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Particle-size eO'ect on the conductivity of dispersed ionic conductors
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A random-resistor model proposed recently for dispersed ionic conductors is generalized to
study the effect of dispersed particle size on the conductivity of such composites. Monte Carlo
calculations for two-dimensional systems are reported for square as well as rodlike particles of
different size. It is found that the corresponding critical concentrations p,' and p,", for interface
percolation and the conductor-insulator transition, respectively, strongly depend on the size and

shape of the dispersed particles. The generalized model thus offers the possibility of studying a
variety of physical situations which are relevant to experiments.

Enhancement of the conductivity of ionic conductors by
the addition of small insulating particles' has been es-
tablished experimentally and the recently proposed ran-
dom-resistor-network (RRN) model (hereafter re-
ferred to as model I) was successful in providing an ex-
planation for it. In particular, the existence of two critical
concentrations of the insulating phase, namely, p =p,' for
the onset of enhanced conductivity and p =p," for the
conductor-insulator transition, could be understood in
terms of percolation thresholds. However, the experimen-
tally observed ' particle-size effects have not been ex-
plained so far for the whole range of concentrations of the
insulating particles. It is the purpose of this paper to gen-
eralize the RRN model and present results on the
particle-size effects in dispersed ionic conductors.

The basic physical picture of conduction in mixtures of
a solid ionic conductor, such as LiI with fine particles of
an insulator such as A1203 dispersed in it, is in terms of
charge accumulation on the surface of the insulating par-
ticles. This in turn implies an enhanced interfacial con-
ductivity. The RRN model assumes the existence of
three types of resistors: (a) insulating resistors represent-
ing the lack of conduction through the insulating particles,
(b) highly conducting resistors representing the enhanced
interfacial conductivity, and (c) normally conducting
resistors representing the conduction in the pure ionic con-
ductor. Thus, one has (a) and (b) types of resistors in a
matrix of normally conducting resistors. This is then
mapped onto the problem of a random walk on a lattice
with three types of bonds (hopping rates), and the
diffusion constant is calculated by means of Monte Carlo
simulations. The reason for doing this is that one can find,
in principle, the "numerically' exact solution of the prob-
lem. The result of the simulations shows that the en-
hanced conductivity starts at a critical concentration of
the dispersed particles corresponding to the onset of per-
colation of the highly conducting bonds. However, as the
concentration p increases, one encounters the second criti-
cal concentration where the conducting bonds start form-
ing closed loops inside the system and the conductivity
drops drastically, leading to the conductor-insulator tran-
sition.

In two dimensions, one considers a square lattice in
which an insulating particle is represented by a randomly
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FIG. 1. Generalized random-resistor-network model for the
concentration p 0.375 with particle sizes (a) s 1, (b) s 2,
and (c) s 4.
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occupied unit square with the occupation probability p.
This is shown in Fig. 1(a). The hopping rate associated
with a bond of the lattice depends upon the occupation of
both the adjacent squares. When both the squares are oc-
cupied, the hopping rate is zero and when both the squares
are empty, the hopping rate is taken to be unity, rep-
resenting normal conduction of the pure ionic conductor.
Finally, when only one of the squares is occupied, the hop-
ping rate is taken as r » 1 corresponding to the high inter-
facial conductivity. The generalization of this model is il-
lustrated in Figs. 1(b) and 1(c). We introduce an addi-
tional parameter s called the particle-size parameter. For
s =1, the earlier RRN model is obtained as in Fig. 1(a).
For s =2 and 4, one has bigger squares representing larger
particles (the area of the particles is proportional to s ).
The concentration of the particles is now a function of s
given by

p ns IL

where n is the total number of insulating particles and L is
the length of the lattice. It is important to note that this
generalized model is not a trivial extension of the original
RRN model. The new concentration of different bonds
is no longer known exactly as for model I (Ref. 6) and the
new percolation thresholds that arise cannot be related to
values already known in the literature. Moreover, a care-
ful inspection of Figs. 1(b) and 1(c) indicates that the
general model (s ) 1) cannot be reduced to model I by a
simple rescaling of distance, and, therefore, constitutes a
new model in itself.

In order to determine quantitatively the diffusion con-
stant D(p), we use the following ruless for the random
walk: (i) The probability II& that the walker takes a step
from a given site to one of its z nearest neighbors in the

direction 8 is proportional to the hopping rate rq in that
direction (admissible values of rs are 0, 1, and r). Since

, IIs=1 we have

(ii) The total elapsed time t after N~ steps along normal
bonds and N2 steps along the highly conducting bonds, is
given by

t Ni+N2z (3)

(iii) For large times t, the mean-square displacement of
the walker (r (t)) is proportional to D(p)t, and D(p) is
proportional to the conductivity by the Nernst-Einstein
relation. We have performed Monte Carlo simulations on
a square lattice of size 500X 500 and used periodic bound-
ary conditions. To obtain D(p) we calculated r (t) for
t —10 and averaged it over typically 500 configurations.

The generalization of the RRN model described above
is suitable for understanding the hitherto unexplained
particle-size effects observed experimentally in dis-
persed ionic conductors. Our results from Monte Carlo
simulations show a similar effect. In Fig. 2, we have
shown the diA'usion constant D(p) as a function of the
concentration p for different values of r. As the particle
size varies from s =1 [Fig. 2(a)l to s =4 [Fig. 2(c)l, the
peak height of D(p) for constant r decreases and the peak
position moves to higher concentrations. The fact that
D(p), for fixed p, decreases with increasing s, can be un-
derstood by noting that the corresponding fraction of
highly conducting bonds decreases with s [compare Figs.
1(a)-1(c)]. One also expects a shift in the position of the
maximum since the threshold for interface percolation p,

'

occurs at higher concentrations when the particle size in-
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FIG. 2. Diffusion constant D(p) as a function of concentration p for different values of r [(e) 10, (O) 20, (&) 50, (&) 100, (0)
200] with particle sizes (a) s 1, (b) s =2, and (c) s =4. The arrows show the values of p,' and p,". A few error bars are indicated.
The lines are a guide to the eye.
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I

pc

(a) Square particles
0.407
0.51 ~ 0.01
0.58 ~ 0.02

(b) Rodlike particles
0.41 +' 0.01
0.36 W 0.02

Pc

0.593
0.59+ 0.01
0.61 ~ 0.02

O.45 ~ O.O1

0.38+ 0.02

creases, while the second threshold remains almost un-
changed by increasing s. We have determined values of p,'
and p,

"
by means of a standard method used in percolation

calculations. We explain it brieAy here. The idea is to
study the probability P(p, L) that a lattice of linear size L
percolates at concentration p. This function has a charac-
teristic smooth step shape which becomes more pro-
nounced by larger L. By definition one can take the value
of p at which P(p, L) = —,

' to correspond to the critical
value p, (L) for a given L. In the limit L ~ one obtains
the asymptotic value p, for infinite systems. In practice
the problem reduces to determine whether a cluster per-
colates or not for a given L and to perform an average
over several configurations. We have worked with
L ~100 and averaged over about 1000 configurations.
Our values of p,' and p,

" are listed in Table I. Since the

TABLE I. Percolation thresholds for the RRN model of
dispersed ionic conductors.

Auctuations of the percolative properties in a finite system
near the critical points are stronger, the larger the particle
size, the resultant accuracy in our values of p,',p,

"
for

larger s is correspondingly lower.
The eff'ect of the particle size is clearly seen in Fig. 3

where for a fixed value of ~=100, we have plotted the
diffusion constant D(p) as a function of the particle size s.
The diff'erent curves are for diff'erent concentrations
(p =0.46, 0.40, 0.33, and 0.30). In order to perform a
quantitative comparison with experiments one should note
that different values of r in our model correspond to
diff erent temperatures in the experiment. Our results
can be compared with those of Ref. 2 (inset in Fig. 3); the
qualitative agreement is very good.

A further support for our model is obtained from the
experimental results on the conductivity of CuC1(AI203)
as a function of A1203 particle size. In such compounds
a rapid drop is first observed in the conductivity o. for
fixed temperature, as the size of A1203 particles increases.
Later, o tends to saturate for larger sizes.

A very interesting situation arises when one has (ran-
domly oriented) rodlike particles of different sizes. The
critical concentration p,

' for the onset of high conductivity
does not change appreciably with increasing length I of
the rods, but the second threshold p,

" (see Table I) for
conductor-insulator transition decreases rapidly as I in-
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FIG. 3. Diffusion constant D(p) as a function of particle size
s for fixed r 100 and diA'erent concentrations. The inset shows
the experimental results (Ref. 2) for the conductivity of
LiBr- H20-A1203 system as a function of A1203 particle size. A
few error bars are shown. The lines are drawn as a guide.
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FIG. 4. Same as in Fig. 2 for rodlike particles as a function of
particle size (a) I 4 and (b) I 8, for different values of r [(e)
10, (0) 20, (&) 50, (&) 100, (ts) 200 and (a) 500].
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creases. This is physically reasonable because the longer
the rods, the easier it is for them to form closed loops and
destroy conducting paths. Clearly, in the case of rods, a
more realistic model would be the continuous percolation
analog. In the latter, the rods can assume any possible
orientation without the restriction imposed by the lattice.
Furthermore, the problem of continuum percolation of
rods has been extensively studied in the past and the ana-
lytic dependence of the percolation threshold on particle
anisotropy is known in some cases. We proceed now with
the discussion of our results on rods. In Fig. 4, we have
shown the values of D(p) as a function of the concentra-
tion, for various values of z for 1=4 [Fig. 4(a)j and 1=8

[Fig. 4(b)]. This behavior of D(p) is similar to that
displayed by the conductivity' of Agl (fly ash) and one
may expect that a similar mechanism as for long rods in
two dimensions is playing a role in such compounds.
Thus, our calculations provide a simple framework for un-
derstanding the particle-size eff'ects in dispersed ionic con-
ductors.
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