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Variable superconducting quantum-interference device: Theory
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A dc superconducting quantum interference device (SQUID) consisting of a symmetric ring circuit
with four Josephson junctions and two independent external currents I& and I2, which enter the cir-
cuit at different points, has a phase boundary between the fully superconducting and the normal
states that is different from that of a conventional SQUID. The control current It modifies the mag-

netic flux (P) periodicity and the value of the maximum measuring current I~ (P). For values of
I»I, (critical current of Josephson junction) the fully resistive state exists over Aux intervals cen-
tered around (n + —')$0, where n is an integer and Po is the fluxoid quantum. A superconducting cir-

cuit without Josephson junctions is suggested which should have a phase boundary similar to that
found here. Minimization procedures which are usually employed in analyzing SQUID's are dis-

cussed.

I. INTRODUCTION

Shortly after the discovery of the Josephson effect, '
Jaklevic et al. ' developed a dc superconducting quan-
tum interference device (SQUID) consisting of two
Josephson (tunnel) junctions in parallel in a ring circuit.
This device has been used up to the present as the basic
element for very sensitive measuring instruments. Possi-
bly the earliest and most general analysis of double junc-
tions has been that of Fulton, Dunkleberger, and Dynes
which requires graphical methods and is valid for any
form of the current-phase relation. Later, using the
method of Lagrange multipliers, Tsang and Van Duzer
found the maximum zero-voltage direct current of arrays,
each loop of which contained two Josephson junctions
(JJ's). Similarly, Schulz-DuBois and Wolf calculated the
static characteristics of interferometers starting with the
Gibbs free energy. This procedure is analogous to that
employed in Ref. 6 and leads to similar results. Here
again, only two JJ's were contained in each loop. Peter-
son and Hamilton extended the analysis of Ref. 6 and
Peterson and McDonald obtained the average voltage
and circulating current of a two JJ dc SQUID. Recently,
Blackburn' analyzed the stationary states and flux dy-
namics of rings containing N (=5) JJ s in an isolated ring
circuit tuithout any current injected from an external
source. McDonald" simulates a SQUID which contains
a loop with four JJ's (rather than the usual one or two) for
the purpose of amplification by phase locking. It allows
direct, instead of inductive, coupling to the SQUID and
possibly an extended response to higher frequencies.

Logic gates have also been developed experimental-
ly' ' which incorporate ring circuits with four JJ's but
are operated as three terminal devices as in Ref. 11. Be-
cause of the potential applications of a four JJ s ring cir-
cuit in devices, we have found it worthwhile to investigate
theoretically the detailed properties of a SQUID circuit
consisting of four JJ's and operated as a four-terminal de-
vice controlled by two independent external current
sources and an applied magnetic field perpendicular to the

ring circuit. First the salient features of a conventional dc
SQUID circuit will be summarized and used later for the
derivation of the variable SQUID (VSQUID). We shall
comment in the Appendix on the above minimization pro-
cedures which keep the applied flux constant.
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FIG. l. Schematic diagram of (a) conventional SQUID circuit
with two Josephson junctions and one external current source,
and (b) variable SQUID (VSQUID) circuit with four Josephson
junctions and two independent external current supplies. For
details see text.

II. SQUID THEORY

The salient features of a superconducting quantum in-
terference device are shown schematically in Fig. 1(a). It
consists of two JJ's, denoted by crosses, connected in
parallel in a ring circuit which is constructed of supercon-
ducting wires. An external current I is supplied from an
outside source to node A and extracted from node B. A
magnetic field 8 is applied perpendicular to the ring
which causes an internal magnetic flux P to be locked-in
within the ring circuit and which can be measured direct-
ly. ' The flux difference between the internal and applied
flux is proportional to a persistent current in the ring.
For a fixed value of the enclosed magnetic flux P there ex-
ists a maximum value of the current I, I, at which a
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finite electric potential difference, V, between nodes 3 and
B is established. For I &I ((t) the value of V=O. We
shall denote the dephasing angle from 3 to B along J& as
a and that from B to A along J2 as P. For a practical de-
vice which incorporates tunnel junctions, a and f3 lie al-
most entirely across J& and J2, respectively. For simplici-
ty we assume that the magnetic flux inside the JJ's can be
ignored, that the loop is symmetric, that all JJ's are iden-
tical, that each JJ has a critical current I, and that
volume effects of the wires are negligible.

The fluxoid relation, obtained from a contour integra-
tion of the second Ginzburg-Landau (GL) equation, is

4o Jdx
n go=a+

Defining the phase difference across the SQUID (between
nodes A and B) by

25=a —P,
Eqs. (3) and (4) can also be written as

ib ——sin(2X)cos6

i =cos(2X)sin6 .

(5)

(6)

It is apparent from Eq. (6) that the maximum value of
i, i, is reached when 6=~/2 at which value ib ——O. We
shall comment on finding the extremum of i in the Ap-
pendix. It also follows from Eqs. (5) and (6) that

ib = tan(2X)(cos'2X i )'—

where n is a positive or negative integer or zero, Po the
fluxoid quantum (=h /2e), f (x) the modulus of the nor-
malized GL order parameter, J the GL normalized
current density, and x the curvilinear coordinate along the
contour which encloses the total magnetic flux ((). The
value of x is normalized by the GL coherence length g(t)
The applied flux P, is then related to P by

P=P, +LI~ (2)

where L, the self-inductance of the loop, P, (t, , and Iz are
in mks units.

With the definitions

i =I/2I, ,

)b —I~/Ic ~

the Josephson relations across J
&

and Jz are

ib+i =sinu,

ib i =sin—P .

(3)

x= [n —(P/(t )]—
becomes

4X =a +/3 .

It should be recognized that the ratio J/f in Eq. (1) is
the superfluid velocity Q =g( Vy —2~ A/Po), where rp(x )

is the phase of the order parameter and A is the vector
potential. It then follows that the line integral of J/f
from A to B via J& for the SQUID in Fig. 1(a) is the
gauge-invariant dephasing angle a which is not the same
as Acp, the change in the phase of the order parameter be-
tween 3 and B via J&.

For single-valuedness of the order parameter, the sum
of all the Ag's around a closed path must be 2~n, but the
sum of the dephasing angles around a closed path is not
equal to 2~n unless the enclosed flux is zero. This follows
from Eq. (1") and this concept has been explained clearly
by Deaver' and Webb. ' There has been, however, some
confusion with its interpretation in the literature (cf. Ref.
7 where the phase change Ag is assumed to drive the
JJ s). We thus identify the integral on the right-hand side
of Eq. (1) with a+P so that Eq. (1) with the definition

The reason why a device such as that shown in Fig.
1(a) is called an interferometer is that the phase boundary
between the resistive and zero resistance state is periodic
in P/Po, similar to that of a Fraunhofer interference pat-
tern in optics.

The natural variable in Eqs. (5) and (6) is X, which is
proportional to the total enclosed flux in the ring or, in
other words, the magnetic flux which is locked-in in the
ring circuit. The latter can be measured directly' (at
least the corresponding value of the enclosed magnetic
flux density). It is then advantageous, simpler and more
general to use 7 as a variable in finding the maximum su-
percurrent, i, instead of the applied flux P, . This result
is valid for any nonlinear inductance L. Once i and the
corresponding value of ib are known, the applied flux p,
can be calculated from Eq. (2) provided the value of the
nonlinear inductance L at that particular value of ib is
given (see Appendix).

III. VSQUID

It will be shown that one can control the shape of the
phase boundary between the zero resistance and the resis-
tive state by a modification of the SQUID circuit shown
schematically by the circuit of Fig. 1(b). Comparing Figs.
1(a) with 1(b), we replace the current I by I&, the junction
J& by the junctions J& and Jz, and the junction J2 by the
junctions J3 and J4. An additional control current I2 is
introduced as shown in Fig. 1(b). The external currents
I& and I2 are controlled by independent sources. A volt-
age appears between nodes 3& and B& when, for a con-
stant value of the control current, I2, the measuring
current, Ii, exceeds a maximum value, a behavior similar
to that of a conventional SQUID. As in Fig. 1(a), a flux P
links the loop, giving rise to the circulating persistent
current Is when (()&P, . Defining

i 1
——I1/2I, ,

i 2
——I2/2I, ,

Eb ——Ib /I, ,

the appropriate Josephson relations are

i
&

—i 2+ib ——sinu 1,
l 1 + i2 +ib = sinCX 2



76 H. J. FINK, V. GRUNFELD, AND S. M. ROBERTS 36

—l 1
—l 2 + lb sin/31

—11 +12 + lb —sin/3p

(10)
1.0

where a, , az, /3&, and /31 are the dephasing angles across
the junctions I, to J4. Solving Eqs. (8)—(11) for i1, i2,
and ib in terms of the a's and /3's, one finds that the fol-
lowing relation must be satisfied:

sina2 —sinrz1 ——sin/32 —sin/31 . (12)

With the same definition of Y as above, Eq. (1), analogous
to Eq. (1"),becomes

11

'b

82
sin a2

0.8

0.6

0.4

4X=a1+a2+/3q+/3, . (13) 0.2

Defining the phase difference between 3] and B], 46],
and betwee~ A2 and B,, 46, , by

0.2 0, 6 0.8

I

1.0 1.2
46, = (a I+a2) —(/31 +/3q),

462 ——(a2+/32) —(at+/31),

(14)

(15)

i, = ( I /2D)cos(X+5z)cos(X —6q)sin(26, ),
i2 ——( I /2D)cos(7+ 6, )cos(X —6, )sin(26~),

ib ——(1/2D)cos(51+ 6, )cos(51 —62)sin(2X),

with D being

D =+[cos 5,cos 62

—sin X cos(5, +62)cos(5, —52)]'

(18)

(19)

Equation (16) can be cast also into the following form
which will be useful when discussing Fig. 2:

2
sin6z

cos+
i

&
——cosg sin6&

2
sln6p

cos+

2
sing
cos6i

1/2

(16')

When the control current i2 ——0, Eqs. (16') and (18) be-
come

i
&

——cosX sin6&,

ib ——sing cos6~ ——tang(cos g —i
&

)
'

(20)

(21)

Finding solutions of the implicit Eqs. (16)—(18) for the
VSQUID and its resistive phase boundary is by no means
as simple as solving Eqs. (5) and (6) for the conventional
SQUID. Although it is, in principle, possible to minimize
the Gibbs free energy or to use Lagrange multipliers, we
found it in our case considerably simpler to obtain a nu-
merical solution by reasoning as follows: II, Iz, and lt,
are controlled by independent external sources, and P, is
related to tt and III through Eq. (2) provided L is known.
We thus choose i1, i2, and X [Eq. (1')] to be the primary

and using Eqs. (12) and (13), the solutions for the
currents, after some lengthy manipulations, take on the
form

FIG. 2. Solutions of Eqs. (16)—(19) for the VSQUID with

i2 =0.2 and +=0.4 which are compared with Eq. (20) (iz =0,
dotted curve). The maximum of si an=Ii +li2+ib [Eq. (9)]
occurs at 5] =0.707 while the maximum of i[ (=i[ ) is reached
at 61=0.827. i1 is the measuring and i2 the control current of
the VSQUID, ib the circulating current in the ring, and 45l and
45& are the phase differences of the dephasing angles [Eqs. (14)
and (15)] between the nodes A

~
and BI, and AI and BI of Fig.

1(b). For i 1 ~ i 1 a voltage appears between 31 and B1 while for
i 1 &i 1 the voltage is zero.

variables in Eqs. (16)—(18) and 6, , 52, and ib the secon-
dary.

We assume that i ] as a function of 6& and its maximum
value, i &, can be found by keeping the control current i2
and the total enclosed Aux 7 in the ring circuit constant.
It is then possible to solve Eq. (17) for sin6z in terms of
6„X, and iz. Then sin6z is substituted into Eq. (16) and
i] is found as a function of 6& up to its maximum value
for constant values of 7 and i 2. Simultaneously Eqs.
(8)—(11) are satisfied. The corresponding value of ib is ob-
tained from Eq. (18).

Figure 2 shows a typical plot of i], ib, sine&, and 62 as
a function of 6] for i2 ——0.2 and +=0.4. As 6& increases,
sin+2 ——i]+i2+ib reaches a maximum before the rneasur-
ing current && reaches its maximum value. This is due to
the rapid decrease of ib for large values of 6]. The value
of 6& for which sina 2

——1 can be obtained from
51 ——cos '(i2)' —X. The maximum of i1 occurs always
at a value of 6& which is larger than the 6] value corre-
sponding to the maximum of i

& +i2+ib, except when
X=O or i] ~0, in which cases the maxima occur at the
same value of 6]. When E& is increased by the external
source beyond its maximum value, i], a finite voltage ap-
pears between the nodes 3& and B& and the solutions to
the right of i& are of no physical significance. However,
the solutions to the right of the maximum value of sinai,
up to the maximum of i], are physically correct solutions
in spite of the fact that the total current through junction
Jq has reached its critical current I, at a smaller I~ value.
The dotted curve is i1 for i2 =0, Eq. (20), which reaches
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FICx. 3. Shown is the phase boundary ( il ) between the
zero resistance (region below the curve) and finite resistance
states (region above curve) for a VSQUID for various control
currents iz as a function of (P/Po —n), where P is the total flux.
The values of n are quantum numbers and $0 is the fluxoid
quantum. The dashed curve is the phase boundary ( ~i

~
) of a

conventional SQUID [Eq. (6) with 5 = rr/2] Note that.
~i~

~
& ~i

~

for the same value of n Volume eff. ects of the su-
perconducting wires and junctions have been neglected. All
curves are periodic in P/Pp.

its maximum value at 6~ ——~/2. As can be seen from the
numerator of Eq. (16') and Fig. 2, the rapid increase in 5z
is linked to the fact that when i q &0 the function
reaches a maximum before 6~ ——~/2. In fact, a very small
control current I'.

2 has a very large effect on destroying the
symmetry of the circuit and changes drastically the phase
boundary between the superconducting and finite resis-
tance states of the VSQUID. This is shown in Fig. 3.
The results of Fig. 2 are correct, in general, when any of
the signs of i2, 6~, and 7 are reversed since the circuit
shown in Fig. 1(b) is invariant under permutations of the
four junctions or a relabeling of the four branches. The
measuring current i ~ is an odd function of 6~.

By finding i] for various constant values of i2 and 7
we obtained i, as a function of P/(tp for various constant
control currents i2. Figure 3 shows the results for i2 ——0,
0.01, 0.2, 0.5, and 0.8 and Fig. 4 the corresponding values
of ib at i, as a function of P/Pp —n. From the data of
Fig. 4 the values of P, can be obtained at the resistive
phase boundary provided L is known [Eq. (2)]. For com-
parison, the conventional SQUID, Eq. (6), with 5=rr/2, is
shown in Fig. 3 by the dashed curve. The corresponding
ib value is zero for the conventional SQUID [Eq. (5) with
5 = ir/2].

The results of Fig. 3 show that the resistive phase
boundary of the VSQUID is strongly modified by the con-
trol current i2 and that for i2 ——0 the phase boundary of a
VSQUID is difFerent from that of a conventional SQUID.
It is apparent that for iz ——0 the VSQUID has, for the
same quantum number n, a larger zero-voltage dc current

I, than the conventional SQUID,
~

i
The reader should note that the abscissae in Figs. 3 and
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FIG. 4. Shown is the circulating current ib of the VSQUID at
the maximum supercurrent

~

i
~

~

(same as that shown in Fig. 3)
as a function of (Plgo n) fo—r various control currents iz (&0)
and various quantum numbers n. The dots mark the maximum
value of (Pl/0 n) up t—o which ii, can increase for a fixed i,
For the conventional SQUID ib ——0 at ~i ~. For details see
text.

IV. CONCLUSIONS

A generalized super conducting quantum interference
device with four Josephson junctions and with two in-

4 are P/Pp n Th—ere.fore, the results of ~i,
~

andi~ are
periodic in P/Pp. In Fig. 4 we have marked with dots the
maximum value of (Plop —n) up to which ib can increase
for a fixed value of iz (also indicated on the graph). Al-
though it might seem that the values of ib at i] lie on a
universal curve for the various i2 values, in fact this is so
only within the graphical accuracy.

From Fig. 3 it becomes apparent, because of the period-
icity, that for iz ——0 and Plgp ——1 the VSQUID can
change from a quantum state with n =0 to one with either
n = 1 or 2, while for i2 between zero and 0.5 the transition
must occur from n=0 to n=1 only. For values of i2 be-
tween 0.5 and 1.0 the superconducting state of the
VSQUID is completely quenched for values of the fiux in
the neighborhood of (n + I/2)gp, and for iz ——1 the
VSQUID is always in the resistive state. For a conven-
tional SQUID the quantum number at ~i

~

changes by
an integer when P=(n + I/2)gp, while for a VSQUID
with i2 ——0 and n =0, for example, this could be anywhere
between P=Pp/2 and (bp If / z=0.5 th. en the c'hange of n

occurs at (n + —,')Pp. For iz &0.5 the circuit changes first
from a superconducting state with quantum number n to
the full resistive state when P is changed, before a new
quantum number n+1 of the following superconducting
state is attained. Thus the control current i2 influences
profoundly the superconducting-normal phase boundary
and the possible quantum state the VSQUID assumes.
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dependent external currents I, and I2 [Fig. 1(b)] has a
phase boundary between the zero resistance and a finite
resistance state which is different from that of a conven-
tional SQUID. The control current I2 modifies the
periodicity of the magnetic flux in terms of the magnetic
fluxoid quantum, and the magnitude of the maximum su-
percurrent I& in terms of the critical current I, of the
Josephson junctions. For the larger control currents
(I2 )I, ) the device alternates between the superconduct-
ing state and the normal state as the applied magnetic
field is changed. Thus a VSQUID turns out to be a de-
vice which has a flexible superconducting-normal phase
boundary controlled by I2.

The maximization of the measuring current I& was
done numerically by keeping the control current I2 and
the enclosed flux constant and varying the phase
difference across the VSQUID. Since the enclosed flux is
the scalar sum of the applied and current generated
fluxes, this is valid for any value of the latter. For our
four JJ's VSQUID our numerical procedure was found to
be simpler than the formal manipulations using Lagrange
multipliers or the Gibbs free energy. Our maximization
procedure is fairly simple and straightforward and allows
for easy conversion between the possible states of indepen-
dent variables, while keeping the inductance L as a phe-
nomenologically defined quantity. No linearization ap-
proximations are made in our approach.

It is suggested that a ring circuit of radius of about
one-half the coherence length, g(t), with two independent
external current sources should operate without Joseph-
son junctions just like the above VSQUID. This is con-
jectured from the finding that a ring circuit without'
Josephson junctions, of the appropriate size, with one in-
dependent external current source, performs like a con-
ventional dc SQUID.
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APPENDIX

The method of constrained maximization as used, for
example, in Refs. 6 and 7 applied to an ordinary two-
junction SQUID circuit, involves finding the extrema of a
function such as [cf. Ref. 6, Eq. (6)]

I, ( 1]],]tt~], A, )=i,]sine]I]]+i,2sin$2

+k(y] —tt]2+ 6], +a ]sing] —a2siny2)

with

2n 2& . 2n
a] —— L]i,], a2 —— L2i,2, 0, =

0

Here P, is the applied magnetic flux, (L, +L2) is the in-

ductance of the loop and A, is the Lagrange indetermined
multiplier. A deeper analysis' shows that L

&
and I.2 de-

pend on the currents in the branches, thus on ]t] and Pz.
If the nonlinear character of the inductance were to be
taken into account, using the Lagrange method, the ensu-
ing equations would become extremely clumsy and
difficult to handle even for the case of the two junction
SQUID. In our approach this is avoided, and exact solu-
tions are found for the combined Josephson and
Ginzburg-Landau relations, together with fluxoid quanti-
zation. We thus think our method is more convenient
and useful.
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