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Far-infrared reflectivity of La2 Sr Cu04
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We have measured and modeled the far-infrared reflectivity of La2 —„Sr„Cu04 for x=0.175 in

the normal and superconducting states in the frequency range 20 to 350 cm '. We find a much
stronger drop of the reflectivity with increasing frequency below 100 cm ' than is implied by the
dc conductivity. In addition, we observe a resonance of large spectral weight at m=2SO cm
which is absent or much weaker in the insulating x 0 compound. Below the superconducting
temperature of the x=0.175 sample we observe an additional sharp feature at = 80 cm ', which
can be accounted for in terms of the unusual normal-state properties of the material.

The La2 Sr CuO4 system has been the subject of in-
tense investigation in recent months since the discovery'
of superconducting transition temperatures T, in excess of
30 K for x —0.15-0.18. In this paper we report measure-
ments and modeling of the far-infrared (FIR) reAectivity
below 350 cm ' for a sample with x=0.175 and T, = 36
K in both normal and superconducting states. We present
evidence for a resonance of large spectral weight centered
at a frequency of about 250 cm ' in the normal state (by
contrast, an insulating LaCu04 sample showed no feature
of comparable strength in our frequency range). The res-
onance remains essentially unaltered in the superconduct-
ing state, and, as seen in earlier measurements, a sharp
dip in the reflectivity appears below T, around 80 cm

We model the reflectivity in the x =0.175 system in the
normal state in terms of a Drude model plus an oscillator,
and below T, in terms of the conventional Mattis-Bardeen
approach for normal BCS superconductors. We show
that the unusual normal-state reflectivity in this system
leads to the observed sharp "phononlike" dip without pos-
tulating a low-frequency phonon alluded to in a previous
analysis of FIR measurements. Within our model the
real part of the dielectric function e(ro) turns out to be
positive at low frequencies in the normal state (unlike a
conventional metal). The superconducting state, on the
other hand, is characterized by a negative real part of
e(co) -co . Consequently, the real part of e(co) crosses
zero at a frequency of the order of the gap, implying a
plasmonlike collective mode due to the onset of supercon-
ductivity. However, the precise location of the resonance
depends sensitively on materials parameters, and a more
detailed study is required for quantitative extraction of
the superconducting gap.

Our measurements were made using a Michelson inter-
ferometer with a single, near normal (angle of incidence
= 15') reflection from the sample. The source light in-
tensity was reduced to a fraction of a percent with irises
and filters to ensure linear response of the detector, a corn-
posite bolometer cooled to 0.3 K using charcoal-pumped
liquid He. The temperature (T) was varied over the
range 10-160 K.

A thick layer of the pressed pellet samples was removed
using dry emery paper, and then polished to produce a
smooth surface. Some pits were present in all samples,
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FIG. 1. Reflectivity for a sample of Lai 825Sroi75Cu04 as a
function of frequency in the normal state at T =42 K (solid cir-
cles) and in the superconducting state at T=la K (open cir-
cles).

but the appearance was otherwise uniform. Reflectivity
curves were measured in comparison with a polished brass
reference at the same T, which could be moved into the
light path in place of the sample.

Figure 1 shows the measured reflectivity of one of the
samples in the normal state (R&) at T=42 K, just above
the superconducting temperature (solid circles), as well as
at a low temperature, T=10 K, in the superconducting
state (Rs, open circles). In the normal state, the
reflectivity R& departs rapidly with increasing frequency
(ro) from the expected metallic value of unity at to=0,
goes through a minimum, and exhibits a pronounced max-
imum around 250 cm '. The exact magnitude (and to a
lesser extent the location) of the maximum diA'ers from
sample to sample, but is virtually temperature indepen-
dent up to 160 K for each sample.
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In the superconducting state, the reflectivity R~ is
enhanced at low frequencies, qualitatively as expected in
the BCS theory, due to a superconducting gap. However,
many of our samples, like the one shown in Fig. 1 (open
circles) show a precipitous drop followed by a sharp pro-
nounced dip below the normal-state reAectivity around 80
cm '. We find that the magnitude of the dip for diH'erent
samples is positively correlated with (a) the normal-state
reflectivity R~ and (b) the enhancement (Rs —R~) at
low frequency, and we suspect, therefore, with the quality
of the sample. Indeed, previous reports show variations
in this feature. In the samples where the dip is most pro-
nounced, it is sharpest and largest at low T, and broadens,
reduces in magnitude, and moves to lower frequencies as
T, is approached from below, qualitatively as seen be-
fore.

We model the normal-state reflectivity in our frequency
range in terms of three contributions to the dielectric
function e(ro): a Drude term due to the free carriers, an
oscillator of adjustable spectral weight 0 and damping y
centered at a frequency mo, and a background dielectric
constant e enhanced from unity to represent effects due
to excitations at energies above our range. A similar mod-
el has been applied to the BaPb~ Bi Oq system. Thus
in the normal state

( ) + 4rrio(co) + n'
OO

coo co +l yco

where

(2)

is the normal-state Drude conductivity with plasma fre-
quency co~ and scattering rate z . The reflectivity is
computed via the normal incidence formula

While Eq. (1) has many parameters, the striking behav-
ior of R~ in our frequency range allows a reasonable
determination of them. At low frequencies the Drude
term may be approximated by the constant value
oo=ro~r/4z, which is chosen to reproduce the fallofl' of
R~ from unity at cu & 100 cm . The position and width
of the resonance determine mo and y, while the intensity
and shape of the feature fix 0 and e . Given the limited
frequency range of our fit, our fitted parameters are at
best reliable to + 20%. We find a rather good fit for the
sample shown with ao =720 cm ', 0 = 1300 cm
coo =240 cm ', y =40 cm ', and |.. =30, and the
reAectivity calculated with these parameters is shown as
the solid line in Fig. 1. The large value of e is supported
by reflectivity measurements of Orenstein et aI,. at higher
frequencies, who find a resonance of large spectral weight
around 0.5 eV, leading to an effective e -25 at lower co.

Despite the uncertainty in our fitted parameters due to
sample-to-sample variation and limited frequency range,
we can make some general comments which do not de-
pend on the precise values. First, the value of topaz needed
to fit R~ for co~100 cm ' is quite small, corresponding
to a resistivity p 6500 pQ cm, over an order of magni-
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FIG. 2. Reflectivity R as a function of frequency for a sample
of La2Cu04.

tude more than the measured dc resistivity just above T,
of 500 p 0 cm. Indeed the reflectivity drop from unity is
large for a metal, and reminiscent of results on the highly
anisotropic organic conductors. Second, the spectral
weight in the feature near 250 cm ' (which is given by
xQ ) is much larger than that in typical resonances due
to phonons as, for example, in the feature at 550 cm
seen in previous infrared measurements. ' If we write
the spectral weight of an optic phonon as 4'(Ze) /M,
where Z is the effective charge and M the mass of the
atom involved, then, using the oxygen mass for M and as-
suming one phonon per unit cell (so N —10 cm ), we
require an effective charge Z ~ 10. Such large values of Z
have been observed for coupled electron-phonon modes as-
sociated with a structural phase transition, and a structur-
al transition has been reported" in samples with our com-
position at T=130 K. However, we find that the feature
near 250 cm ' remains essentially unaltered up to tem-
peratures of 160 K. On the other hand, reflectivity data
on La2Cu04 (Fig. 2) in the same frequency range do not
show a sharp feature of comparable magnitude. Further,
calculations' on La2 Sr„Cu04 for x =0.17 do not
show any infrared-active phonons around 250 cm ' with
large enough dipole matrix element to give the observed Z
for the K2NiF4 structure. This may indicate the presence
of a heretofore undetected charge-density-wave-type dis-
tortion in the doped sample.

In the superconducting state, we replace the Drude
term [Eq. (2)] by the Mattis-Bardeen form in the dirty
limit. ' Our analysis allows for the possibility that a frac-
tion f remains normal below T„ to model possible compo-
sitional inhomogeneities. We use the effective medium ap-
proximation' to determine the conductivity of the mix-
ture. Details of Mattis-Bardeen and effective medium
formalism are described elsewhere, ' where a similar
analysis is carried out for the Ba2YCu~09 z system.

If we use a T =0 gap equal to the BCS value
2h =3.5kT, = 85 cm ' (for a T, of 36 K), then with the
other parameters unchanged we obtain at low tempera-
tures the reflectivity curves shown in Fig. 3, C(f =0.1),
8(f=0.5), and 2 (normal state). Besides the expected
enhancement of the reflectivity at low frequencies, the
most striking feature is the sharp dip in the calculated
reflectivity in the vicinity of 2h, . The dramatic drop in Rp
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in our model marks the point where Res(ro) crosses zero.
In conventional metals t. i =Res is negative for frequencies
less than the plasma frequency ro~ (which is typically—1 —10 eV), with a low-frequency limit of et = —roar .

In our Lai 825SrQ i75Cu04 samples, ho~ever, our fits yield
a positive ei —50 at low frequencies in the normal state.
This is due to the large positive contributions from |. and
the resonance around 250 cm ', as well as the low value
of m&r implied by our low value of o.o, for reasonable es-
timates of ru~ ( & 0.25 eV). We obtained reasonable fits
to our data only with parameters which imply a e~(0);
however, our discussion below requires only that
e~(ro) & 0 in the normal state for some range of co —2h.
Below T„ the real part of the conductivity a(ro) acquires
a &function peak at e =0 as a direct consequence of su-
perconductivity. This, via the Kramers-Kronig relations
yields an additional contribution to et(ro) ——ro at low
frequencies, which in turn implies that a zero crossing of t..
must occur as co 0. The precise location of this super-
conducting "plasmon" mode is determined by the values
of 6,, the superconducting gap, as well as the dielectric
function in the normal state. If the zero crossing occurs
for co+26, the imaginary part of e will be small, and the
plasmon will be sharp and easily visible. The feature will
be sharpest for T =0. With increasing T, 5 decreases and
Ime(ro) increases for ro & 2A; consequently, the feature
should broaden and move to lower frequencies, in qualita-
tive accord with our experimental observations, as well as
those of others.

The theoretical T=O curves in Fig. 3 are clearly in
semiquantitative agreement with the experimental curve
(open circles in Fig. 1). Better agreement may be
achieved either by using a slightly lower gap or by fine
tuning the normal-state parameters without significantly
worsening the normal-state fit. However, we do not wish
to attach, at this stage, much significance to the precise
value of the gap, because of the uncertainty in determin-
ing the normal-state parameters and because we have not
considered possible effects of anisotropy in the normal-
state conductivity and of the gap on our pressed pellet
samples. Nevertheless, our data are clearly inconsistent
with a gap many times the BCS value (over most of the
Fermi surface), as has been reported in some tunneling
measurements, ' because we see little diff'erence between
the normal-state and superconducting reflectivity above
co = 150 cm '. Whether this is a consequence of materi-
als problems, as both techniques are sensitive to the sur-
face of the sample (our measurements probe —10 pm),
remains to be clarified.

In conclusion, we have measured the reflectivity of
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FIG. 3. Theoretical reAectivity computed as described in the
text for the normal state (Curve A), as well as for the supercon-
ducting state with different fractions f of normal material
(f=0.5 for Curve B,f=0 lfor Curve C)..
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La2Cu04 and Lai 825Sro (75Cu04 in the far infrared. In
the latter, we have observed a feature of large oscillator
strength (and, therefore, most likely with a strong elec-
tronic component) at co = 250 cm ', which is not seen in
our frequency range in La2Cu04 (or, perhaps, is much
weaker). The oscillator responsible for the 250-cm
feature in conjunction with a large background dielectric
constant (which is likely due to a previously observed os-
cillator at -0.5 eV) also produces the sharp dip seen at
—80 cm ' in the superconducting state. Finally, our
data point to a superconducting gap of the order of the
BCS value.

While this manuscript was being written, we received
two papers ' ' on far-infrared studies of La2 „Sr Cu04,
both of which show data in agreement with ours. One of
the papers' also gives a similar interpretation of the
reflectivity dip in the superconducting state.
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