the dc limit —this
is the main point of our criticism here.

For a moment, let us assume the standard scheme of
calculation of cr via (2a), (3b), (5), and (6). In view of (6),
the Kasuya-Koide' result,

2
o. = g g I „(x —x„ ) +o(g ),2Q (7)

looks like an unphysical omission of the shifts 6p~, or
like a consequence of the high-frequency solution of the
low-frequency equation (6), or in other words, like the
lowest-order iteration of (6) which becomes clearly in-
correct in the dc limit. Because of that, not (7) but
(2), (3b), (5), and (6) became a starting point for all of the
contemporary theory of phonon-assisted hopping. The
situation did not change even though internal incon-
sistencies were found in the Markovian approach.
Moreover, a fully rigorous (though difficult to under-
stand) derivation of the Kasuya-Koide result (7) ap-
peared which starts from the Kubo formulas and
preserves cautiously the correct order of limiting pro-
cesses ' (Q~+ ~, co+i5~0, and then g~0). In the
meantime, the result (7) was also surprisingly shown to
agree with experiment, ' and the starting equations of
Miller and Abrahams (rate equations) (4) were shown to
be incorrect in higher [crucial for the difference between
(7) and (2a)] orders. ' Nevertheless, the situation
remained unchanged as no explicit error was found in
the original physically transparent arguments [based on
Markovian kinetic equations (4)] leading to (2a). The
aim of the present work is to fill this gap, i.e. , to derive
(7) from the most general kinetic equations —the (time-
convolution) generalized master equations (GME's), and
to identify the crucial step responsible for the diA'erence
between (7) and (2a).

In principle, one can still argue in support of the stan-
dard reasoning, saying that we need mainly the lowest-
order (in g) asymptotics of the dc conductivity. For
that, it might seem sufficient to use just the lowest-order
kinetic equations like (4). Recently, however, important
lowest-order changes in transfer rates have been found
which are caused by higher-order terms in the
CxME. " ' These changes can therefore yield relevant
corrections even to the lowest-order dc conductivity for-
mula. This observation is therefore an additional argu-

ment for reexamining this old problem by a new tech-
nique which uses no expansion in the kinetic equations
and takes (if at all) the expansion in powers of g just at
the end of calculation, after taking the dc limit.

STANDARD KINETIC EQUATION

Let us start from the Liouville equation for the densi-
ty matrix p(t) of the coupled electron-phonon system
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in (8) and solve it up to the terms —B(t) in the Kubo'
manner. Doing so, we get

o
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Here
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is the Peier' projector on the "interesting" (or relevant)
part of the information contained in 3; 2 is an arbitrary
operator, Latin (Greek) indices in curly brackets desig-
nate many-particle eigenstates of H, (H~„), and p},}

is
the Boltzmann weight factor of the phonon state

~ I vI ).
On the other hand, one may rewrite the linearized ver-
sion of (8) as a set of two equations for D5p(t) and
(1—D)5p(t) (Refs. 16—19):
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Solving (12b) for (1 —D)5p(t) yields

Here L =(I/fi)[H, . . . ] is the Liouville superoperator
without electric field. As we are interested in the Ohmic
conductivity, let us linearize (8) with respect to 6(t)
This means that we set

(13)(1 —D)5p(t)= i j e ''— ' " '(1 D)LD5p(r)d7+ ——J 6(~).e " ' " '(1 D)[d,p, ]d~ . —
00

In combination with (12a), it gives
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D5p(t) = —iDLD5p(r)+ —g(t).D[d,p,q] —f DLe " ' " '(1 D—)LD5P(r )d &
Qt oo

dp, d7 (14)

DLD =0 LpD =DLp =0

with

1
Lo = [Ho. . . ] Ho =H +Hph

(15a)
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and

D [d,p«]=0 . (15c)

(The last identity is due to the currently assumed negligi-
ble role of the off-diagonal elements of the coordinate in
the dc problem which may be exactly proved —we shall
also use this assumption in this work )We th.en use the
form of D in (11), take the lowest order term in g on the
right-hand side of (14), and afterwards take the dc limit
co+i 6~0 in all the coefficients of the resulting equation.
After some straightforward algebra, we obtain

This is the operator form of the linearized time-
convolution generalized master equations. It is clear
that because of the common starting equation (8) and
avoidance of any approximation (up to now), the explicit
formula (10) is an exact solution to the complicated
equation (14) for D5p(t) as long as (13) applies. Never-
theless, the contemporary treatments of kinetic phenom-
ena prefer kinetic equations of type (4) or (6), resulting
from equations like (14), to explicit solutions like (10).
This is the reason it is worth discussing first the connec-
tion between (14) and (4) or (6) for an elemental example
of a single electron on a pair of states (dimer).

First, we use the identities

induced change of the probability P(
~

(t)
= g ~„~ p~ „~ ( „~ of finding the electron configuration
[m J. Equation (16) is physically equivalent to (6). The
reason for a small difference in coefficients is that, in our
situation, we have taken the kinematic correlations [ig-
nored in (4) and (6)] exactly into account [if the electron
is at site 1, it cannot be at site 2, and vice versa, so that
(4) should be taken rather without the nonlinear terms
f, (t)f2(t)]. From both (16) and (6), we find that 5f; +'
are regular (finite) and of the zeroth order in g after the
dc limit is taken. These conclusions will be questioned
below. Before going further, however, attention should
be turned to the fact that, in order to get the correspon-
dence between (14) and (6), the expansion in powers of g
has (as usual) been and must necessarily be performed
before taking the dc limit ~+i6~0. In what follows,
we will avoid such an unphysical step and look for the
difference in final formulas thus obtained.

III. SOLUTION TO GME
USING EQUATION (13)

It is a matter of simple algebra to show that once (13)
applies, (10) is the solution to the linearized GME (14)
which disappears when t ~—Oe . Hence, from (13) and
(14), or equivalently (10),
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Here, the Fourier transformation
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After taking the Fourier transformation, this reads
e
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have been used. The quantity 5P
( ~

( t ) is the field- we obtain from (20)

(22)

This result is formally singular in the dc limit. Because of the relation
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5f +' = g m 5P"+'
Im I

(23)

this means a contradiction with the result of (16) as well as (6). The real existence of this singularity may be most
easily verified by calculating the coefficient in (22) with the correct order of limits:
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Here
~
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~
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~
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~
Po), . . . , as g~O are

the eigenstates of H (Ho) and E, . . . (E,. . . ) are the
corresponding eigenenergies. Explicit calculation of the
right-hand side of (24) then proves our statement. The
existence of the singularity in 5P~+}' in (22) does not,
however, mean that measurable quantities [P~ }(t)]be-
come singular. Only the Fourier components of deriva-
tives of the probabilities with respect to the acting field
become singular when ~ +i 5~0. Nevertheless, we
found that for arbitrarily small g&0, the hnearized
probabilities and mean occupation numbers appreciably
differ in the dc limit [g /(to+i5) +c&& in co—ntrast to the
standard Van Hove limit g ~0, cu +i 5~0,
g /(co+i 5 ) =const] from those given by the standard

treatment. Introducing then (22) and (24) into
Kubo ' formula

I g 5f"+' /6 (25)
&+F5~0 0

J, CT

fully reproduces the Kasuya-Koide result (7) (which was
originally derived as only approximate but is, as a matter
of fact, exact ' ). In what follows, we are going to show
that one obtains the same result also directly from GME
(14) without invoking the relation (13). The necessary
condition for that is, however, that the order of limiting
processes cannot be interchanged, i.e., that the expan-
sion in powers of g is either not performed at all or is
performed only after taking the dc limit co +i 5~0.

IV. DIRECT SOLUTION OF GME (14)

Equation (14) is nothing but the Nakajima' and Zwanzig' ' identity for the density matrix of the system in the
time-dependent external field

—i 1 —D L' ~' d~' 1 —D L' ~ Dp r d~
7

a
at

Dp(t) = iDL'(t)Dp(t) f DL—'(t)exp-
tp

—iDL'(t) exp i f (1 D)—L'(r)dr (1—D)p(to—), L'(t)=L ——C(t) [d, . . .],
IO

linearized with respect to 6'(t) and taken in the limit to~ —&&o. With &P =0 and for D given by (11), (26) is equivalent
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to the standard MME
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Here 8 Iq II„I is the lowest-order golden-rule Markovian

is the initial condition term. GME's (26) and (27) are
useful for describing time evolution of open systems. It
is worth mentioning that similar convolution-type equa-
tions could also be obtained from, e.g. , the Mori
scheme, using the set of observables a a . Here, be-
fore proceeding further, it is worth mentioning that con-
verting the order of limiting processes, i.e., first expand-
ing (as usual) w( ~t„( to the second order in g and per-
forming the limit co+i'6~0 afterwards yields

@0+15 / /
)

l(Cd+is)Tdu ImIInI&~ e

transition rate. This then leads to Eq. (4) and all the
theory returns to the Markovian lowest-order form lead-

ing to (2a) and (2b). In connection with our discussion
of (16},we can therefore conclude that avoiding the un-

physical (but standard) expansion in powers of g before
performing the dc limit in our approach is the reason
our result (7) for the dc conductivity o differs from the
standard lowest-order Markovian result (2a). On the
other hand, this is the reason it fully agrees with a form
of the theory starting from the Kubo formulas which
avoids any expansion in powers of g before performing
the dc limit (see, e.g. , Refs. 7 and 8 in contrast to, e.g. ,

Refs. 3 —5, 21, and 22).
Taking the Fourier transformation (17) turns the

linearized GME to the form

(co+i5)D5p +' =DLD5p +' ——8 .D[d,p,q]+DL[cg+i5 —(1 D)L] '(1 —D) LD5p —+' ——4 [d,p, ]
1

1
DL5p + 8 D[d p q] iDLA + (31a)

Here, we introduced so that

+' =i[co+i5—(1—D)L] '(1 D)— (~+i 5 )( I D)5p +'—
X LD5p +' —0 -[d,p, ]—

=(1 D) L5p +' —g —[d,p—1

i(1—D)5p—+'

From the definition (31b},we get

[co+i5—(1 D)L ]A +'—
(31b)

+i[co+i5 (1 D)L]—A + s (33)

Summing this equation and the linearized GME (31a)
yields

(co+i5)5p"+' =L5p +' —A' [d,p,q]—1

1=i(1 D) L5p +' —8 fd, p—,q]— +i ( co+i 5 L) A "+'— (34)

This means that the Fourier-transformed linear change
of the density matrix

—(co+i5)5p +' (32)
5p +' = ——(co+i5 L) '8 [d,p,q]+i A —+'1

(35)
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From (31b), it follows that

DA +' =0
so that (35) gives finally

D5p"+' = — D(c—o+i5 L—) 'g [d,p, ] . (37)

Now, we use the form of D given by (11). The off-
diagonal elements are then zero on both sides of (37)
while the diagonal elements yield (20). Therefore (19) is
the solution to the linearized GME (14). As we have
still performed no approximation, this solution is exact
to any power of g. The derivation of the dc conductivity
formula (7) is then the same as in the previous section.

A few words are worth mentioning here regarding the
physical significance of our exact solution (37). In the
first equality of (31a) (i.e. , in the linearized Fourier-
transformed CxME), Iet us as usual (a} assume that (15a)
and (15c) apply and (b) put, as in the standard treatment,

1

co+i 6 —I. (38)

P5p +' =DL[co+i5 —(1 D)L] '(1—D)LD5p"—+'s .

However, it is to be stressed that it is just this term
which is responsible for the terms with 5p„ in (2a) and
those with G„(co+i5) on the right-hand side of (6).
Hence, in order to get results corresponding to our exact
solution (37), any use of the approximation like (38) in

(which is formally correct to the lowest order in g pro-
vided that co+i5&0). After using the standard approxi-
mation (38), Eq. (3la) reproduces our general and exact
solution (37} provided that we ignore (by definition) the
term

the kinetic equations (as is common in the standard
theories) must necessarily be followed by ignoring the
field-induced changes 5p„ in (2a} and the terms
—G„(cu+i5) on the right-hand side of (6). This then
turns the Miller and Abrahams result (2) to the Kasuya-
Koide formula (7). On the other hand, since the terms
like I'6p +' are currently not ignored in the standard
theories but (38) is still used, the usual result for 5Pi +I
and hence the dc conductivity cr (2a) appreciably differs
from the exact result (22) and (7), and cannot therefore
serve as a sound basis for further discussion.

V. CQNCI. USIQNS

We have shown that by keeping, with meticulous care,
the correct order of limiting processes (Q~+ oo,
co+i 5~0, and then contingently g ~0), the kinetic
equations (in the form of the most general generalized
master equations} yield the same explicit result (7) for
the dc conductivity o. as the theory based on the Kubo
formulas with the same order of limits, i.e., without ex-
pansion in powers of g before performing the dc limit
on, e.g. , the right-hand side of the equations of motion.
We have also illustrated that the latter (standard but un-
physical) expansion turns the theory to the usual Marko-
vian form. This suggests that the long-past (but fully ig-
nored) warning by Peier' that the Markov-Born approx-
imation [leading to (4)] to the GME cannot be used in
the dc limit was probably right. In other words, the ki-
netic stage of the development [where the standard ki-
netic equations like (4) do probably apply] cannot be ex-
tended up to the zero frequency. The fact that we do
not have the free relaxation but rather the relaxation un-
der the inhuence of the electric field in our situation
makes no difference, as we could also discuss the prob-
lem via the Einstein relations and free diffusion in space.
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