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Existence of Wannier-Stark localization
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The eigenstates of an electron in an arbitrarily long periodic chain under the inAuence of an ap-

plied electric field are determined. The interaction of the electron with the electric field is divided

into two components. The first component has the lattice periodicity and is incorporated into the
system's periodic potential. It describes the electric-field-induced alteration of each of the periodic
potential wells. The second component, a nonperiodic steplike function, is shown to have vanish-

ing interband matrix elements. Indeed, it produces Wannier-Stark localization with its eigenvalues

yielding Wannier-Stark ladders. Thus it is shown that the Wannier-Stark localization survives

consideration of multiple electronic energy bands.

I. INTRODUCTION and

E(n, k) =E„2b„cos(ka) .— (2)

Here k is the electronic wave vector, —m. /a & k & ~/a, a
is the intersite separation,

~

n, 1 ) is the Wannier state
and E„ is the energy of the nth electronic state of the Ith
potential well, and 4b„ is the electronic bandwidth of the
nth electronic energy band. The imposition of an elec-
tric field E along the direction of the chain lifts the ener-
getic degeneracy between equivalent electronic states of
different potential wells. With the neglect of interband
matrix elements of the electric field perturbation to the
energy of an electron of charge e, —eEx, the tight-
binding eigenstates and eigenvalues of the infinite chain
are found to be

~

n, m ) = g Jt ~(2b„ leEa)
~

n, l )
I

In a periodic system each electronic state of each local
potential well is degenerate with each corresponding
state of every other local potential well. As a result of
this degeneracy, the electronic eigenstates of a periodic
system form bands of delocalized states which extend
over the entire solid. The application of an electric field
generally lifts the degeneracy between the local electron-
ic levels. As a result, the electronic states may become
localized. This localization phenomenon may be de-
scribed in terms of the electric field driving an electron
through a range of wave-vector values only to have it
reflected at the edge of a Brillouin zone. '

Wannier-Stark localization has been studied in a
single-band tight-binding model of a one-dimensional
periodic chain. In the absence of the electric field, the
electronic eigenstates and eigenvalues of the nth elec-
tronic energy band of a chain of N potential wells are

~

n, k ) =N ' g exp( ikal) —
~

n, 1 )
1

and

E (n, m ) =E„—(eEa)m

Here m is an integer which serves as a site index, and
Jt (z) is the Bessel function of order 1 —m and argu-
ment z. The eigenstate

~
n, m ), termed a Wannier-Stark

state, is a localized electronic state composed of a super-
position of the Wannier states of the nth level of the
system's potential wells. It is centered about the mth
site with a spatial extent =4b„/eE and has the energy
E(n, m). The eigenvalue spectrum is a series of levels
separated by the energy eEa. This energy spectrum of
equally spaced electronic energy levels is termed a
Wannier-Stark ladder.

Since the introduction of the concept of Wannier-
Stark states, there has been concern about the
significance of neglecting the matrix elements of the elec-
tric field's energy eEx between different electronic energy
bands. ' Namely, will the inclusion of interband ma-
trix elements lift the constraint of localization? In other
words, will Wannier-Stark ladders survive with the in-
clusion of interband matrix elements?

Here, the problem of Wannier-Stark localization is ap-
proached from a different point of view. Namely, as il-
lustrated in Fig. 1, the fact that the application of an
electric field produces two distinct effects is exploited.
First, the imposition of the electric field alters the shape
of each potential well in an equivalent manner. Second,
the electric field shifts the energy of each equivalent po-
tential well relative to one another by an integral multi-
ple of eEa. These two effects have different characters.
The first effect preserves the system's periodicity while
the second effect does not. As such, it is only the second
effect which can lead to electronic localization. Taking
cognizance of this difference, the electric-field-dependent
portion of the electron's potential energy is divided into
the two components illustrated in Fig. 2. The saw-
toothed portion maintains the system's periodicity, while
the steplike portion does not.

Since the saw-toothed portion of the field-dependent
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x

FIG. 1. A portion of a periodic (square-well) potential is
shown (a) before and (b) after the application of a spatially con-
stant electric field.

potential is periodic, it is incorporated into the system's
periodic potential. The electric geld dependen-t Bloch-
like eigenstates of this periodic potential are then uti-
lized as the basis functions for an expansion upon which
the eigenfunction of the complete Hamiltonian is based.
This procedure has conceptual and computational vir-
tues. This is because this method separates the two
e6'ects of the electric field. Namely, by adopting the
electric-field-dependent Bloch-like states as the basis
functions, the field-dependent alteration of each of the
wells of the periodic potential is exactly taken into ac-
count. Indeed, with the field-free Bloch states as the
basis states, the electric-field-induced alteration of the

potential wells requires a mixing of all of the system's
bands. In addition, in the present approach, the remain-
ing portion of the electric-field-dependent term, the step-
like potential, has the sole effect of providing a non-
periodic potential which can localize the system s eigen-
functions.

The calculation of the system's electronic eigenfunc-
tions and eigenvalues is presented in Sec. II. It is found
that the system's eigenstates are Wannier-Stark states
and the energy eigenvalues form a Wannier-Stark ladder.
Furthermore, there are no matrix elements of the Hamil-
tonian between the electric-field-dependent Bloch states.
This implies that matrix elements of —eEx between
field-free Bloch states arise solely from representing the
polarized electronic states as a superposition of the
eigenstates of the field-free potential. The paper con-
cludes with a brief summary in Sec. III.

II. EIGENFUNCTIONS AND EIGENVAI. UES

Consider an electron, with charge e, placed in a one-
dimensional periodic potential of N sites under the
inhuence of a spatially and temporally constant electric
field F.. The Hamiltonian for this system is

H =p /2m + g V(x —ma) eEx, —
m=1

where p is the momentum operator of the electron, m is
the electron's mass, V(x —ma) is that portion of the
periodic potential arising from the mth potential well,
and a is the separation between potential wells. The to-
tal length of the chain of X potential wells is Xa.

The electric-field-dependent term of Eq. (5) may be
decomposed, as illustrated in Fig. 2, into a periodic por-
tion and a steplike component. The Hamiltonian of the
system may then be reexpressed as

N N

H =p /2m + g Vz(x —ma) —(eEa) g S(x/a —m).
m =1

(6)

Here, VE(x —ma), the local potential, is the sum of the
field-free local potential, V(x —ma), and that portion of
the saw-toothed component of the electric-field potential
energy which is contained in the region of the mth po-
tential well. S(x) is the step function:

S(x)=0 for x ~ 1,

(c)
and

S(x)=1 for x & 1 .

x

FEG. 2. The electric field potential energy —eEx is plotted
against x in (a), and is decomposed into periodic and non-
periodic components which are shown in (b) and (c), respec-
tively.

The periodic portion of the system's potential energy
is now utilized as the periodic potential which generates
electric-field-dependent Bloch-like eigenfunctions. Speci-
fically, we adopt the first two terms of the Hamiltonian
of Eq. (6) as HE.

N

HE —p /2m + g VE(x —ma) .
m =1
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HF
~

E;n, k ) =E(E;n, k)
~
E;n, k ) . (10)

where E(E;n, k) is the field-dependent electronic energy
associated with wave vector k of the nth electronic ener-

gy band.
The eigenfunction of the total Hamiltonian, Eq. (6),

belonging to the mth eigenvalue c. is then expressed as
a superposition of the electric-field-dependent Bloch

The electric-field-dependent Bloch function associated
with the nth level of the potential well,

~

E;n, k), is a
solution of the eigenvalue equation

functions:

(E;x)= g /I (E;n', k')
~

E;n', k') .
n', k'

With the inclusion of all energy bands, this expansion is
in terms of a complete set of states which span the space
defined by the solid. As such, the expansion provides an
appropriate representation of the electronic states of an
electron in the solid. Introducing Eq. (11) into Eq. (8)
and "multiplying" through by (E;n, k ~, we obtain an
equation for the expansion coefficients, the /I (E:n,k)'s:

[ e(E; n, k) —e ]A (E: k)n=(eE !XaE;n, k X S(x/a —m) E; ',n)kA (k;n', k')
n', k' m =1

(12)

Proceeding to evaluate the matrix elements on the right-hand side of Eq. (12), the field-dependent Bloch functions
are expressed as a product of functions:

~

E;n', k') =exp(ik'x)u~. „ i, (x),
where the uz. „],(x)'s are periodic in x:

uE „g (x +/la) = uE „ I (x)

with h being an integer. The matrix elements are then given by the relation
N

Na N
E;n, k g S(x/a —m) E;n', k' = f dx exp[i(k' —k)x]ug. „],(x)u~ „i, (x). g S(x la —m)

m =1 m =1

(13)

(14)

N —1

f dx exp[i(k' —k)x]ug. „],(x)uz. „ i, (x),
ma

(15)

where the properties of the step function have been utilized in obtaining the second equality.
Now the periodicity properties of the uz. „&(x) s, expressed in Eq. (14), are exploited in writing the matrix ele-

ments of Eq. (15) in terms of an integral over a single unit cell. Explicitly, one has

(
N N —1N —1

( 1)E;n, k g S(xla —m) E;n', k' = g g f dx exp[i(k' —k)x]ug„&( x)uz. .„&(x).
m =1 m =1p=m

N —1 N —1

exp[i(k' —k)pa] f dx exp[i(k' —k)x]ug „(ix)u~.„. ], (x)
0m =1p=m

N —1 N —1

=I(n, k:n', k') g g exp[i(k' —k)pa] .
m =1p=m

(16)

In obtaining this result, each of the integrals over x in
Eq. (15) first is expressed as a summation of integrals
over individual unit cells. Then, x is replaced succes-
sively by x —pa in each integral of the p summation.
Because of the periodicity relationships given in Eq. (14),
each of the remaining integrals has a common value
equal to

I(n, k;n', k')= f dx exp[i(k' —k)x]
0

N —1 N —1 N —1

exp[i(k' —k)pa]= g m exp[i(k' —k)ma] .

(18)

cells.
The terms within the double summation in the final

equality of Eq. (16) may be rearranged so as to yield the
relationship

Xu~.„ 1, (x)uE „],(x) . .(17)

Finally, it has been noted that, since this integral is in-
dependent of the cell number (i.e. , the indices m and p),
it can be extracted from the summations over the unit

We evaluate this m summation. by expressing it as the
derivative with respect to k' of a different m summation
which is then evaluated using the sum rule for the quasi-
momenta, the k's. Explicitly, we have
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N —I N —1

m exp[i(k' —k)ma]= —,g exp[i(k' —k)ma]
ia Bk'

(19)

The expansion coefficients, the A (E:n, k)'s, may now
be found. In particular, we substitute Eq. (20) into Eq.
(12), reexpress the derivative of the delta function, and
use the relations derived in the Appendix,

where 6k k
——0 for k&k' and 6k k ——1 for k =k'. %'ith

the incorporation of Eqs. (18) and (19) into Eq. (16), we
have and

5i, i, XI (n, k;n', k) =5„„5i,„

(
N

E;n, k z s(x/a —m) E;n', k')
m =1

=I (n, k;n', k')—,5~ q
2V 8
~a Bk' (20)

5& I, , I(n, k;n', k')=0,

to obtain

[E(E;n,k) —E ]A (E:n,k)= ieEN g—I(n, k;n', k'), (5l, &. . )3 (E;n', k')
n', k'

=ieEN g 5i. q, [3 (E;n', k')I(n, k;n', k')]

=ieE 3 (E;n, k) . (21)

with A (E;n', k)=0 for n'&n Indeed. , it has previous-
ly been argued that the interband matrix elements of a
steplike potential vanish. '

The energy eigenvalues are found by requiring that
the wave function, and hence these expansion
coefficients, be single valued with respect to a shift of the
wave vector by a reciprocal-lattice vector to an identical
point A (E:n, k +2m /a) must equal A (E:n,k).
Utilizing Eq. (22), this periodicity requirement is ex-
pressed as

dk' c E;n, k' —c. /eE =2~M, 23
0

where M is an integer. The energy eigenvalue then must
satisfy the condition

=(eEa)M+(a/2vr) J dk'E(E;n, k') .
0

(24)

Thus different eigenvalues, characterized by different
values of m, correspond to different values of the integer
M and energy-band index n. The Wannier-Stark ladder
is evident: Different energy eigenvalues associated with
a given energy band are separated by integral multiples
of the field-related portion of the energy, eEa. These
separate Stark ladders form an interpenetrating system
of eigenvalues which essentially form a quasicontinuum
in the energy eigenvalue spectrum. This agrees with
other studies of the eigenvalue spectrum for this prob-

We see that the expansion coefficients associated with
different energy bands are independent of one another.
Thus the expansion coefficients are found by integrating
this differential equation:

k
(E;n, k) =exp —i f dk'[ (EE;n, k') —e ]/eE

0

(22)

lem. "
The eigenfunctions associated with the expansion

coefficients of Eq. (22) are localized. These Wannier-
Stark localized states have the properties which charac-
terize the specific example cited in Eq. (3) of the Intro-
duction of this paper. To observe that these states are
indeed localized, one may insert Eq. (22) into Eq. (11)
and represent the Bloch states as a superposition of lo-
calized Wannier states, as given by Eq. (A6). Aside from
spatial oscillations, the wave function associated with a
particular value of M falls off as the distance of site p
from the eigenfunction's center at Ma,

~ p —M
~

a, be-
comes sufficiently large that the predominant k depen-
dence within the k summation of Eq. (11) is provided by
exp[ika(p —M)]. Then, when

~ p —M
~

a ~~E(E;n, k)/
eE for all k ( =b„ /eE), the spatial decay is caused by the
canceling contributions to the k summations from essen-
tially all values of k.

III. SUMMARY AND CONCLUSIONS

The application of an electric field to a periodic chain
produces two distinct effects. The imposition of the field
alters the shape of each of the potential wells. In addi-
tion, it shifts the potential energy of each well relative to
one another. The first effect preserves the system's
periodicity while the second does not. The Wannier-
Stark localization, therefore, only arises from the second
effect.

As illustrated in Fig. 2, both effects are included when
the total electric-field-related energy —eEx is treated as
a perturbation on the field-free bands. However, treat-
ing the first effect, the electronic polarization resulting
from the electric-field-induced deformations of the po-
tential wells, in such a scheme is extremely dificult.
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Namely, the electronic polarization resulting from de-
forming each of the system's potential wells from its
field-free form mixes all of the system's field-free elec-
tronic energy bands. Thus it is cumbersome, if not im-

possible, to adequately represent the electronic eigen-
states in the presence of an electric field in terms of the
field-free electronic energy bands.

Here, an alternative procedure is adopted. Namely,
from the outset, the periodic portion of the electric field
portion of the electronic energy is incorporated into the
electron s periodic potential. This produces an electric-
field-dependent electronic band structure. The electronic
eigenstates which result upon inclusion of the nonperiod-
ic, steplike, portion of the electron's potential energy are
then represented as a superposition of the Bloch-like
electric-field-dependent electronic states. In this scheme
there is no mixing between different bands of the
electric-field-dependent electronic states. As a result, the
calculation is readily performed. It is found that the
electronic eigen values are interpenetrating Wannier-
Stark ladders. Put another way, Wannier-Stark localiza-
tion survives when multiple electronic energy bands are
considered.

Thus the incorporation of the electric-field-induced de-
formation of the potential wells into the periodic poten-
tial of the zeroth-order Hamiltonian, Eq. (9), eliminates
the interband matrix elements. Physically, this means
that the interband matrix elements of —eEx which
occur in the usual formulation only arise as a means of
representing the electronic polarization due to the defor-
mation of every potential well in terms of a superposi-
tion of the field-free Bloch states. In other words, the
usual interband terms are simply due to the field-
dependent alteration of the shapes of the potential wells.
They are not related to the existence of Wannier-Stark
localization.

It should be noted that simple Wannier-Stark localiza-
tion will only exist if the length of the sample in the
direction of the applied electric field is very much longer
than the spatial extent of a Wannier-Stark state. If this

is not the case, the boundary conditions provide a
significant perturbation for a large fraction of the
system's electronic states. This size effect can destroy a
Wannier-Stark ladder. The spatial extent of a
Wannier-Stark state is = W/eE, where 8' is the elec-
tronic bandwidth of the relevant electronic energy band.
Thus the existence of a Wannier-Stark ladder requires
that the relevant length (Na for our periodic chain)
greatly exceed W/eE. With an electronic bandwidth of
2 eV and an electric field strength of 10 V/cm, this re-
stricts the Wannier-Stark ladder to structures of much
greater width than 200 A.
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APPENDIX: PROPERTIES OF I ( n, k; n ', k '
)

/ug. „ /, (x)ug „~ /, (x) (Al)

We proceed by expressing matrix elements involving the
Bloch functions

~

E;n, k ) in terms of matrix elements
evaluated within only the single unit cell defined by x ly-
ing within 0 and a.

We begin by writing the orthonormality condition be-
tween Bloch functions,

(Z;n, k
~

Z;n', k') =5„„5„„,
in terms of I(n, k;n', k'):

In this appendix we investigate the properties of the
overlap function defined in Eq. (17):

I(n, k;n', k')= f dx exp[i(k' —k)x]
0

(E;n, k
~

E;n', k') = f dx exp[i(k' —k)x]ug „/, (x)u~ „/.,(x).
(p+]ja

dx exp[i(k' —k)x]ug „k( )uxor „. (xk).
0 pQ

N —1

exp[i (k' —k)pa] f dx exp[i (k' —k)x]ug. „ /, (x)u~ „/,. (x).
p=0

=N5/, /,. I(n, k;n', k') . (A2)

In obtaining this relation: (1) the x integration over the
interval from 0 to Xa is written as a sum of X intervals
of length a; (2) the periodicity of the uz. „k(x)'s with
respect to a translation of x by multiples of a is exploit-
ed; (3) the vanishing of the p summation when k&k' is
noted; and (4) the definition of I(n, k;n', k') contained in
(Al) is adopted. We now combine Eq. (A2) with the
orthonormality condition for Bloch functions to obtain

5/, p XI(n, k;n', k') =5/, k 5„„ (A3)

Hence, I(n, k;n', k) vanishes when k =k' and n~n'.
Equation (A3) is the first of the two equations cited in
the text above Eq. (21).

To obtain the second relation cited in the text above
Eq. (21), we differentiate I (n, k; n ', k '

), as defined in
(Al), with respect to k' to obtain the relation
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a a
N5k k. , l(n, k;n', k')=N5/, /,

. i dx xug „./, ( x)uz „~ ./( x)+ dx uz „.k(x)
&k

uE „/., (x) (A4)

The first term of the right-hand side (rhs) of Eq. (A4) is clearly associated with electronic polarization within a unit
cell. The second term of the rhs of Eq. (A4) is just the so-called polarization term which occurs in the standard ex-
pression for the matrix element of x with Bloch states' '

(E;n, k x E;n', k') = i— , (5& /,
,5„„,)+iN5/, /,

~ dx ug „/,.. (x) uz. „ /, (x) . (A5)

We now compare these two "polarization" terms.

The matrix element of x between Bloch states of the same value of the wave vector is now obtained by two
methods. First, we express the Bloch function associated with band index n and wave vector k in terms of a superpo-
sition of Wannier functions centered about site p, wE. „(x—pa):

N —1

l
E;n, k ) =N '~ g exp(ikpa)wz. „(x—pa) .

p=0

This enab/es us to express the first term on the rhs of Eq. (A5) within a spatial representation for k =k:
a

, (5k, /5n, . ) I/, =k

(A6)

N —1N —1 Na
i5k k

—5„„N g g (ip'a)exp[ia (k'p' —kp)] f dx wg. „(x —pa)wz. „(x —p'a)

N —1N —1

a5kk5„„N ' g g p'5pp
p =0 p'=0
N —1'gp
p=0

=5k k 5„„a(N —1)l2 . (A7)

Here we have used the orthonormality of Wannier states of the same energy band with respect to the site indices p
and p'.

Combining Eqs. (A5) and (A7), we have

(E;n, k
l

x
l

E;n', k ) =5„„.a (N —1)I2+iN dx ug „/, (x) . uz „/, (x) . . (AS)

We may also obtain the matrix element of x between Bloch states of the same k by expressing the integral over the en-
tire range of x as the sum of N integrals which each extend over a single unit cell. In particular,

Na
(E;n, k

l

x
l

E;n', k ) = dx xug. „ /, (x)ug. „ /, (x)

(p+1ja
dx xug „/, (x)u~ „k.(x).

0 pa

N —1

= & f'dy(y+iu)uE;. , k(y)uE; ', /c(y)
p=0
N —1 N —1

= g f 'dy yuE „/, (y)u& „k(y)+a g p f 'dy ug, „k(y)u& „k(y)
p=0 p=0

N —1

=N f dy yug „k(y) ~ „u, k(y)+a . g p. (5„„,/N)
p=0

=N f 'dy yug „/, (y)u~ „k(y)+5„„a(N —1)&2 . (A9)

In carrying out the above computation, we have (1) made the change of variable y =x —pa in each integration of the

p summation, (2) utilized the orthogonality condition for the Bloch states of the same wave vector with respect to the
band indices n and n', (3) evaluated two elementary summations.

Combining Eqs. (AS) and (A9) yields
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a a
dx xuF* „.k(x)u~ „. .t( x)= — dx ug. „k(x) u~ „k(x) . (A10)

That is, the two polarization terms in Eq. (A4) are equal in magnitude but opposite in sign. Inserting Eq. (A10) in Eq.
(A4) gives the condition presented in the text above Eq. (21):

5„k ~, I(n, k;n', k')=0 . (A 1 1)
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