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Valence-bond approach to two-dimensional broken symmetries: Application to La2Cu04
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We use a real-space approach to geometric broken symmetries to show that the on-site electron
correlation destroys the bond alternation in a square lattice, even though this interaction enhances
the one-dimensional bond alternation. Boundary lines between charge- and spin-density waves are
derived for nonzero short-range intersite Coulomb correlations. Implications for systems like
La2Cu04 are briefly discussed.

In spite of initial controversies, it is now generally ac-
cepted that mean-field and perturbative theories of
Coulomb effects on one-dimensional (1D) broken sym-
metries predict erroneous results. Thus, in contradiction
to Hartree-Fock predictions it is found that the bond al-
ternation and the associated 2kF bond order wave (BOW)
in a half-filled 1D band is enhanced by moderate on-site
electron repulsion (Hubbard U), and that the BOW and
the 2kF spin-density wave (SDW) coexist for all correla-
tion parameters. ' The BOW gets destroyed only at the
onset of the 2kF intrasite charge-density wave (CDW), in
which the on-site atomic charge, rather than the bond or-
der or spin density, is modulated. The boundary between
the 1D BOW-CDW has now been precisely defined, even
for arbitrarily long-range Coulomb correlations. " All
these have raised anew the questions regarding corre-
sponding broken symmetries in two-dimensional (2D)
correlated systems. While the problem is of fundamen-
tal interest in its own right, more recent excitement is

largely due to the high-temperature superconductivity
found in oxide materials. " Various mechanisms for
destroying specific geometric broken symmetries while
leading to singlet pairing have been postulated by investi-
gators who have emphasized the role of electron correla-
tion in the above materials. ' ' It is relevant even in this
context to determine correlation eff'ects on 2D broken
symmetries, especially since one of the above mecha-
nisms' for superconductivity requires enhancement of the
2D BOW by U and its coexistence with SDW, just as in
1D.

We are interested in the Hamiltonian,
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Here, all interactions are for a square lattice H &, and H„
are the one-electron and many-electron parts of H, (ij )
imply nearest neighbors, while [kl] are next nearest
neighbors; y; is the displacement of the ith atomic unit
from its equilibrium position, a is the intersite electron-

phonon coupling constant, and e; can be any interaction
that promotes a 2kF CDW: site energy, a molecular crys-
tal kind of electron-vibration coupling, or even the
breathing-mode displacements of the oxygen atoms sur-
rounding the copper atoms in the oxide materials. The ex-
act nature of e; does not matter for the general problem,
since we are interested in unconditional broken sym-
metries that occur for, a, t.'; ~ 0+. Therefore, we have not
explicitly included the elastic energy contributions. Final-
ly, n;, =c;,ct;„n; =g, n;„where s is the spin. We have re-
tained both V~ and V~NN and are interested in determin-
ing the eff'ect of each term on the BOW, CDW, and
SDW.

The approach we use is the valence bond (VB) ap-
proach to broken symmetry. ' This method has not only
been highly successful with controversial 1D problems, '

but has also been used to predict unanticipated results
elsewhere. ' Indeed, it was claimed very early' that the
chief utility of the VB approach would be its application
to broken-symmetry problems that cannot be solved by ei-
ther analytic or numerical methods. Recent solution of
the 1D broken-symmetry problem even in the presence of
arbitrarily long-range Coulomb interactions is the
clearest example of the above. VB ideas have recently
been postulated even to explain the high-T, superconduc-
tivity, ' while in the past they were used to postulate a
theory of metals that is quite diAerent from band
theory. ' There is of course a good reason why the VB
method can in principle be used to predict qualitative re-
sults for all geometric broken symmetries: the definition
of broken symmetry as imperfect resonance (in the VB
sense, see below) is a natural definition. In the same con-
text, Pauling's theory of metals' requires perfect reso-
nance. In general, there are only two caveats to the appli-
cation of the VB ideas. Firstly, the approach requires that
the free-fermion results are precisely known since the VB
approach can only predict the eAects of H„on broken
symmetries that already exist within H~, . Usually, this is
not a problem. Secondly, it requires judicious choice of
what we have called extreme configurations (see below),
since it is the barrier to resonance between these extreme
configurations that leads to broken symmetry. Often,
determining the extreme configurations is the difficult
step, since they can depend on geometries and dimen-
sionalities (see below).

We brieAy present here the VB ideas for the sake of
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Here the solid and broken arrows represent one and
(%/2 —1) applications of H~„respe tci evly. Broken sym-
metry is an unequal contribution to the wave function by
L; and R; and arises within Hi, due only to the infinite
length of the paths. It can be both enhanced or destroyed
by H«. If L ~ and R i are such that H„' & Hee ~

(.. H,(, , where . H,(,') =(Li; )H„]L;)=(R; (H„)R;),
Coulomb eff'ects enhance the broken symmetry in ques-
tion. If the reverse is true, resonance is enhanced and bro-
ken symmetry disappears at some critical H«. Thus, the
ground state of H„gives the dominating broken symme-
try of H.

Therefore, we see that correct results can always be
predicted provided L

&
and R

&
have been chosen judicious-

ly. In 1D, L/ (R/ ) and L/ (R/ ) can be
chosen from inspection alone: L =. . . 2020. . . and
L =. . . 1111.. . , where the numbers 0, 1, and 2
denote site occupancies by electrons and 1 denotes a spin
opposite to that of 1. Determining L~ is more compli-
cated, because charge transfer depends both on occupancy
as well as spin. Since an extreme configuration must have
a short repeat unit which favors the maximum diff'erence
in local bond orders, we see' that there are two candidates
for L, . . . 2200. . . , and . . . (11 —11)(11 —11).. . ,
where it should be obvious that (11 —11)denotes a pair of
nearest neighbors linked by a singlet coupled bond. '
This particular linear combination is a Kekule structure in

the chemistry language. Within the repeat unit
. . . 2200. . . , maximum charge transfer is favored between
atoms with occupancies 2 and 0, while minimum charge
transfer is favored between nearest neighbors with occu-
pancies (2,2) or (0,0). The Kekule structure with single

completeness. We shall illustrate our ideas with the ex-
ample of the 2kF broken symmetry in the 1D half-filled
band; the implications for 2D will be obvious. Within VB
theory the wave function is a linear combination of all
possible many-electron real-space configurations. To un-
derstand broken symmetry we start by classifying all
configurations into L, R, and S, where L and R favor the
"left" and "right" phase of the broken symmetry in ques-
tion, while S stands for "symmetric. " In the two-site
CDW case for example,

~
L) =

~
20), R =

~
02), and

5 =
~
11) where the numbers denote the number of elec-

trons on a given site. Within each class for the infinite
chain, configurations are then further classified according
to the extent to which they favor broken symmetry; e.g. ,
L~ would favor the left phase most strongly, L2 slightly
less strongly, and so on. The following are then true in

general: (i)
~ L;) =a

~ R;), where a is the symmetry
operator in question (mirror plane passing through a site
for BOW, passing through a bond center for CDW and
SDW), (ii) L; and L; ~ & (and similarly R; and R; ~ &) are
related by a single application of H i„ i.e.,
H~, ~

L;) = ~L;~ &), and (iii) only L& and R& are unique;
L2, for example, is the full set that can be obtained from
L i from one application of H ~, any~here along the
infinite chain. Resonance is the process of repeated appli-
cation of Hi, on Li to reach R~ along an infinite number
of paths' each of which looks as follows:
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FIG. l. (a) Bond-alternation pattern in a square lattice and

(b) the extreme VB configuration that favors it most strongly
(see text). Here solid and dashed lines represent strong and

weak bonds and the square is distorted in reality.

occupancies similarly favors strong charge transfer be-
tween nearest-neighbor bonded sites, and much weaker
charge transfer between a nonbonded pair, since in the
latter case spins are parallel or opposite with equal proba-
bility. ' By explicitly writing down all possible electron
occupancy and spin arrangements over three consecutive
sites, it is easily ascertained that there are no other con-
tenders for extreme BOW configurations. In order to
choose between these two possibilities we now have to de-
cide on proper boundary conditions. In 1D we had argued
in detail why the infinite chain behaves more like a 4n+2
membered periodic ring rather than a 4n ring, where n is
an integer (a Jahn-Teller, rather than Peierls, distortion
occurs in the latter). Based on this argument we had dis-
carded the configurations. . . 2200. . . and its translated
version, and chosen the two Kekule structures as Li
and Ri, since the former pair cannot occur in a 4n+2
ring. On the other hand, because the former pair does
occur in a 4n ring, and because the on-site correlation des-
troys double occupancies, for the 4n ring H„' & H„).. . in (2), so that Hubbard U reduces bond alternation
in 4n rings even while it enhances it in finite 4n+2 rings
and the infinite chain. All of the above predictions, as well
as those corresponding to V&, etc. , are completely borne
out by exact numerical calculations. '

Coming back to the 2D problem, we first note that none
of the basic VB principles on imperfect resonance can be
diff'erent, except that 2K~ is now (x/a, x/a), where a is
the lattice spacing. The bond alternation pattern for this
case is shown in Fig. 1(a). The difference can occur only
in the choice of extreme configurations (as for instance in

the case of 4n vs 4n+ 2 periodic rings). Inspection again
shows that the extreme configurations that promote either
the 2D CDW or the SDW most strongly are simply the
2D counterparts of. . . 2020. . . and. . . 11 11.. . , where
now these units are repeated along both the x and y axes.
It is when we come to the BOW that we see a major
difference: there is no Kekule structure which promotes
the 2KF BOW here. Note that now from each lattice
point there originate t~o, and not one, strong bonds
(which are mutually orthogonal), and there can be no co-
valent structure (at least within the nondegenerate Hub-
bard models) in which a neutral atom with only one elec-
tron is bonded to two nearest neighbors. It is further
significant that there are now virtually an infinite number
of VB structures with nearest neighbors bonded (instead
of just two in 1D, where all other covalent structures have
long bonds between nonnearest neighbors), thus further
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indicating that the 2KF BOW is not promoted by these.
On the other hand, the 2D equivalent of the configuration
with the repeat unit . . . 2200. . . is entirely possible, as
shown in Fig. 1(b). Again, strong charge transfer is
favored between nearest neighbors with occupancies 2 and
0, and much weaker charge transfer between the other
sites. The configuration in Fig. 1(b) thus strongly favors
the 2KF BOW, with two strong bonds and two weak bonds
originating from each lattice point. Exactly as in 1D, one
can now construct paths as in (2).

Having determined the extreme configurations that pro-
mote the 2KF BOW, CDW, and SDW in 2D, it is now
easy to predict all the effects of the Coulomb correlations
in Eq. (1). From Fig. I, U destroys the BOW in 2D, in
contrast to the enhancement effect in 1D. From the na-
tures of the CDW and the SDW extreme configurations,
U destroys the CDW, but enhances the SDW, exactly
as in 1D. Since each broken symmetry is favored by a
distinct extreme configuration, two different broken sym-
metries will coexist only if the ground state simultan-
eously can contain both the corresponding extreme
configurations. In 1D, the BOW structure
. . . (11—11)(11—11).. . contains. . . 1111.. . , so that a
BOW must coexist with SDW. In 2D, L

&

o (and
RP ) contain double occupancies and empty sites, so
that BOW-SDW coexistence is not possible. An addition-
al twist is that while the 1D Kekule structure contains the
SDW configurations, the converse is not true, so that once
long-range antiferromagnetic order sets in even in 1D,
BOW vanishes. Another way of looking at it is to consid-
er the definition of bond order as the expectation value of
charge transfer: in the Neel configuration charge
transfers to the left and to the right are equally probable.
This explains why the appearance of long-range antiferro-
magnetic order and disappearance of BOW coincide' in
the Ising-Heisenberg model. Long-range antiferromag-
netic order has been postulated to exist in 2D for all U by
Hirsch, and while we are not able to confirm this for ar-
bitrary U it should be clear from what we have said that
the BOW disappears as the antiferromagnetic order sets
in.

In the absence of V~, VNNN the magnitude of U, de-
pends on a and cannot be determined from VB arguments
alone. The boundaries between the various phases are
easier to determine for nonzero intersite interactions.
This again is similar to the 1D case, where just from the
nature of the extreme configurations the line V~ =U/2 was
predicted' to be the CDW-BOW and the CDW-SDW
boundaries. Here also we predict V~ to enhance the SDW
first, by examining paths such as (2): initial charge
transfer in L~ produces a neighboring double occupan-

cy and an empty site which are excitonically bound' for
V~ &0, i.e., an energy V~ is required to separate them.
However, here the extreme configuration for the CDW
has a lower energy for V~ & U/4. Therefore V~ & U/4
enhances the 2KF CDW and destroys the 2KF SDW.

For both V~ and VNNN&0, VNNN destabilizes the CDW
much more strongly than the SDW. From the extreme
configurations the CDW-SDW boundary is given by
V~~U/4+ VNNN, where for a smaller left-hand side we
have enhanced SDW, while for a smaller right-hand side
we have enhanced CDW. We assume U & V~ & VNNN
and therefore do not worry about the BOW.

For convenience, the theoretical discussion has focused
on the square lattice, but all the above arguments are val-
id for the rectangular planes that occur in orthorhombic
systems like La2Cu04. The completely general case in the
U=O limit has been discussed by Horovitz etaI. ' For
the half-filled band with hopping limited to nearest neigh-
bors on a bipartite lattice nesting always occurs, and
therefore bond alternation is again unconditional for
U=0, although the mean bond lengths as well as the dis-
tortions along the two axes are different. For large U,
bond alternation disappears and antiferromagnetism ap-
pears as before, with two different exchange integrals.
The only difference between the square and the rectangu-
lar lattices is that in the inequality discussed above V&

should strictly speaking be replaced by the average of the
two nearest-neighbor interactions in the latter case. In
La2Cu04 itself, antiferromagnetism has recently been
found.

To sum up then, we have determined the effect of
short-range Coulomb correlations on the three geometric
broken symmetries in a square lattice. Our most impor-
tant result is that the U destroys the 2KF BOW in 2D.
The spin-Peierls state is therefore a unique feature of 1D.
Based on the hypothesis that the spin-Peierls state persists
in 2D, Hirsch ' has argued against the resonating valence
bond (RVB) theory of superconductivity' for systems
slightly away from the half-filled band limit. Rather, it
has been proposed, that the tendency to the spin-Peierls
state persists even when weakly doped, and pairing in-
volves the electrons on a short bond in the presence of
high-frequency phonons. Present work shows that both
the objection to the RVB theory as well as the alternate
theory of superconductivity are based on an incorrect hy-
pothesis. It is emphasized that this does not necessarily
imply that the RVB approach to superconductivity is
correct. We finally note that most of the present results,
in particular the noncoexistence of the BOW and the
SDW, can be carried over to 3D, in contrast to the 1D re-
sults.
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