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The dynamic image plane in the long-wavelength limit has been calculated within the time-

dependent density-functional approach for several simple-metal surfaces.

Using the dynamical

force sum rule it is proven that the image plane is given by the first moment of the induced density
in the region outside the positive background. The imaginary part of the centroid d(w) of the
screening charge, which determines the probability for electron-hole pair excitations at the sur-
face, is linear in @ up to about one-half of the work function and then rises steeply near the vacu-
um threshold. Close to 0.8 of the bulk plasma frequency Imd (w) shows a peak which becomes

very sharp for low bulk densities.

If the response to the applied field is treated within the

random-phase approximation, the spectral weight of Imd (w) is shifted almost uniformly to higher
frequencies. It is also found that the linear coefficient of Imd () at low frequencies is in excellent
agreement with the quasistatic predictions based on the golden-rule formula.

I. INTRODUCTION

The dynamic screening properties of metal surfaces
have in recent years received considerable attention be-
cause of their importance for many surface spectros-
copies.! In the long-wavelength limit, the key quantity
that characterizes the electronic response to the applied
electromagnetic fields is the centroid d (w) of the screen-
ing density induced by a uniform electric field oriented
perpendicular to the surface. Among the quantities that
are directly determined by d(w) are the surface pho-
toelectric yield, the linear coefficient of the surface plas-
ma dispersion relation, the electronic lifetime of adsor-
bate vibrations, nonlocal corrections to the Fresnel equa-
tions, and the van der Waals reference plane.2

Despite this wide-ranging significance of the function
d(w), only limited information on it is available today,
even for simple metals. So far, the most realistic calcu-
lations for semi-infinite jelliumlike metals were carried
out by Feibelman"3 for frequencies ranging from 0.6w,
to about 1.3w,, where w, is the bulk plasma frequency
(wj =4m7, 7 is the bulk density). The ground-state elec-
tronic properties were determined with use of density-
functional theory while the response to the external
fields was treated within the random-phase approxima-
tion (RPA). The validity of this approach was convinc-
ingly demonstrated by the excellent agreement that was
achieved with measured photoyield spectra for Al by the
data were taken by Levinson and Plummer.* Aside from
the unknown behavior of d (w) at lower frequencies (ap-
parently, the solution of the response equations in this
range failed because of numerical difficulties), there
remained the question as to what extent exchange-
correlation contributions to the local field might
influence the frequency dependence of d (w). It was re-
cently shown that a consistent treatment of electron-
electron interactions in the ground state and in the pres-
ence of the external perturbation is required in order to
satisfy various exact sum rules.’

The purpose of this work is to present results for d (o)
for several simple metals (r,=2, 3, 4, and 5 where
rx_3=4m‘z /3) over the entire frequency range below .
The formalism is based on the time-dependent density-
functional approach®’ and amounts to a direct solution
of the linear-response equations. The smoothness of the
electron profile at the surface and the nonlocal nature of
the response to the applied field are fully included. Since
electron interactions in the presence and in the absence
of the perturbing field are treated on the same footing
[the local-density approximation (LDA) is used], the
static force sum rule and the so-called surface f-sum rule
are satisfied automatically and, at low frequencies, d ()
smoothly approaches its known value in the static limit.
Our solution of the response equations is complementary
to that of Kempa and Schaich,® who solve them in
Fourier space. The formal procedure is analogous to
that employed previously’ to determine the induced den-
sity at imaginary frequencies which is relevant for the
evaluation of the van der Waals reference plane.'® The
response at purely imaginary frequencies is, however,
much simpler in the sense that the induced density
On(z,iu) remains real and exhibits in the interior of the
metal only one Friedel oscillation which is independent
of frequency u. Thus a direct determination of the cen-
troid of &n(z,iu) is feasible. At real frequencies, on the
other hand, &n (z,w) is complex and consists in the inte-
rior of a complicated superposition of several Friedel os-
cillations.3

In order to be able to determine the centroid of
n(z,w) we use the dynamic force sum rule which was
recently derived by Sorbello!! for atoms and small metal
particles. We first apply this rule to thin metal slabs and
then generalize it to the case of a semi-infinite system.
We show that, as a result of this sum rule, a condition
can be found which relates the first moment of the in-
duced density in the interior of the metal to the first mo-
ment outside the edge of the positive background. Thus
the centroid d(w) is in fact completely determined by
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36 DYNAMICAL SCREENING AT SIMPLE-METAL SURFACES

the spatial distribution of 6n (z,w) outside the metal. In
the static limit, such a condition is known to hold as a
result of the static force sum rule.!> At finite real fre-
quencies, this relationship is very useful indeed, since it
circumvents the evaluation of the first moment of the os-
cillatory interior part of the induced density. As a
consequence of the dynamic force sum rule, the
frequency-dependent image plane can be identified with
the first moment of the induced density in the exterior of
the metal.

Qualitatively, the response function d(w) below the
bulk plasma frequency shows the following behavior. At
low frequencies up to about one-half of the work func-
tion, Imd () is approximately linear in w. The slope de-
creases by about 1 order of magnitude as r, increases
from 2 to 5. In the vicinity of the threshold for emis-
sion, Imd (w) rises steeply, indicating a large increase in
the number of channels for electron-hole pair excitations
in the region of the surface barrier. Above threshold,
Imd (w) shows a maximum close to 0.8w, for all bulk
densities that we have considered. This feature is less
pronounced in the case of high-density metals (r,=2)
but becomes extremely sharp for lower bulk densities
(ry>4). The induced density at this resonance has
monopole character and is spatially not more localized
in the surface region than at other frequencies.

We have checked our earlier calculations at
imaginary frequencies by making use of the dynamical
force sum rule. Although the new absolute values of
d (iu) agree with the old results to within about one per-
cent, the linear coefficient £ at low frequencies is now
smaller. As expected, this coefficient is the same as that
of Imd (w) in the limit of small frequencies. In fact, we
now find that £ agrees well with the quasistatic predic-
tion'* based on the golden rule if the full self-consistent
surface potential (i.e., including exchange-correlation
terms) together with the bulk potential is used.’

In order to investigate the importance of exchange
and correlation for the frequency dependence of d (w) we
have carried out RPA-type response calculations, retain-
ing, however, the LDA for the ground state. At those
frequencies and bulk densities where a comparison is
possible our results agree very well with those of Feibel-
man."* In general, we find Imd(w) to be somewhat
smaller than in the consistent LDA response treatment.
Also, the peak near 0.8w), is less pronounced in the RPA
and tends to lie at slightly higher frequencies. A shift of
spectral weight to higher frequencies as a result of the
neglect of exchange-correlation contributions to the
effective potential is to be expected because of the less
attractive potential in the region of the induced density.’

The structure of this paper is as follows. In Sec. IT we
introduce the key quantities characterizing the response
at a metal surface and review the finite-frequency exten-
sion of the density-functional approach. The dynamical
force sum rule for semi-infinite systems will be derived in
Sec. III and details of the computational procedure are
given in Sec. IV. Section V contains the discussion of
our results and the conclusions are presented in Sec. VL.
Atomic units are used throughout this paper unless not-
ed otherwise.

9,10,13
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II. DENSITY-FUNCTIONAL RESPONSE

Let us consider the interaction of the metal electrons
(the positive background occupies the half-space z <0)
with the external electric potential

2 . .
Bet(T,0) = —fequu-rﬁqz tiot), (1)
with ¢ = | q; | . For sufficiently weak external perturba-

tions the Fourier components of the induced density are
given by

on (z,q,a))z f dZ'X(Z,Z',q,w)(ﬁem(zlyq,w) ’ (2)
where X is the density repsonse function of the semi-
infinite metal. Far from the surface the induced
Coulomb potential has the form

8¢(z,q,w)=277rf dz'e 117771 8n(z',q,w)

T —gz
——e g (q,w), z>0, (3)

where the response function g (q,w) is defined as

g(q,0)= f dz e¥6n(z,q,w)

:_27”[ dz [ dz'e"e"X(z,2',q0) . @

In the long-wavelength limit, g has the expansion®>!*
_ elw) 2
g(g,0)=0(w) 1+2q—e(a))+1 dw)+0(@q) |, (5
where
o(w):fdz Sn(an))z—eiai)—t#1 (6)
7 elw)+1

is the total surface charge induced by a uniform,
frequency-dependent electric field oriented perpendicular
to the surface and d (w) is the centroid of this density

d(w)=fdzz§n(z,0,a>)/cr(a)) . 7

Equation (6) follows from the standard textbook treat-
ment of the dielectric response at a metal surface where
the bulk is characterized by a local dielectric function
e(w).

As shown by Persson and Zaremba,'* the imaginary
part of the response function g(q,w) is proportional to
the rate of exciting electron-hole pairs at the surface (A4
is the surface area):

2

o Ag

- Img (q,w) . (8)

Thus in the long-wavelength limit, w is determined by
the imaginary part of the induced charge centroid:

. B ()
oA e(w)+1

Imd(w)+ -+ . 9)

On the other hand, the transition rate w may be calcu-
lated with use of the golden-rule formula'4
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w =22 [ @k [ % fuli—fi) | <K [ dscr | k) |2

X O(€p —€; —fiw) , (10)

where the initial factor 2 accounts for the electron spin
and ¢scr is the total complex potential. f are Fermi-
Dirac occupation factors.

Within the time-dependent extension of the density-
functional approach,®’ the induced potential consists of
Coulomb as well as exchange-correlation contributions.
Thus in the limit ¢ —0 one has

¢SCF(er)=¢ext(z’w)+8¢(Z:C’))+8ch(zyw) ) (11)

where ¢, (z,0)= —27z and

8¢(z,0)= [ dz'e ~*!2 %] 2K15n(z’,w)+§8¢(z’,w) )

(12)

a VXC
on

8V, (z,0)= on(z,w) . (13)

n=ng(z)

Equation (12) implies 8¢''(z,w)= —4mwbn(z,w) regardless
of the value of «.!® This expression of the Coulomb po-
tential is useful, since it allows explicit handling of the
asymptotic form of 8¢(z,w) and since the short-range
kernel in (12) suppresses all long-range potentials due to
finite surface charges.

The induced density is related to the self-consistent
potential via the independent-particle susceptibility X:

bn(z,0)= [ dz' Xo(z,2",0)bscr(z",0) . (14)

The single-particle energies and wave functions that are
used to construct X, should be derived from the same
exchange-correlation functional as that used in Eq. (13).
Of course, this response approach is approximate, since
only the static (local) functional is used, whereas, in
principle, the response kernel should also be frequency
dependent. Nevertheless, as long as the same functional
is employed to determine both the ground-state electron-
ic properties of the metal and its response to the external
field, two exact sum rules are satisfied that relate the first
and first inverse frequency moment of d(w) to ground-
state quantities. Thus the accuracy of these moments
depends only on the quality of the static exchange-
correlation potential.’

Once the induced density 8#n(z,w) is obtained from
the closed set of response equations (11)—(14), the cen-
troid d (w) can, in principle, be calculated directly using
the definition (7). A more elegant, and for practical pur-
poses considerably more useful, equivalent expression
can be derived from the dynamical force sum rule. This
is the topic of the following section.

III. DYNAMICAL FORCE SUM RULE

It has recently been shown by Sorbello'! that the
well-known static force sum rule which follows from the
Hellman-Feynman theorem can be generalized to the
dynamical case. Let us consider a finite electronic sys-
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tem subject to a uniform electric field that oscillates in
time at a frequency w. As a result of the sum rule, the
instantaneous force acting on the ionic charges is direct-
ly proportional to the frequency-dependent electronic
polarizability of the system. Expressing the latter quan-
tity in terms of the induced density & (r,w), one obtains
the relationship'!

[ drn (0V(r,0)=0 [ d¥rrénire), 15

where n, (r) is the number density of the positive ions
and ¢(r,w) is the total Coulomb potential acting on the
electrons, i.e., ¢ consists of the external potential plus
the Hartree term 8¢(r,w) induced by dn(r,w).

Let us now consider a slab of thickness L whose uni-
form positive background of density 7 extends from
z=—L/2toz=+L /2, and which is placed symmetri-
cally between two oppositely charged capacitor plates.
Because of the translational symmetry parallel to the
surface, we obtain from Eq. (15) the condition

$z=L/2,0)=470" [ “dzzbn(z,0), (16)

where we have used the fact that both ¢(z,w) and
6n(z,w) are odd functions of z and d®=w/w,. This rela-
tionship may be conveniently rewritten as

&L /2,0)=475 0 (0)[L /2+d; ()], 17)

where o (w) is the integrated weight of the charge in-
duced in the right half of the slab and d; () is the cen-
troid measured from the right-hand jellium edge:

o (e)= [ dz8n(z0), (18)
dL(w)zfo‘” dz(z —L /2)8n(z,0) /0 (@) . (19)

On the other hand, if we express ¢(z,w) as a superpo-
sition of applied and induced potential, the left-hand side
of Eq. (16) can be written as

(L /2,0)=¢e (L /2,0)+8¢(L /2,0)
= —4moyL /2
—27 [ 7 dz'|L/2—2'|6n(z'0), (20)

where o, is the positive charge per unit area on the
right-hand capacitor plate. After some algebraic manip-
ulation, this leads to

(L /2,w)=—27L[og—0o (w)]
+4ro(w)]d(w)—a; (w)], (21)
where
aL(a)):fLojzdz(z —L/2)8n(z,0) /0, (@) . (22)
From Egs. (17) and (21) we obtain the condition
(1—3%)d(w)—ap(w)=(L /2)[oo/0(0)—1+B 2] .
(23)

Thus, as a result of the dynamical force sum rule, the
centroid d; (w) of the induced density is actually deter-
mined by the quantity a; (w), i.e., by the moment of
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8n (z,w) outside the edge of the positive background.

Now let us assume that L becomes very large. Since
the induced density (below w,) remains localized on the
two sides of the slab, the potential in the interior ap-
proaches

¢(z,0)=—47[og—0(w)]z , (24)
while far in the vacuum on the right it takes the form
d(z,0)=—4m{opz —o (@)L /2+d (®)]} . (25)

Thus the ratio of internal to external electric field be-
comes

E(in)/E (out)=1—0, (w)/0o=[e(w)]™' . (26)

If we represent €(w) by the Drude dielectric function, we
find

oL (@) /oe=1/(1—52) (27)

for large L. In this limit we therefore obtain from Eq.
(23)

d(w)=a; (0)/(1—5B?)
:aL(CU)O'L(CU)/O'O . (28)

Let us now choose

ogo=¢€lw)/[e(w)+1] (29)
so that
_ _ elo)—1
gr(w)=0(w)= (o)1 1 (30)

for L large. Thus the total weight of the charge induced
at the surface of the slab equals that induced at the sur-
face of a semi-infinite metal by an external capacitor
plate of unit positive charges. From (19), (22), and (28)
we then have

E((O)"—] o
“ela) fo dzz6n(z,w) , (31)

dL(CL)):
where we now have placed the origin of the z axis at the
right-hand jellium edge. If we assume that, below w,,
the profile of the induced density at the slab surface ap-
proaches for large L that at the semi-infinite metal sur-
face, Eq. (31) also holds in the latter case, i.e.,

dw)=["

— ®©

dzz 6n(z,0w)/0(w)
_ L] £ n(z0) . (32)
) 0
The dynamical image plane!' is then simply given by the

first moment of the induced density outside the jellium
edge:

dlp(w)—ﬂ*

T ew)+1 @)

=f0°° dzzdn(z,w) . (33)

Equation (32) is the main result of this section. It
shows that, in order to evaluate the centroid of the
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dynamically induced density, it actually suffices to know
the density in the exterior. Equivalently, the first mo-
ment of dn(z,w) in the interior is simply related to its
first moment outside the jellium edge:

fo dz z 8n (z,a))z—_l—fwdzzﬁn (z,w) . (34)
w e(w) Yo

In the static limit, this gives the well-known result!?
0
f dzz 6n(z,0)=0, (35)
i.e., since o(w=0)=1,
d(0)= [ "dzz8n(z,0) . (36)

It is convenient to introduce the normalized induced
density

f(z,0)=8n(z,w)/0(w) , (37)
i.e., its integrated weight is unity independently of w. If
we define its external moment as

f(co):fo dz zf (z,m) , (38)
we have from (32) the relation
_ elw)—1
d(w)-—————e(w) flw)
1
= 1_azf(ca). (39)

Thus, according to Feibelman,' the photoyield at a metal
surface for p-polarized light incident at 45° is given by
(a.u.)

Y (0)=V8awImf (0) , (40)

where a is the fine-structure constant.

Let us return for a moment to the case of a slab of
large but finite thickness, and let us define bulk and sur-
face contributions to the total Coulomb potential ac-
cording to

d(z,0)=¢,(z,0)+¢,(z,0) , (41)

where ¢, is given by (24) and o, and o (w) are specified
in Egs. (29) and (30):

bp(z,0)=—4mz /[e(w)+1] . (42)
Since, for large L,
oo (@)=—1/[elw)+1], (43)

we obtain from Eq. (17) the following condition for the
surface potential ¢; at the jellium edge:

(L /2,0)=415*0(w)d (o) . (44)

In the case of the semi-infinite metal, it is convenient
to define

Pexi(z,0)= —27[z —d (0)] (45)
so that
d(z,0)=@(2,0)+8d(z,0)
— —27[l1to(w)][z —d(w)] (46)
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for z >>0 (upper sign) and z <<0 (lower sign). Defining
again

d(z,0)=dp(z,0)+,(z,0) , 47
with

oy (z,0)==2m[1—0(w)][z —d (®)] (48)
for all z, we obtain

¢p(z =0, w)=27[1—0(w)]ld(w)

=475 %0 (w)d (o) . (49)

Thus, if we assume that the density induced at the sur-
face of a very thick slab approaches that induced at a
semi-infinite metal surface, the corresponding surface
contribution to the Coulomb potential will be the same.
Equation (44) then also holds for the semi-infinite case
and we find

¢(z=0,w)=0. (50)

With the definition of ¢.,, given in Eq. (45), the force
sum rule thus implies that the Coulomb part of the com-
plex local potential must vanish at the jellium edge. In
the static limit, this condition had been shown previous-
ly to hold for small metal spheres, jellium slabs, and
semi-infinite systems.!?

We close this section by pointing out that the force
sum rule is satisfied only if electron-electron interactions
in the presence of the perturbing potential are treated on
the same level of approximation as in the ground state.
In the time-dependent density-functional approach this
is automatically the case. The LDA-based RPA
response treatment, on the other hand, amounts to a
time-dependent Hartree theory with the LDA ground-
state local exchange-correlation potential V', (r) present
as a rigid, density-independent external potential. In
analogy to the static case,’ one then has, instead of rela-
tion (15),

fd3rn+(r)

Vo(r,0)+ [ dr n(r)VV,.(r)
=a)2fd3rr8n(r,a)). (51)

Following the same derivation as above, we obtain, for
the centroid of the screening density, the expression

elw)+1

d{a)= e(w)

fow dzzon(z,w)

-2
—op f

instead of Eq. (31). The induced density is, in this case,
determined from the same set of response equations
(11)-(14), except that the exchange-correlation term
6V,.(z,w) is omitted from the self-consistent potential

bscr(z,0).

dz dn(z,w)Vi.(2) (52)

IV. CALCULATIONAL PROCEDURE

The method we have used to solve Egs. (11)-(14) is
similar to the procedure employed previously at purely

imaginary frequencies.” However, since 8n(z,) at real o
is complex, several additional points must be addressed.
Using the decomposition of the total Coulomb potential
given in (47), we introduce the function

§(z,w>=fdz'xotz,z',m«zs,,(z',m

=-27[l—0 ]f dz z'Xolz,2",0) . (53)
The second expression follows from the identity®
f dz' Xo(z,z',0+i8)=0, (54)

where 8 is a positive infinitesimal. Since

SJdze ™ —d(o)]=z —d (o), (55)

the surface part ¢>x of ¢ satisfies the relation

f°° e —Klz—2']

27 . K,
" Sn(z',w)+ 2ngx(z o) |, (56)

and ¢(z,w) is taken to vanish in the interior of the met-
al. Far from the surface ¢, has the form

¢(z,0)= —4mo(0)[z —d (®)], z>>0. (57)

In order to account explicitly for this asymptotic be-
havior, it is convenient to write

én(z,w)=0ny(z,0)+6n,(z,0) , (58)
&, (2,0)=8¢y(z,w)+8¢,(z,0) , (59)

where 6n, represents a complex model density whose

real part is a Gaussian with total weight o(w):
r . —(z —dy)’’T?

Vi '

Since o(w) is real, the imaginary part of 6n, is

represented by a “dipolar” distribution of the form

d, I
Z)1—2y ‘/7T

Rebny(z,w)=0(w) (60)

Imény(z,w)=0(w)

—(z ——zl)zl‘2 —(z —zZ)ZI“2
—e

X (e ). (61)

The complex Coulomb potential 8¢, corresponding to
8ny is defined as

8do(z,0)= —4m f

—*—41ra(a>)(z —dg—id,),

(z —2")dny(z',w)
z>>0. (62)

Having specified 6ny, and &¢, in this manner, the
response equations for the remaining functions 8n; and
8¢, now read as follows:

Alz,0)
+ f dz' Xo(z,z',w)

én(z,0)=

X [86,(z",0)+ Vi (z)8n,(z",0)], (63)
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6¢1(z,w)=fdz’e_“'z'z'1
X 27"5n1<z',w)+§5¢1(z',w) . (64

where A(z,w) is defined as
Alz,w)=§(z,0)—8ny(z,0)
+fdz'X0(z,z',co)
X[8do(z',0)+ Vi (z2)8no(z',0)] . (65)

Equations (63) and (64) provide the basis for the numeri-
cal results which will be discussed in the next section.
By discretizing all functions on a mesh of points z;, one
obtains the matrix equation

=X View —Xow | |01 A
. = R (66)
—47k Kw 1—Kw | |84,
where
K(z,z')=JKkexp(—k|z—2z']|), (67)

and w denotes integration weight factors.

Since 6n, and 8¢, are, by definition, finite only in the
surface region, the integral over z’ in (65) can be done
numerically. The z' integral which defines the function
&(z,w), Eq. (53), however, should be carried out before
the internal momentum summation involved in the ex-
pression for Xy

’ 1 kF 2 ’
Xo(z,z ,a))=?f0 dk (kE— k2 (20 (2")
X[G(z,z', e, +@+1i8)

+G(z,z',e —0—i8)], (68)

where 1, (z) is a solution of the Schrédinger equation for
the ground-state effective potential ¥ (z) and G is the
corresponding Green function (see Ref. 9). Since the
functions ¥, and G are known analytically deep inside
the metal, the z’ integration in Eq. (53) can also be done
analytically in this region.

The center position d of the real part of 8n, and the
coefficient d, which characterizes Im&n, will be used as
input parameters. If the integrated weight and the first
moment of 6n, vanish, 8¢, does not have any long-range
contributions and no truncation errors arise from Eq.
(64). In this case

d(w)=dy+id,; , (69)

i.e., a self-consistent solution has been found. This solu-
tion must be independent of the range parameter k, of
the width T, and of the parameters z, and z, which
enter in the definition of 6n,. In practice we solve (66)
for two values of d, and of d,. In these four cases d ()
is calculated from the external part of n =8n,+6n, by
making use of the dynamical force sum rule, i.e., by ap-
plying Eq. (32). It is then straightforward to locate by
interpolation that pair of values of d,,d; which satisfies
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Eq. (69). We have found this procedure to work very
well in the entire frequency range up to w,. Further de-
tails concerning integration range, mesh size, momentum
sums, etc. can be found in Ref. 9.

V. RESULTS AND DISCUSSION

Figure 1 shows the real and imaginary parts of the
normalized induced density f(z,w)=8n(z,w)/0(w) for
rs=4 at several frequencies below w,. Note that, with
this normalization, the real part of f(z,w) has unit in-
tegrated weight independently of . The total weight of
the imaginary part of 8n vanishes since there is no bulk
damping included in the present theory. Both real and
imaginary parts of f(z,w) are seen to vary smoothly
with frequency even though o(w) has a pole at the sur-
face plasma frequency. Ref(z,w) consists of a main
peak whose centroid is located outside the surface at low
frequencies and which gradually shifts inwards as o in-
creases. This indicates that the screening of the applied
field at higher frequencies takes place in regions of
higher electronic density, i.e., in regions of larger “local”
Fermi wave vectors. At the same time, Ref (z,w) be-
comes negative at large z, suggesting that the applied
field is antiscreened in the tail region of the ground-state
density profile at sufficiently high frequencies.

In the interior, Ref (z,w) exhibits various Friedel os-
cillations® in contrast to its behavior at purely imaginary
frequencies where, as in the static limit, only one oscilla-
tion of wavelength 7/ky is obtained.” At small real o
the dominant period is given by

M=2m/[kp+(k}+2mw/H)'?],

which is gradually replaced by a longer-wavelength os-
cillation given by A,=2n#ik,/mw. While close to the
surface plasma frequency (see curve at 0.70,) both
periods are still discernible, the induced density at 0.8,
appears to consist mainly of one period given almost ex-
actly by A,. The amplitudes of the oscillations at this
frequency are much larger than at other values of w.

The behavior of the imaginary part of f(z,0) is quali-
tatively similar to that of the real part except that the
overall magnitude of the extrema varies much more
strongly with frequency (notice the different scales used
at different values of w). As before, close to w; =w, /V2
the induced density is still quite complicated, consisting
at least of the two oscillations A; and A, specified above.
At ©=0.8w,, however, Imf (z,0) takes on a very simple
form with a large ‘“dipole” near the jellium edge and
strong Friedel oscillations in the interior corresponding
to the wavelength A,. Similar variations of f(z,w) with
frequency are found for other bulk densities.

The real and imaginary parts of the centroid d (@) of
the induced density are plotted in Fig. 2 as functions of
frequency for bulk densities corresponding to r; =2, 3, 4,
and 5. [The numerical values of Imd (w) are given in
Table 1.] Both Red (w) and Imd () clearly exhibit two
spectral features below w,. The first is related to the
threshold for emission and leads to structure in d (@) at
frequencies near the work function & (see vertical ar-
rows). At very low frequencies, Imd (w) increases linear-
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FIG. 1. (a) Real and (b) imaginary parts of normalized den-
sity Eq. (37), induced at a metal surface by a uniform electric
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wavelength Friedel oscillations in the interior are indicated by
Ay and A,, respectively. Notice the different scales in (b).

tion channels are opened up once states near the top of
the surface barrier can be reached.

It should be noted that in spite of the complicated
spatial distribution of the induced density, all of the in-
formation on d(w) is, as a result of the dynamic force
sum rule, contained in the external part of 6n(z,w).
Combining Eqgs. (37)-(39) we find

d(@)=(1-2")" [ “dzz8n(z,0)/0(0) . (70)

For example, the rise of Imd (w) near threshold for r, =4

TABLE I. Imd(w) as a function of w/w, for several bulk
densities (a.u.).

w/w, re=2 ry=3 re=4 ry=>5
0.1 0.11 0.04 0.02 0.01
0.2 0.45 0.11 0.05 0.03
0.3 1.05 0.30 0.12 0.06
0.4 1.30 0.87 0.28 0.11
0.5 1.35 1.23 0.71 0.30
0.6 1.62 1.63 1.38 0.71
0.7 2.41 2.93 2.66 1.82
0.8 3.62 5.55 9.08 10.80
0.9 2.66 2.87 2.94 3.28
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(®=0.52w,) can be identified both with an increased
magnitude of Imf (z,w) in the exterior and with an out-
ward shift. Thus more unoccupied states near the top of
the surface barrier are involved in the formation of
electron-hole pairs in this frequency range.

A second, more dramatic increase of Imd (w) occurs
at about 0.8w, for all r, that we have investigated. This
peak is accompanied by typical resonance behavior in
Red (w). The peak in Imd (w) is relatively broad for low
r, but becomes extremely sharp for r;=4 and 5. In
these two systems, the rise near threshold shows itself
merely as a shoulder of the main peak since ® ap-
proaches 0.8w,. As can be seen from Fig. 1(a), the
external part of f(z,w) is a smooth function of frequen-
cy. Its moment f(w) is negative and finite as @ ap-
proaches w,. Thus, according to Eq. (70), Red(w)—
— o as w—w,. This implies that, since Red (w)> 0 for
w < w;, Red(w) must pass through zero somewhere be-
tween o, and w,. Now, if the centroid of the induced
density lies close to the jellium edge, i.e., close to the
steepest part of the barrier potential, the probability for
electron-hole pair excitation will be large as a result of
an enhanced local field. Thus Imd (w) should become
large where Red (w) goes through zero. This is indeed
the case, as shown in Fig. 2. Moreover, according to the
Kramers-Kronig relations, a peak in Imd(w) implies
resonance-type structure in Red (w), which is also borne
out by the results presented in Fig. 2(a).

The normalized Coulomb potential ¢(z,w)/o(w) cor-
responding to the induced density 6n(z,w)/0(w) for
ro=4 is shown in Fig. 3 for frequencies near the reso-
nance. As w increases from 0.70, to 0.90,, the max-
imum of the real part is seen to move through the jelli-
um edge, so that, at resonance, the spatially most inho-
mogeneous part of #(z,0) has maximum overlap with
the spatially most inhomogeneous region of the ground-
state potential. Whereas the overall magnitude of
Red(z,w)/0(w) varies relatively little in this frequency
range, Im¢(z,w)/0(w) is seen to show the same kind of
resonance behavior as the imaginary part of the induced
density. Note that condition (50), which follows from
the dynamical force sum rule, is quite well satisfied by
the curves shown in Fig. 3.

The observation that the resonances in d(w) occur
above ®,; for all bulk densities considered here is
presumably related to the fact that, for w <w,, the in-
duced potential in the interior and ¢, oscillate out of
phase [see the definition (1)], i.e., they partially cancel.
Above w, the integrated surface charge becomes nega-
tive, so that 8¢ and ¢.,, oscillate in phase and the total
field is able to penetrate the interior much more
efficiently. Thus the screening charge will no longer be
confined to the surface region and begins to spread into
the metal. A resonance condition then arises when the
centroid of the screening cloud coincides with the
steepest portion of the ground-state potential.

Note that the integrated weight of the normalized in-
duced density f(z,w) is unity independently of frequen-
cy. Thus the resonance near 0.8w, has monopole char-
acter just as the spatial distribution of the surface
plasmon (compare the curves at 0.7w, and 0.8w, in Fig.
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1). In contrast to these induced densities which charac-
terize the driven response of the electrons, Inglesfield
and Wikborg!” investigated the self-sustained modes of a
semi-infinite metal. For a particular double-step surface
potential model, they obtain damped modes of vanishing
total weight at a frequency close to 0.8w,.
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FIG. 3. (a) Real and (b) imaginary parts of the Coulomb po-
tential, Eq. (47), for several frequencies near resonance. The
dashed lines in (a) denote the bulk contribution defined in Eq.
(48). All curves are divided by o(w) to ensure the same nor-
malization as in Fig. 1.
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Figure 2(b) demonstrates that the resonance near
0.8w, is sharpest for low-density metals whose density
profile at the surface is more diffuse. It is therefore not
surprising that finite- or infinite-barrier models show no
resonance, since their density profile for typical bulk
densities tends to be too steep.'® In the case of the
infinite-barrier model, only systems with r, > 15 have
sufficiently soft electron distributions that resonances in
d (w) begin to occur. However, we hesitate to associate
the resonances near 0.8w, with a “local” plasma oscilla-
tion in the tail of the ground-state electron profile. Ac-
cording to the induced densities shown in Fig. 1, the
spatial distribution of 6n (z,0) at 0.8w, is not more con-
centrated in the surface region than at other frequencies.
Also, the Friedel oscillations at this frequency are as
much amplified as the main peak near the jellium edge
and as the imaginary part of the centroid d(w). The
only clear feature that distinguishes the induced density
profile at 0.8w, from those at other frequencies is the
fact that the oscillatory part is dominated by the term
with wave vector mw /#iky and that Imén(z,0) acquires
a pronounced dipolar shape in the surface region.

As can be seen from Fig. 2(b), the maximum of
Imd () shifts to slightly higher frequencies as r; in-
creases (from about 0.78w, for r;=2 to 0.82w, for
ro=>5). Interpreting these frequencies as local plasma
frequencies and converting them into local plasma densi-
ties, one finds that these densities happen to be equal to
the ground-state density approximately where this has
its largest gradient (from z=~ —0.3 a.u. for r;=2 to
z~—1.1 a.u. for r;=5). This upward shift of the reso-
nance frequency is consistent with the fact that d(0) is a
decreasing function of r,. From the Kramers-Kronig re-
lations we have

d(m:lfmdwlmd(m)/w ) (71)
T 0

Thus if Imd(w) were to consist of a narrow peak of unit
strength located at a frequency wg, d(0) and @, should
be approximately inversely related. Also, as a result of
the surface f-sum rule,%?! one has the relation

m},:;fo dolmd (o), (72)

where A is a ground-state quantity defined as

h=["dzno(2)/ . (73)

The upward shift of the main peak of Imd(w) as 7, in-
creases is consistent with the fact that A is an increasing
function of r;.> [Integrating Imd (»)/w, and o Imd(w)
up to @, and comparing the result with the values of
d(0) and A, we find that, nearly independently of r,
about 120% of the total weight of Imd (®)/w and 160%
of the total weight of w Imd () lie below w,, respective-
ly. Note that Imd (o) becomes negative above w,.]

The dashed lines in Fig. 2(b) show Imd(w) for an
LDA ground-state description and an RPA-type
response treatment. There is an almost uniform shift of
spectral weight to higher frequencies and a reduction of
amplitude. Since the main peak in Imd(w) lies at higher
frequencies, the resonance-type structure in Red (@) near
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0.8w), lies closer to the singularity at w, and is therefore
less well resolved than in the time-dependent LDA
(TDLDA). As we have shown previously,’ the neglect
of exchange-correlation terms from the self-consistent
potential makes this slightly less attractive and therefore
leads to a shift of the static image plane position d (0)
towards the surface. According to the Kramers-Kronig
relation (71) this displacement is consistent with the up-
ward shift of the main peak of Imd(w). A shift to
higher frequencies due to the neglect of 8V, was also
obtained in atomic absorption spectra.® On the other
hand, the LDA-based RPA values of A are smaller than
the consistently calculated values.® This implies that the
overall weight of Imd (w), in particular above ®,, must
be underestimated appreciably by the RPA-type
response treatment.

For those values of », (2, 3, and 4) and at those fre-
quencies (0.6 <w/w, < 1.0) where a comparison is possi-
ble, our results for d (w) agree very well with those of
Feibelman (Figs. 9 and 10 of Ref. 1). In the case of Al
(ry=2), incorporation of exchange-correlation contribu-
tions into the induced potential is seen to shift the main
peak in Imd (w) by about 0.5 eV to lower frequencies.
Given the experimental uncertainties, it does not seem
possible at present to conclude that the TDLDA agrees
better with the measured photoyield spectra than the
LDA-based RPA. It would be of great interest to per-
form photoyield measurements on the low-density simple
metals to verify the local-field enhancement near O. 8w,
and to check whether the experimental data can discrim-
inate between the theoretical peak positions obtained
within the LDA and RPA. For Na and K (r, =4 and 5),
the time-dependent LDA predicts maxima in the pho-
toyield at about 4.7 and 3.5 eV, while the LDA-based
RPA gives peaks at 5.0 and 3.8 eV, respectively. Also, it
would be interesting to measure the dispersion of the en-
ergy and width of the surface plasmon, since at small
wave vlectors these quantities are directly determined by
d(wy):

ws(g)=0,[1—1gd(o;)+0(g?)] . (74)

A comparison of the numerical values of d(w,) in the
LDA and RPA is given in Table II.

We conclude the presentation of our results with a
discussion of the low-frequency behavior of d (w), which
is relevant for low-energy inelastic scattering of electrons
from surfaces and the damping of adsorbate vibrations.
At small frequencies Imd (@) is proportional to w:'*

Imd (0)=¢fw/0,, ©<<ao, . (75)

TABLE II. Red(w,) and Imd (w;) for several bulk densities
in TDLDA and LDA-based RPA (a.u.).

re=2 r,=3 r,=4 rs=S5
[Red (w)]Lpa 1.2 2.3 3.6 42
[Imd (@5 )]Lpa 2.5 3.2 3.0 2.0
[Red (a)x )]RPA 0.8 1.4 1.7 1.4
[Imd (w;)]rpa 2.1 2.2 1.6 1.0
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Since Red (w) is an even function of w, the coefficient £
may also be determined from the linear slope of the in-
duced charge centroid at small imaginary frequencies:2°

d(iu)=d(0)—fu/w,, u<<w, . (76)

In Ref. 9 we determined thzse slopes by numerically
evaluating the first moment cf &n(z,iu) both inside and
outside the jellium edge. Usiwz the dynamical force sum
rule, d(iu) can be calculated more reliably, since the
evaluation of the moment of the oscillatory internal part
is avoided. The low-frequency behavior of d (iu) and of
the real and imaginary parts of d () is illustrated in Fig.
4. The dashed lines indicate the linear slope of d (iu)
and of Imd (w) in the static limit. Although the new re-
sults for d (iu) agree at all frequencies with the old ones
to within about 1%, the slopes at small u are now much
smaller because of the presence of a quadratic term
which had been ignored before. Since the procedure de-
scribed in Sec. III works well also at very small real fre-
quencies, we calculate & both from Egs. (75) and (76),
and find the values given in Table III.

Remarkably, these new values agree very well with the
quasistatic gold-rule results (see Fig. 7 of Ref. 9). Thus
we have confirmed the validity of the approach of
Persson and Zaremba,!* who calculate the transition rate
for electron-hole pair excitations at low frequencies by
approximating the total complex potential in the golden
rule, Eq. (10), by a superposition of the finite-frequency
bulk potential and the static limit of the surface poten-
tial. It is crucial, however, to take not only the Hartree
term of the surface potential but to include also
exchange-correlation terms. Omission of these contribu-
tions leads, as was shown in Ref. 9, to an incorrect vari-
ation of &£ with bulk density. (Accidentally, the curves
cross near r;=2.55, quite close to the r; value of Cu,
re=2.67.)

In the LDA-based RPA, the low-frequency slopes of
Imd (w) are much smaller than in the consistent time-
dependent LDA (see Table III). These values also agree
with the corresponding quasistatic  golden-rule
coefficients. (See Fig. 7 of Ref. 9.)

The good agreement between the dynamical results for
& and those obtained from the quasistatic golden-rule ap-
proach is rather impressive in view of the very large can-

TABLE III. Low-frequency coefficient § of Imd(w) for
several bulk densities in TDLDA and LDA-based RPA. Also
given are the bulk, surface, and interference contributions to £
and its total value in the quasistatic approximation for the
TDLDA (a.u.).
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FIG. 4. (a) Real and (b) imaginary parts of d(w) at low fre-
quencies. The dot-dashed curves in (a) represent the behavior
of the centroid at small imaginary frequencies w=iu. The
dashed lines in (a) and (b) indicate the linear variation of d (iu)
and Imd () in the static limit.
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cellations between bulk, surface, and interference terms
that occur in this latter method. Typically, the individu-
al bulk and surface contributions to the transition rate
are much larger than the true rate (see Table III). It is
therefore very important to account for the coherence of
bulk- and surface-related excitations and not to treat
them as independent processes.

VI. CONCLUSION

In this paper we have calculated the dynamic image
plane for several metal surfaces. The nonlocal response
of the electron distribution at finite real frequencies is
obtained using the time-dependent density-functional ap-
proach. Electron-electron interactions in the presence of
the external perturbation are therefore treated on the
same level of approximation as in the ground state.
Generalizing the dynamical force sum rule to semi-
infinite systems, we have shown that the dynamic image
plane is given identically by the first moment of the in-
duced density in the region outside the positive ionic
background.

The method which we use to solve for the induced
density is an extension of the one previously employed at
purely imaginary frequencies. By carefully separating
bulk and surface contributions to the self-consistent
complex potential we are able to solve the linear-
response equations directly at all frequencies below the
bulk plasma frequency. We have shown that the transi-
tion rate for electron-hole pair creation, which is deter-
mined by the imaginary part of the induced charge cen-
troid, rises steeply near the threshold for emission and
exhibits a peak at about 0.8w,. The real part of d(w)
shows, in this region, the typical resonance behavior that
is to be expected on the basis of the Kramers-Kronig re-
lations. The spatial distribution of the induced density
at this frequency is qualitatively similar to that at other
values of w. In particular, it has monopole character
and is globally enhanced, not only in the surface region.
Physically, this spectral features seems to correspond to
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an enhanced local field when the centroid of the induced
density crosses the steepest part of the ground-state po-
tential.

We have also carried out RPA-type response calcula-
tions and found excellent agreement with earlier results
by Feibelman. We have shown that the neglect of
exchange-correlation terms in the effective potential
leads to an upward shift of spectral weight by only a few
tenths of an eV. Thus the TDLDA supports the inter-
pretation of the photoyield spectra for Al in terms of an
enhanced local field. On the other hand, the values of
d(w) at specific frequencies can differ appreciably be-
tween RPA and consistent LDA. For example, in the
case of Na the real and imaginary parts of d(w,) are
50% smaller in the RPA than the LDA values. This
could be checked experimentally by measuring the
dispersion of the energy and width of the surface
plasmon in the limit of small parallel wave vectors.

Finally, we have examined the behavior of Imd (w) at
small frequencies and find a linear coefficient £ con-
sistent with that of d (iu) at small imaginary frequencies.
The present values of £ are more accurate than those
calculated previously, since the dynamical force sum rule
permits a more reliable determination of the induced
charge centroid. In fact, we now obtain a very good
agreement with the linear coefficients predicted from the
quasistatic golden-rule approach. It is important, how-
ever, to calculate the transition-matrix elements using
the full surface potential (i.e., including exchange-
correlation terms) together with the frequency-dependent
bulk potential.

Note added in proof. As shown recently by Kempa
and Schaich, the main long-wavelength Friedel oscilla-
tion at finite frequencies is in fact caused by transitions
to the vacuum threshold. Thus its wavelength is given
by (a.u) A=27/[V2V —V'2(V —w)] where V is the to-
tal barrier height. Accidentally, this wavelength is very
similar to A,=2wk; /w (see text) for the frequencies and
bulk densities discussed in the present work.
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