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Already within Landau theory with short-ranged substrate-adsorbate forces, complete wetting is
not necessary near critical points. Preferential adsorption, but only partial wetting all the way to
the critical point, and even critical-point dewetting are possible. Physical systems displaying such
behavior include uniaxial magnets with triplet surface fields, and special choices of adsorbed
liquid-vapor systems, binary mixtures, liquid crystals, and critical-end-point systems.

When two coexisting phases @ and B (e.g., a liquid and
a vapor) are adsorbed at a phase y (e.g., a substrate), and
y preferentially adsorbs a, then complete wetting of the
B-v interface by a is expected close to a a-f critical point.
A macroscopic layer of a then intrudes between S8 and y.
If partial wetting occurs (when there is a three-phase con-
tact line) the system is expected to display a phase transi-
tion to complete wetting as the critical point is ap-
proached. These expectations have become common since
Cahn’s theory of critical-point wetting and the discovery
of the wetting phase transition in theory!? and experi-
ment.> Up to date several reviews have dealt with this
topic.*-?

It has been found recently that critical-point wetting
need not always occur in systems with long-range forces
(with power-law decay), in theory!%~!3 and experiment.'4
This is relevant for adsorbed fluids with van der Waals
forces, for example. In systems with short-range forces
(with exponential decay) between substrate and adsor-
bate, it is commonly believed that critical-point wetting is
necessary and ubiquitous. Landau theory, !> mean-field
and density-functional theories,” and model calcula-
tions>!6 provide firm grounds for this belief.

However, as this paper would like to emphasize, already
in the Landau theory with short-range forces critical-
point wetting need not always occur. Examples are given
where preferential adsorption takes place, but only partial
wetting is obtained up to the critical point. Moreover,
critical-point dewetting is possible: The system makes a
phase transition from complete to partial wetting as the
critical point is approached. These findings contradict
Cahn’s scaling argument! but are consistent with scaling
theory. The paradox is resolved by noting that from scal-
ing theory alone critical-point wetting cannot be predict-
ed.

The physical relevance of the following examples is

J

probably limited because the choices of substrate-
adsorbate energies are special.

Consider the Landau surface free-energy function-
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of the order-parameter profile m(z), for z=0. The sub-
strate is at z=0. The surface density of m at the sub-
strate is denoted by m ;. For the bulk free-energy density
the usual form

4 | dz
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is taken. For the substrate-adsorbate energy the form
h
y;(m1)=—h1m1—-§m|2—73m13 3)

is chosen. In addition to a surface field 4, and a surface-
coupling enhancement g, a “triplet” surface field 43 is
added. This new addition is pertinent, e.g., to model a
three-spin coupling (or external triplet field) at the free
surface of a uniaxial ferromagnet.

From now on attention will be restricted mainly to the
special case A;=0. An analysis of the profiles m(z),
which minimize 7, then yields critical-point wetting for
g >0 (enhancement), critical-point dewetting for g <0
(dehancement), and temperature-independent contact an-
gles for g =0.

In calculations I have taken a, =0 for n>4, a,=1,
a,=2(T—T.), and ag such that min[f(m)] =0. Denot-
ing by y+ and y- the surface free energies corresponding
to bulk + and — phases at z =oo, respectively, and by
v+ — the tension of a free + — interface, one obtains at
coexistence (T < T,), with m¢=7T.—T,
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Here, Q + =(1 £ h3/c) 7!, and ¢ = —g(2cmo) ~'. The contact angle of the wetting problem is found via

cosO=(y— —y4 ) y+- .
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In this calculation, the physical domain is restricted to
0= |h3| <c. Forlarger | k3] it is necessary to include a
positive sixth-order term in f(m).

For g > 0, one obtains complete wetting for h3> 0 (or
“drying” for h3<0) provided |h3;| = (v/3/2)c, and a
first-order phase transition from partial to complete wet-
ting when approaching the critical point for |h3]
< (v/3/2)c. In this latter case, the phase boundary be-
tween partial and complete wetting in the critical region
(T=T,) is described by (expressing cosd= =+ 1),

hag?~(T.—Ty)*? (6)

where Ty is the wetting (or drying) transition tempera-
ture. For g =<0 one finds new behaviors. For g =0, the
wetting problem is independent of temperature and cosf
depends only on k3. The wetting phase boundary then
reads (dashed lines in Fig. 1)

[hs| =(/3/2)c . 7

For g <0, partial wetting is found for all temperatures
T <T,if | hs| = (V3/2)c. For larger | h3| a phase tran-
sition from complete to partial wetting occurs as 7, is ap-
proached. The phase boundary represents critical-point
dewetting and is shown in Fig. 1. It satisfies, for

[h3| 2 (V3/2)c,
|3l —(V3/2)c~(—g)(T.—Tw) ™% . (®)
For the contact angle near criticality (7==T,), one finds
cosO~hy(—g) 1. —T)¥* | 9)
which implies the remarkably fast approach

7—_7'+~(TC_T)3 ,

hy/c .
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FIG. 1. Critical-point dewetting and dedrying phase bound-
aries (solid lines) in the plane of triplet field 43 and temperature
T, separating complete wetting (CW) from partial wetting
(PW) at h3> 0, and complete drying (CD) from partial drying
(PD) at 3 < 0. The phase transitions are of first order.
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whereas
}’+—~(TC“‘T)3/2 .

In the previous example, a triplet field 43 has been as-
sumed. In the Landau theory with 43 =0 previous studies
have shown that critical-point wetting is unavoidable in
general.!> However, even there exceptions can be con-
structed: systems with preferential adsorption but only
partial wetting for all T < T..

The first example deals with systems without intrinsic
order-parameter inversion symmetry (m <> —m), such as
liquid-vapor systems, binary mixtures, liquid crystals, etc.
Let n denote a generalized density (particle density or
concentration . . .). In the Landau theory for critical phe-
nomena one assumes an expansion of the bulk free-energy
density in powers of the order parameter x =n —n, of the
form

f(p,T,x)=ag+a\x+ax*+ax>+ax*+--- . (10)

Here, p and T denote, e.g., pressure and temperature.
At the critical point (p.,T.):ax =0, k=1,...,3, and
a4> 0. The bulk phase boundary is a curve in the (p,T)
plane

ax(p, T)=ay(x$), k=1,...,3, an

parametrized by a variable x§ (x¢~T.—T or p.—p).
There is no a priori reason why a,(x§) and a3(x§) should
vanish, unless there is a physical symmetry as in the case
of a uniaxial ferromagnet in zero field 4 (p«>£h). Howev-
er, the order parameter can always be redefined to obtain
a symmetric f up to the fourth-order terms. Physically
this redefinition transforms an asymmetric coexistence
curve into a symmetric one in the (x,T) plane.

Consider now a Landau theory as given by Eq. (1) with
f(x(z)) of the general form of Eq. (10) and the special
choice

ys(x1)=—§—x12. (12)
For concreteness, consider a one-parameter family of
functions f, of the form

Sa(x)=(x—=x0)*(x+axy)? , (13)

with a=1, to describe the coexistence region (x¢
=T.—T=0). The coexistence curve is asymmetric for
a#1. Alternatively, one can symmetrize the model and
work with

SsymO)=0G2=y$)?, (14)

with yo=[(1+a)/2]xo. This brings f back to the form of
Eq. (2) but transforms ¥, to

a—1
a+1

o) =S ao -yt (15)
corresponding to the presence of a temperature-dependent
surface field #,. The presence of A, induces preferential
adsorption and, therefore, the wetting problem is well

posed. One obtains
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cosf 3a+1¢ 5 1+¢ a+l¢ 0 2a+1¢ ], (16)

where ¢ = —g(2cyo) ~!. In the case g > 0 (enhancement)
one finds critical-point wetting by the phase with y = —yg
(since #; <0). The wetting phase boundary in the (g,T)
plane close to criticality takes the form

g~ (T, —Ty)'? . 17)

For g < 0 (dehancement) novel behavior occurs. The con-
tact angle then satisfies 0 < cos6 < 1 for all T < T, signi-
fying persistent partial wetting by the phase with y =y.
In particular,as 7— 7, ,

2
a—1
at+1

a—1

par (18)

1
0— —
Cos 2

In closing this example it is worthwhile pointing out
how the discussion is translated in the liquid-crystal
language. The Landau-de Gennes theory for the ne-
matic-isotropic transition features a quadrupolar order-
parameter tensor Q which reduces to a scalar ¢ in the case
of a uniaxial bulk nematic phase which homeotropically
aligns at a substrate.®!” The bulk free-energy density
f(q) then takes the form of Eq. (10) with a; =ay (h,T),
for k=0, ...,3. Here, an external magnetic field 4 is in-
cluded. Because a;(0,7)=0 but a3(0,7)=0 the
isotropic-nematic transition is necessarily of first order in
zero field. In the (A,T) plane the phase boundary ter-
minates at a critical point at (h.7.). There a
“paranematic” and a nematic phase become identical, at
q=q.. Once more, there is no a priori reason why the
function f should have a symmetric expansion in
X=q —q. in the vicinity of the critical point. [If one as-
sumes a3 in f(g) to be a constant, independent of & and T,
a symmetric expansion results.] In the theory where f is
not symmetric in x (up to fourth order) and where y; is
taken of the form

7s(41)=—h141—'§‘412 , (19)

one obtains preferential adsorption but only partial wet-
ting for all 7 < T, provided g <0 and

hi+gq.=0 . (20)

The second example features a system at a critical end
point near a tricritical point.'® In this case

fx)=(x+x0)*x—x0)? , ¢2))

[

representing a critical phase at x = — x( coexisting with a
noncritical phase at x =x¢. The tricritical temperature is
T, and x¢ =T,. — T. Furthermore, consider the choice

ys(x,)=—-§x12 ) 22)
Although no surface fields are present there is preferential
adsorption because f is now intrinsically asymmetric with
respect to interchange of xo and — x, reflecting the physi-
cal distinction between the bulk phases.

In this model one finds y+ — = % ¢x¢ and, for g <0, par-
tial wetting by the critical phase is obtained all the way to
the tricritical point. In fact,as T— T, ,

cosf— — ¥ . (23)

All the examples presented so far have the following
features in common. The substrate-adsorbate energy
y:(x1) has a minimum at (or near) the critical value of
the bulk order parameter x =0. In any case, as T— T,
the minimum moves to x; =0 at least as fast as
x0~(Tc—T)'/2. Secondly, ys; or the bulk function f
should have some asymmetry in the order parameter in
order to guarantee preferential adsorption.

Scaling theory>!? predicts that the cosine of the contact
angle is a scaling function of the form

cos@=X(hyt ™ gt " hyt ™), (24)

where t =(T,—T)/T.< 1. Many physical scenarios are
compatible with this relationship. One checks that the be-
haviors outlined in this paper can be cast in this form and
the corresponding values of A;, ¢, or A; can be easily read
off. Cahn’s argument' goes further by assuming that,
e.g.,

cos@~hyt M

(25)
in the entire partial-wetting regime. From this would
necessarily follow critical-point wetting (given A; > 0).
However, Eq. (25) presents only one possibility compati-
ble with scaling theory, and is in fact contradicted by most
of the present examples.

A subject of further research will be the effect of long-
range forces on persistent partial wetting and critical-
point dewetting.

This research was supported by the National Fund for
Scientific Research in Belgium.

1. W. Cahn, J. Chem. Phys. 66, 3667 (1977).

2C. Ebner and W. F. Saam, Phys. Rev. Lett. 38, 1486 (1977).

3M. R. Moldover and J. W. Cahn, Science 207, 1073 (1980).

4M. R. Moldover and J. W. Schmidt, Physica D 12, 351 (1984).

5R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B 26, 5112
(1982).

6P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

’D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial
Phenomena, edited by C. A. Croxton (Wiley, Chichester,
1986), Chap. 2.

8T. J. Sluckin and A. Poniewierski, in Ref. 7, Chap. 5.

9S. Dietrich, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, London, in
press), Vol. 12.



36 CRITICAL-POINT DEWETTING

10p_-G. de Gennes, C. R. Acad. Sci. Ser. B 297, 9 (1983).
11V, Privman, J. Chem. Phys. 81, 2463 (1984).

I2M. P. Nightingale and J. O. Indekeu, Phys. Rev. B 32, 3364
(1985).

13C. Ebner and W. F. Saam, Phys. Rev. B 35, 1822 (1987).
14K. Abeysuriya, X.-l. Wu, and C. Franck, Phys. Rev. B 35,
6771 (1987); D. J. Durian and C. Franck, Phys. Rev. Lett.

RAPID COMMUNICATIONS

7299

59, 555 (1987).
I5SH. Nakanishi and M. E. Fisher, Phys. Rev. Lett. 49, 1565
(1982).
16J_ Frohlich and C.-E. Pfister, Europhys. Lett. 3, 845 (1987).
17A. K. Sen and D. E. Sullivan, Phys. Rev. A 35, 1391 (1987).
18R, Lipowsky and U. Seifert, Phys. Rev. B 31, 4701 (1985).



