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The electronic and structural properties of hexagonal-close-packed titanium and zirconium are
determined from self-consistent linearized augmented-plane-wave (LAPW) calculations within the
framework of the local-density-functional approximation (LDA). The equilibrium lattice parame-
ters, bulk moduli, Poisson s ratios, and cohesive energies are obtained from the total energies cal-
culated as functions of the a and c lattice parameters. As found in other LDA calculations, the
cohesive energies are overestimated compared to experiment, but otherwise generally good agree-
ment with experiment is obtained. The uncertainty in the results due to the particular choice of
the LDA exchange-correlation potential is also examined by performing parallel calculations using
the Kohn-Sham-Gaspar Xa (a= —, ) exchange-only potential. We find that these calculations yield

equilibrium volumes which differ by 6—8% (with the Xa results in better agreement with experi-
ment) with proportional differences in other structural properties, which we take to be an indica-
tion of the intrinsic reliability of the LDA.

I. INTRODUCTION

In recent years the local-density-functional approxi-
mation (LDA) has, by its numerous successful applica-
tions, proved to be a powerful starting point for the cal-
culation of structural and electronic properties of solids
and surfaces. There have been relatively few LDA-based
calculations of the ground-state properties of elements at
the beginnings of the transition-metal series, however,
perhaps because of the fact that these elements (Sc, Ti,
Y, Zr, La, and Hf) crystallize in the hcp structure.
Here, we report structural and electronic properties of
hcp titanium and zirconium calculated within the LDA
using a highly accurate self-consistent general-potential
linearized augmented-plane-wave (LAPW) method.
Most of the earlier calculations have focused on the
band structures and densities of states of hcp titani-
um' and zirconium. ' In order to assess the relia-
bility of the LDA for these materials we carried out
parallel calculations of ground-state properties of Ti and
Zr using two different exchange-correlation potentials,
namely the widely used Hedin-Lundqvist form (HL)
(Ref. 13) and the exchange-only Xa (a= —,') form (Ref.
14). We find that these diff'erent local approximations
yield equilibrium volumes which differ from each other
by about 6—8 % with corresponding differences in other
structural properties. We take these differences to be an
indication of the intrinsic reliability of the LDA in these
metals.

II. METHOD OF CALCULATION

The LAPW method has been discussed in detail else-
where, ' ' its eSciency and the accuracy of the method
being well established. ' ' Here, we will only present a
brief summary of the details of the calculation.

In the LAPW method space is partitioned into two re-
gions: (1) nonoverlapping muffin-tin (MT) spheres cen-
tered on the atom sites, and (2) the remaining interstitial
region. The potential and the charge density are shape
unrestricted in both regions. The band states are treated
in a scalar-relativistic' approximation, while the core
states are treated fully relativistically in an atomiclike
approximation. The total energy is evaluated within the
LDA using a method developed by Weinert et al. ,
which is easy to implement in the LAPW method and is
very stable numerically.

The MT radius is chosen in order to have nearly
touching spheres at the smallest lattice parameter; the
MT radii used in the present calculations were 2.59 a.u.
for titanium and 2.84 a.u. for zirconium. A basis set of
about 110 LAPW's was used for both titanium and zir-
conium, corresponding to RMTE,„=8.0. Inside the
MT spheres, the LAPW basis functions were expanded
up to l =8, as were the potentials and charge densities.

The Brillouin-zone summations were done using 40
special k points, ' which results in the total energy con-
verging to better than 0.5 mRy, for both titanium and
zirconium. An artificial Fermi-Dirac distribution of
width kT=2 mRy was used in performing Brillouin-
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zone summations. Self-consistency was considered
achieved when the total energy was stable to within 0.0 1

mRy.
The densities of states (DOS's) were calculated using

the tetrahedral method with 1 33 uniformly distributed k
points in the irreducible Brillouin zone (corresponding to
1728 in the full zone), which results in 432 tetrahedra in
the wedge.

c /a
HL

E (c /a) c /a
Xa

E (c/a)

TABLE II. E (c/a)+const vs c/a at the calculated equilib-
rium volume for zirconium. For the HL form, Vp ——147.85
a.u. , const =7 190 Ry, and E ( Vp ) = —7190.420 68 Ry. For the
Xa form, Vp ——1 58.92 a.u. , const =7 183 Ry, and
E ( Vp ) = —7183.265 56 Ry.

III. RESULTS AND DISCUSSION

A. Equilibrium properties

1.580
1.600
1.620
1.630
1.640

—0.420 44
—0.420 59
—0.420 67
—0.420 68
—0.420 65

1.570
1.585
1 .600
1.615
1.634

—0.265 38
—0.265 49
—0.265 55
—0.265 55
—0.265 46

In a cubic system the equilibrium lattice constant and
bulk modulus can easily be obtained by calculating the
total energy at a few values around the equilibrium lat-
tice parameter, the lattice parameter and the bulk
modulus being determined by a fit to the Murnaghan
equation of state,

l

BOV (Vo/V) '
E(V)=, +1 +const,

Bo Bo —1

where Bo and Bo are the bulk modulus and its pressure
derivative at the equilibrium volume Vo. However, for
hcp titanium and zirconium, things are not so straight-
forward; one must optimize both lattice parameters a
and C. The above approach is thus not directly applic-
able to hcp systems. In order to obtain a physically
meaningful (VO, Bo,BO), one must find E( V), the
minimum total energy at fixed volume. The approach
used was to first calculate the total energy as a function
of the c/a ratio at a fixed volume V, and then fit E (c/a)
to a quadratic or a cubic form. The form used is given
by

tice parameters, one must find the c /a ratio at the calcu-
lated equilibrium volume Vo. This was done using the
total energy as a function of the c /a ratio at the equilib-
rium volume Vo which was obtained as above, the c /a
ratio corresponding to the minimum energy in (2) being
the equilibrium c /a ratio. This calculation at Vo pro-
vided additional data with which to check the accuracy
of the Murnaghan fit. The fits turned out to be very
stable for (Vo, BO,BO). The rms fitting errors for both
(1) and (2) were all of the order of 10 Ry. Tables I
and II present E(c a/) versus c/a at the calculated equi-
librium volume Vo for titanium and zirconium, respec-
tively, using two different exchange-correlation poten-
tials, the Hedin-Lundqvist and Xa forms. We also tabu-
late the minimum energies E(V) at fixed volumes V in
Tables III and IV, which are plotted in Figs. 1 and 2 for

E(c /a)=a(c /a) +P(c /)a+y(c/a)+6', (2)

where a, P, y, and 5 are fitting parameters. For each
volume V, total energies at a minimum of four distinct
c/a ratios are required by Eq. (2). From the fit of E ( V),
the minimum energy at volume V was obtained. The re-
sulting E( V) near the equilibrium volume was then used
to extract (VO, BO,BO) from a fit to (1). A similar pro-
cedure was used in Ref. 23. In order to evaluate the lat-

TABLE I. E (c/a)+const vs c/a at the calculated equilibri-
um volume for titanium. For the HL form, Vp = 109.21 a.u. ,
const= 1703 Ry, and E ( Vp ) = —1703.977 98 Ry. For the Xa
form, Vp = 1 16.65 a.u. , const = 1700 Ry, and
E ( Vp ) = —1700.41 1 53 Ry.

Q

CA~ 2-

Q
0t—

0

c /a
HL

E(c/a) c /a
Xa

E (c/a)

1.540
1.570
1.585
1.600
1.634

—0.977 71
—0.977 95
—0.977 98
—0.977 96
—0.977 74

1.560
1.570
1.585
1.600
1.615
1.634

—0.41 1 36
—0.41 1 49
—0.41 1 53
—0.41 1 52
—0.41 1 48
—0.41 1 43

0.84 0.92 ] .00
/ ~expt

3 .08

FIG. 1. Calculated E ( V) —E ( Vp ) vs V of titanium with the
HL and Xa forms; the solid line is a Murnaghan equation-of-
state fit. E ( Vp ) = —1703.977 98 Ry for the HL forms and
E ( Vp ) = —1700.41 1 53 Ry for the Xn form.
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FIG. 2. Calculated E(V) —E(Vo) vs V of zirconium with
the HL and Xo; forms; the solid line is a Murnaghan equation-
of-state fit. E(Vo)= —7190.42068 Ry for the HL form and
E( Vo) = —7183.265 56 Ry for the Xa form.
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FIG. 3. c/a ratio corresponding to the minimum energy at
certain volumes vs volume for titanium and zirconium. Open
circles represent the HL results, while solid circles represent
the Xa results, and stars represent the experimental c/a ratio
at experimental volumes.

titanium and zirconium, respectively, along with the
Murnaghan equation-of-state fits.

We find that the structural parameters of both Ti and
Zr are rather sensitive to the particular form of the
exchange-correlation potential used. It is found that the
HL exchange-correlation potential significantly underes-
timates the equilibrium volumes of both titanium and
zirconium, while the simpler Xa form yields very good
ground-state properties for these two elements. We will
return to this issue later.

The calculated F. (c/a) (Tables I and II) at the equilib-
rium volume clearly reveals that these curves are very
flat, which makes it di%cult to predict the exact c/a ra-
tio. We estimate the error in the predicted c/a ratios to
be about 1 —2%. Both the experimental and our calcu-
lated values of c/a are less than the ideal value of &8/3
(1.6333) for titanium and zirconium. In Tables III and
IV, we also list minimum energies E(V) and the corre-

sponding c/a ratios at various volumes. The c/a ratio
versus volume is plotted in Fig. 3. For Ti, the c/a ratio
is weakly volume dependent. The considerable scatter in
the calculated c/a ratios around an equilibrium value of
1.588 for Ti reflects the very small energy changes asso-
ciated with this distortion. By contrast, the c/a ratio
for Zr is considerably more volume dependent and in-
creases with decreasing volumes. Similar behavior was
found for Ru in Ref. 23.

Having calculated the c/a ratios, it is straightforward
to find the lattice parameters a and c from the equilibri-
um volume obtained from the Murnaghan fit (1) as well
as other equilibrium properties such as the Poisson ratio
and the cohesive energy. These are reported in Tables V
and VI. The experimental lattice parameters were taken
from Ref. 24. In order to obtain the cohesive energies,
the total energies of the isolated atoms were calculated
using the same exchange-correlation potential as in the

TABLE III. Minimum E(V)+const (Ry) as determined from Eq. (1) vs volume V (a.u. ) and the
corresponding c /a ratio for titanium. For the HL form, const = 1703 Ry. For the Xa form,
const= 1700 Ry.

V

102.50
107.50
109.21
110.00
112.50
117.50

HL
Eo

—0.976 02
—0.977 85
—0.977 98
—0.977 96
—0.977 56
—0.975 55

c/a

1 ~ 596
1 ~ 590
1.586
1.588
1 ~ 587
1.590

107.50
112.50
116.65
117.50
122.50
127.50

Xa

—0.408 51
—0.410 95
—0.411 53
—0.411 48
—0.410 53
—0.408 30

c/a

1.583
1.582
1 ~ 595
1.600
1.590
1.592
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TABLE IV. Minimum E(V)+const (Ry) as determined from Eq. (1) vs volume V (a.u. ) and the
corresponding e/a ratio for zirconium. For the HL form, const=7190 Ry. For the Xa form,
const=7183 Ry.

137.50
142.50
147.50
147.85
152.50
157.50

HL
Eo

—0.418 01
—0.420 01
—0.420 68
—0.420 68
—0.420 22
—0.418 74

c/a

1.647
1.644
1.626
1.627
1.620
1.613

147.50
152.50
157.50
158.92
162.50
167.50

Xa
Ep

—0.262 89
—0.264 76
—0.265 53
—0.265 56
—0.265 34
—0.264 34

e/a

1.621
1.618
1.611
1.608
1.598
1.596

bulk calculation but including spin polarization. The
difference between E„, and E( Vo) yields the cohesive
energy, where E(Vo) is the total energy at equilibrium
volume Vo as determined from (2). The spin-polarized
ground-state configurations are Ti(3d 4s '

) and
Zr(4d 5s'). We calculated the cohesive energies using
both the HL and Xa exchange-correlation potentials.
The calculated atomic energies E„, are —1703.5061
Ry for titanium and —7189.8768 Ry for zirconium us-
ing the von Barth —Hedin exchange-correlation potential,
which reduces to the HL form in the paramagnetic limit.
E(VQ) can be found in Tables I and II. The cohesive
energies thus obtained are about 32% larger than the ex-
perimental value for titanium and 18% larger for zir-
conium. When the Xcz exchange-correlation potential
was used, we find that E„=—1700.0290 Ry for titani-
um and —7182.8214 Ry for zirconium. Thus, the
cohesive energies are in better agreement, being about
7%%uo larger than the experimental value for titanium and
3% less than the experimental value for zirconium. It is
well known that the local-density approximation tends
to overestimate cohesive energies, the error coming from
the atomic calculation. This is the case for the HL re-
sult, errors of similar size for titanium were also ob-
served by Moruzzi et a1. , who calculated the electron-
ic properties using a close-packed fcc lattice, which is
very similar to the hcp structure. For zirconium, the
calculated value in Ref. 25 was 6.75 eV, in somewhat
better agreement with experiment than the present re-
sults. An Xa calculation by Hattox et al. for vanadi-
um also underestimated the cohesive energy; their calcu-

o = —(ha/b, c )(c/a), (3)

where Aa/Ac is the slope of the fit and c/a is the equi-
librium c/a ratio. Uniform meshes of nine values of c
and a around the experimental c and a values were used
except for the Xu titanium calculation, for which a

6.3

6.)

lated value was 0.33 Ry. Using the HL form, Moruzzi
et al. overestimated the cohesive energy of vanadium,
obtaining a value of 0.450 Ry. The cohesive-energy
difference between these two calculations is about 0.12
Ry. We find that the cohesive-energy differences be-
tween the HL and Xe results for Ti and Zr are of the
same magnitude.

Poisson's ratio o. is the negative ratio of the transverse
strain to the corresponding axial strain in a body subject
to uniaxial stress. For a fixed value of c, the total ener-
gies at three (or more) different values of a were calculat-
ed and fit to a parabola. The value of a (a;„) which
corresponds to the minimum total energy was then used
to evaluate o. directly from a linear fit of a;„versus c:

TABLE V. Ground-state properties of titanium in the hcp
structure and a comparison with the experimental data. The
experimental data are from Refs. 24, 27, and 28.

5.7

5.5
Property

Vo (a.u. )

e/a
a (A)
e (A)
Bulk modulus (Mbar)

Poisson's ratio
Cohesive energy (eV)

Expt.

119.210
1.588
2.9508
4.6855
1.05

0.26
4.85

HL

109.21
1.586
2.866
4.547
1.27
3.59
0.32
6.42

Xa

116.65
1.595
2.925
4.666
1.08
3.82
0.31
5.20

5.3
8.2 8.7 9.2

c (a.L).

9.7 10.2

FIG. 4. Linear relationship between e and a;„gives the
Poisson ratio (see text). Pluses represent the HL form, stars
the Xa.
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twelve-point mesh was used. The results are shown in
Fig. 4 and in Tables V and VI along with the single-
crystal Poisson ratio obtained from the elastic constants
of Ref. 28. It may be noted that the HL exchange-
correlation potential tends give a somewhat larger Pos-
sion ratio for both elements.

The sensitivity of the calculated results to the particu-
lar form of the exchange-correlation potential deserves
some discussion. We find that for both titanium and zir-
conium the calculated Vo and Bo are in very good agree-
ment with experiment when the Xa (a= —,') exchange-
correlation potential was used, the deviation for the
equilibrium volume (Vo) being —2.2% for titanium and
+ 1.2% for zirconium. However, when the Hedin-

Lundqvist form was used, larger discrepancies in the
equilibrium volumes are found, the deviations being
—8% and —6% for titanium and zirconium, respective-
ly. In this case the bulk moduli Bo are about 20%
larger than the experimental values, as might be expect-
ed based on the smaller calculated equilibrium volumes.
Sensitivity of this magnitude has previously been report-
ed for semiconductors. The c/a ratios are all within
1% of the experimental values, except for zirconium
with the HL form, where the discrepancy is about 2%.
As we have discussed before, the Xa form better pre-
dicts cohesive energies than the HL form for both titani-
um and zirconium, but in both cases the cohesive ener-
gies are overestimated except for Zr with the Xa form,
which underestimates the cohesive energy by about 3%.

B. Electronic properties

TABLE VI. Ground-state properties of zirconium in the
hcp structure and a comparison with the experimental data.
The experimental data are from Refs. 25, 27, and 28.

Property Expt. HL

The band structure and the density of states of titani-
um have been previously calculated by a number of au-
thors using a variety of methods. ' The band structure
reported here was calculated at the experimental lattice
parameters using both the HL and Xa exchange-
correlation potentials, and the band structures thus ob-
tained are almost identical. Our band structure (see Fig.
5) is very similar to that calculated by Jepsen, using a
non-self-consistent linear-muffin-tin-orbital method. In
particular the crossings at the Fermi level are practically
identical. Jepsen rather thoroughly reviewed and corn-
pared his results with earlier calculations, and he found
that his Fermi surface was in agreement with the de
Haas —van Alphen experiment of Kamm and Ander-

0.4

G.2

G.O

-0.2

-G.4

-0.6
I T KT'M Z tA S HS'L R Af h, AKPHMUL

FIG. 5. Band structure for titanium using the HL exchange
correlation.
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son. Noticeable differences are found along the T' and
P directions. One of the energy levels was degenerate in
his band structure, but not in ours. This level is labeled
by 1 and 4 in the T' band at the bottom and by 1 and 2
in the band at the bottom. It may have been just ac-
cidentally degenerate in his calculation, since in their Zr
calculation' these bands were split. These bands were
split in the self-consistent Ti calculation of Feibelman
et al. , which was obtained using a linear combination
of Gaussian orbitals approach and yielded very similar
band structures to those obtained here. Our calculated
density of states (Xa) (Fig. 6) is very similar to Jepsen's.
The density of states at the Fermi level is 12.3
states/atom Ry while his number was 12.4

Vp (a.u. )

c/a
a (A)
c (A)
Bulk modulus (Mbar)
g I

Poisson's ratio
Cohesive energy (eV)

157.05
1.593
3.232
5.147
0.833

0.29
6.25

147.84
1.627
3.145
5.116
0.986
3.00
0.34
7.40

158.92
1.608
3.234
5.200
0.846
4.02
0.29
6.04

-0.4 0.0
Energy (Ry)

0,4.

FIG. 6. Density of states for titanium and zirconium. The
Fermi energy is indicated by the dashed line.
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FIG. 7. Band structure for zirconium using the HL form.

states/atom Ry. The DOS is primarily d-like, the small
peak just below the Fermi energy is due mostly to p-
electron contributions.

The band structure and density of states of zirconium
are shown in Figs. 6 and 7. As in the case of titanium,
the band structures calculated using the HL and Xcx
exchange-correlation potentials are very similar. A few
previous calculations of electronic structure of zirconium
have been reported. ' We find that as for titanium
our results for both the band structure and the density of
states are very similar to those obtained by Jepsen
et al. ' The density of states (Xa) is shown in Fig. 6.
We find the density of states at the Fermi level is 11 ~ 3
states/atom Ry, while the number in Ref. 10 was 13.1
states/atom Ry.

IV. CONCLUSIONS

In this paper, results of local-density-functional calcu-
lations of the energy band structures, equilibrium prop-

erties, cohesive energies, and densities of states for
hexagonal-closed-packed titanium and zirconium are re-
ported.

We find that the calculated equilibrium volumes are
underestimated using the HL exchange-correlation po-
tential, with deviations of about 8%%uo for titanium and
6% for zirconium. The calculated c/a ratios are very
close to the experimental value for titanium and about
2% larger for zirconium. The lattice parameters a and c
are all about 3% smaller than experiment for both ti-
tanium and zirconium except for the c parameter of zir-
conium, where the discrepancy is 0.6'7o. The bulk
moduli are found to be about 20% larger than the exper-
imental values for both elements. The cohesive energies
are overestimated as commonly found in the LDA calcu-
lations. The discrepancies between the experimental and
the calculated values are 32% and 18% for titanium and
zirconium, respectively. The Poisson ratios are about
20% larger than the measured values. We also find that
there is considerable sensitivity to the exchange-
correlation potential by comparing with parallel calcula-
tions using the exchange-only Xa form. We find that
the Xa equilibrium volumes, lattice parameters, c/a ra-
tios, and bulk moduli are in very good agreement with
experiment for both titanium and zirconium; in this case
the cohesive energies also being brought into better
agreement with experiment.

The changes in the equilibrium volume due to the use
of diFerent exchange-correlation potentials (Xa versus
HL) are found to be about 6%. We take this to be an
indication of the intrinsic accuracy of the LDA for these
metals.
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