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Correlation functions g(z) =(S,(0)Sx(z))—(S;)? and their momentum space expansions are
studied in computer simulations of d-dimensional Glauber models below 7. (d =2, 3, and 4). For
d =3 the functions (Sx(0)S —x(t)). decay exponentially and the relaxation-time spectrum is
bounded, implying the asymptotically exponential g(z), but that asymptotic form is far beyond
any observable regime. For d =2, ($x(0)S -« (1)), decays nonexponentially for all k indicating a
nonexponential asymptotic form of g(z). In all cases the observable preasymptotic form of g(z)
can be approximated by Kohlrausch decay exp[— (A£)f],0 <8< 1.

Recent phenomenological theories searching to explain
the nonexponential relaxation in complex disordered sys-
tems such as glasses, random magnetic materials, etc.,
concentrated on the approximate identification of simple
dynamic modes with physically appealing substructures
(such as clusters or droplet excitations) together with
scaling Ansdtze relating the appropriately defined “size”
and distribution of substructures to their characteristic
times, either in a straightforward fashion in position
space? or more abstractly in terms of hierarchies of
metastable states.>

Quite surprisingly, in two recent reports** it was pro-
posed that droplet fluctuations could also lead to nonex-
ponential asymptotic decay of Kohlrausch (stretched ex-
ponential) form even in ordinary (nonrandom) ferromag-
netic Ising models in the ordered phase. The possibility of
Kohlrausch decay in simple realistic models without disor-
der or activated dynamics is intriguing enough to warrant
a thorough investigation which could give new insights
into relaxation of truly glassy materials.

The subject of this Rapid Communication is the
analysis of numerical solutions for the fundamental dy-
namic correlation functions in kinetic Ising models in zero
field with stochastic dynamics of the Glauber type® below
the critical temperature 7, in two, three, and four spatial
dimensions. I obtain and study the autocorrelation func-
tion

g (1) =(S,(0)S, (1)) —(S,)? 1)

and correlations of the Fourier-transformed spin variables
Sk _erlkxsx,

Gk,t) =lV[<§k(0)§_k(t)> — 1Sl . @)

The objective is to examine the validity and usefulness of
the simple dynamic droplet models, and to establish the
range of asymptotic behavior: While phenomenological
scaling models lead to definite predictions for the asymp-
totic decay of ¢(¢), they are unable to produce estimates
of the magnitude of correlation functions at the onset of
asymptotic behavior.
The main results are as follows.
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(1) In dimension three and higher (d = 3) the analysis
of the expansion

1
Qn)?
(the last expression corresponds to the thermodynamic

limit ¥— o) demonstrates that (i) G(k,#) decays ex-
ponentially with minor corrections at short times

Gk,t) = G(k,t =0)e ~2®1 ; @

1
90 =5 26— Jacan @

(ii) at small momenta (relevant for long-time behavior)
the rate is

Ak) =ro+ck2+o0(k?) . (5)

(iii) The existence of the gap Ao>0 at T < T, implies
that the autocorrelation function ¢ (¢) must asymptotical-
ly approach the exponential decay

— ot

q(t)— Ae ast—» oo . (6)

This is the expected decay law, in agreement with the
droplet model of Fisher and Huse? who use the Langevin
equation for dynamical evolution of large droplets. (iv) A
striking new result is that the asymptotic formula (6) is
really irrelevant for the analysis of any conceivable exper-
imental or numerical data for ¢(¢): The magnitude of
g(t) at the onset of the asymptotic behavior is extremely
small, for instance, in d =3 below T, when the correlation
length £ is about four lattice spacings the asymptotic form
(6) will not be seen until the time when g(¢) = 10 2%, In
contrast, the functional form of the preasymptotic ¢ (z) is
well approximated by the stretched exponential

—(t/7)BMD

q(t) =e 9 14 < tcrossover (7)

with weakly temperature-dependent exponent S in the
range 0.3-0.5. It should be strongly stressed that (7) does
not represent the analytic approximation which can be ob-
tained from Eq. (10) below, but merely a convenient and
acceptably accurate fit to the data.

(2) Dynamics in dimension d =2 is very different from
that described above for 4 = 3. (i)_In marked contrast to
d = 3, here the momentum modes Sy are not simply relat-
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ed to exponentially relaxing eigenmodes of the evolution
operator, that is the functions G(k,z) display a nonex-
ponential decay and cannot be approximated by (4) in the
observable range [G(k,z) > 10 ~%] even if one allows for
power-law corrections at shorter times. (ii) The observ-
able decay of q(¢) is very nonexponential. Again, it can
be reasonably well approximated by a stretched exponen-
tial function (7), this time with a smaller exponent S(7T°),
B(T) = 0.3, for temperatures corresponding to the corre-
lation length & between a few to a few tens of lattice spac-
ings, although deviations from this phenomenological
form indicate a slightly faster asymptotic decay. Similar
behavior was observed in numerical simulations reported
in Ref. 4.

The above-mentioned analysis of droplet fluctuation by
Fisher and Huse? predicts the asymptotic behavior with
B= 1%, which is not observed in computer simulations. By
the same reasoning as in (iv) above it might be indeed the
correct asymptotic behavior, but it cannot be seen nor
verified with experimental or computer-generated data in
any reasonable range of g (¢).

The analysis of the representation (3) of ¢(z) by
Takano, Nakanishi, and Miyashita,* suggests the asymp-
totic stretched exponential decay in every dimension d
with B=(d —1)/(d+1). Their analysis essentially de-
pends on the assumption that in every dimension one can
approximate (3) by [ dkexp(—ck ~@~1 —k?t), which is
not consistent with our results nor with the known
momentum dependence of correlation functions.

Ising models discussed in this Rapid Communication
are defined by the standard nearest-neighbor Hamiltonian

H=-YS5.S,, (®)
xy
with spin variables Sy = %1 populating the sites of the
square (d=2), simple cubic (d=3), or hypercubic
(d = 4) lattice. The dynamics is introduced in terms of a
Markovian stochastic process on the space of spin con-
figurations o = {S,}

—:—IP(a,t) =3 T(c|o)P(o"1) , ©)

where P(o,t) is the probability of spin configuration o at
time .

I consider the rate matrix I' of the type introduced by
Glauber,® where I'(o| ') =0 unless configurations ¢ and
o' differ by at most one spin. In the latter case the transi-
tion rates are chosen to satisfy the detailed balance condi-
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tion. With these definitions the stochastic process is Mar-
kovian, ergodic, and converges to the Boltzmann distribu-
tion in the stationary state.

The correlation functions (1) and (2) were obtained in
large-scale, discrete-time Monte Carlo simulations per-
formed on a special purpose computer.® Discrete time
does not present any conceptual difficulties since we may
consider it as an embedded Markov process with the same
time dependence as (9) at integral values of time.
Single-spin transitions were chosen according to the
“heat-bath” algorithm.® Simulations were performed on
lattices of size 5122, 643, and 16* with periodic boundary
conditions. Spin variables were selected for updates ac-
cording to a preassigned sequence, with consecutive sites x
separated by at least several lattice spacings, not along
any lattice axis. The updating sequence could be varied,
and as in related study of spin-glass dynamics’ it did not
seem to affect the shape of correlation functions. The sta-
tistical errors in estimates of correlation functions were
reduced below one part in a thousand by averaging over
10° or more processes with distinct initial states drawn
from the stationary Boltzmann distribution. At each tem-
perature where g(z) was recorded the correlation length
was also estimated and found to be significantly smaller
than the lattice size, thus guaranteeing no bias due to
finite-size effects. Large lattice size excluded the transi-
tions between oppositely magnetized ordered states, allow-
ing for unbiased estimates of {(S,). In d =2 these were
found in agreement with the Onsager’s solution, viz.,
(S,)=1[1—sinh ~4(2B)]'8,

Figure 1 shows the numerical solutions for g(¢) at
selected temperatures below T, in two, three, and four di-
mensions. The usual coordinates in these plots, logjoq(z)
vs t8, and the values of B were chosen with the purpose of
enhancing their similarity to the stretched exponential
function (7). The time unit (MCS) denotes the number
of Monte Carlo updates per spin.

Naively, it looks as if the recorded g (z) decay asymp-
totically as stretched exponential function. Let us test the
validity of this statement by employing the Fourier expan-
sion (3), and by analyzing the time dependence of numeri-
cal solutions for G (k,¢) for a range of momenta k.

A typical behavior observed in three dimensions is
shown in Fig. 2. The method of plotting, log-log plot of
—t/Inf(¢) vs t, gives equal space to each decade of time,
and enlarges the errors and deviations of f(z) from purely
exponential decay at long times. It is clearly seen that for
all momenta the decay is almost purely exponential, and
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FIG. 1. Numerical solutions for the autocorrelation function ¢(¢). (a) d =2, at temperatures T =2.15 (top), 2.10, and 2.00 (bot-
tom). (b) d =3, T=4.45 (top), 4.40, 4.30, 4.20, and 4.00 (bottom). (c) d =4, T=6.60 (top), 6.50, 6.40, and 6.30 (bottom). The
critical temperatures are T, =2.27, 4.51, and 6.7 for d =2, 3, and 4, respectively.
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FIG. 2. Normalized correlation function f(k,t) =G(k,t)/
G(k,0) for several momenta k=(27/L)(0,0,q) at T =4.40,
L=64 in three dimensions. The log-log plot displays
—1t/In f(k,t) vs time ¢ for the wave number g =0 (top), 4, 6, 8,
12, and 16 (bottom).

can be written in form (4), with the decay rate A (k) given
by (5) (cf. Fig. 3). The existence of the gap Ao in the
spectrum of relaxation rates as k— 0 is crucial: From the
expansion (3) we see that g (¢) must asymptotically decay
as exp(—Aot).

In order to reconcile these statements with behavior
shown in Fig. 1(b), I use the integral representation (3)
for g(¢), and the numerically established formula (4) and
the Lorentzian approximation to G (k,z =0), which indeed
is valid for numerical solutions at small momenta.

In this way I obtain the representation
d’k B
27)3 k2+«?
The long-time behavior is dominated by small momentum
behavior of the integrand, and the approximations for
G (k,t =0) and A (k) become exact in this limit.

The integral (10) can be evaluated numerically with
parameters B, x, Ao, and ¢ extracted from the correlation
functions G (k,?) estimated in the simulation. In Fig. 4 it
is plotted together with independently recorded data for
q(2) at temperature T =4.40. As noted above, the choice
of plotting coordinates is suitable for displaying the
stretched exponential decay, which would appear as a
straight line in the plot; exponential decay would corre-
spond to a horizontal line.

It is immediately seen that the recorded values for g ()
never reach the asymptotic regime. It is instructive to

q(t) = expl— (o+ck?)e] . (10)
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FIG. 3. Decay rate A(k) at 7 =4.40, d =3 plotted vs momen-
tum squared k2. Note the gap at k=0.
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FIG. 4. Plot of —t/Ing(t) vs t at T=4.40 in three dimen-
sions. Continuous curve represents the values of the integral
representation of Eq. (10). Note the crossover to asymptotic ex-
ponential decay at ¢ = 10%. The dashed line extrapolating the
short-time behavior (where data points are displayed) corre-
sponds to a stretched exponential with $=0.4.

compute from (10) the value of g(¢) at time ¢ =10* corre-
sponding to the onset of the asymptotic decay: It is found
to be of order 10 ~!%, and as such the asymptotic decay
could never be observed in practice.

Analysis in four dimensions closely parallels that con-
ducted above and will not be presented here. We have
good reasons to believe that there are no surprises in still
higher dimensional systems (d >4), and that formulas
(4)-(7) and (10), and the behavior illustrated in Fig. 2, 3,
and 4 remain valid.

In two dimensions, however, the dynamics of fluctua-
tions in the ordered phase is very different. Typical time
dependence of the correlation functions below 7 is shown
in Fig. 5. The nonexponential decay of G(k,t) is clearly
seen, moreover one observes that the approximation

Gk,1) = G(k,0)exp{— (k)18

is not as good as in three dimensions (where B=1), even if
one allows for power-law prefactors in the time depen-
dence and fits the best value of .

From the momentum expansion (3) one finds again that
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FIG. 5. Joint plot of normalized functions — ¢t#/Inlg(¢)/q(0)]
(crosses) and —tP/Inf(k,t) (circles) in two dimensions at
T=2.15, L =512, with =% and f(k,t) =G(k,t)/G(k,0). In
this plot Kohlrausch decay f~expl[— (A#)#] would appear as a
straight line (horizontal for =%). Nonexponential decay of
f(k,t) is clearly seen for selected values of k =(2x/L)(0,q) with
wave number g =0 (top), 8, 16, and 24 (bottom).
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the true asymptotic behavior of ¢(¢) in d =2 is the same
as that of G(k,z) for k— 0, since the static correlation
function G(k,? =0) is a rational function of k, and cannot
modify the long-time behavior. From numerical data
such as that shown in Fig. 5, I cannot unambiguously ex-
tract the long-time behavior nor a meaningful, simple ap-
proximation to G(k,t). Nevertheless, one can tentatively
use the expansion analogous to (10), substituting the very
accurate Fisher-Tarko approximation® for G (k,z =0) in
place of the Lorentzian, and replacing the exponential
term in (10) by exp{— [A(k)]%}, with A (k) approximate-
ly given by (5) and a choice of 8= %. The analysis simi-
lar to that described below Eq. (10) shows again that g (z)
would achieve its asymptotic behavior until it decays to a
ridiculously small value. This exercise indicates that there
is no basis to accept the approximate observed behavior
q(t) ~expl— (¢/7) ] shown in Fig. 1(a) and in Ref. 4 as
the true asymptotic behavior of g(¢). The analysis of
droplet fluctuations in d =2 given in Ref. 2 predicts the
asymptotic stretched exponential decay of q(¢) with
B=%. The analysis given in Ref. 4 rests on the assump-
tions about the form of G(k,t) which do not seem to be
correct.

In any case, it is demonstrated in the present work that
although simple phenomenological droplet theories of
fluctuations in the ordered phase could in principle give
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correct asymptotic time dependence of correlation func-
tions, they may be of very limited value in the analysis of
dominant fluctuations governing the behavior of correla-
tion functions in the range of times where they could be
observed in practice. We believe that phenomenological
theories should rather attempt to describe the dominant,
observable phenomena. It is not clear at the moment if
analogous droplet (or cluster) theories of fluctuations in
disordered systems' suffer from the same limitations as in
the simplest possible case of nonrandom Ising models, but
it has been found already that the analogous arguments
for Ising spin glasses above T lead to the predictions® for
asymptotic decay which have not been observed in very
accurate numerical solutions.’
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