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Fluxoid quantization in the resonanting-valence-bond model is investigated.

It is shown that

the explicit solution of the one-dimensional model is periodic with period A/2e in the fluxoid, but
that in the zero-temperature limit there are two families of states corresponding to odd and even
multiples of h/2e. It is shown that for a general lattice, not necessarily bipartite, a topological
constraint leads to the conclusion that A/2e is the unit of fluxoid.

INTRODUCTION

In the resonating-valence-bond model for high-tem-
perature superconductors, as proposed by Anderson' and
modified by Kivelson, Rokshar, and Sethna,? electrons are
arranged on the square lattice of copper atoms in such a
way that each atom is bonded to one of its neighbors by a
singlet electron pair. The ground state is a linear superpo-
sition of all the states that can be formed by such a dimer-
ization of the lattice. If all atoms are covered by this di-
merization no charge transport is possible, but singly
charged vacancies can be formed in pairs by removing
electron pairs. These vacancies are mobile and can lead to
superconductivity if Bose-Einstein condensation occurs.

Since the charge-carrying boson is singly charged it has
been argued by various authors that the unit of magnetic-
flux quantization should be #/e rather than h/2e, which is
contrary to the results observed in polycrystalline high-
temperature superconductors.® In Ref. 2 it was shown
that this argument is incorrect in a bipartite lattice, and
topological restrictions ensure that the charged boson
must go around a current-carrying ring in pairs, so that
the correct quantum of flux is indeed A/2e in this model.
In this note two aspects of this problem are looked at in
more detail. It is shown that the one-dimensional version
of this model, which is just the well-known model of po-
lyacetylene due to Su, Schrieffer, and Heeger,* is indeed
periodic in the fluxoid with period //2e, but there are two
families of low-lying states according to whether the num-
ber of flux quanta is odd or even. Secondly, it is shown
that the topological argument can be extended to arbi-
trary lattices, and is not restricted to bipartite lattices.

ONE-DIMENSIONAL MODEL

In one dimension the model leads to a variant of a mod-
el whose solution has been known for fifty years (see Lieb
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and Mattis> for references). Vacancies occur alternately
on odd and even site numbers, since there must be an even
number of bonded atoms between each pair of successive
vacancies. Any vacancy can hop to its next-nearest-
neighbor site unless there is a vacancy on the intervening
site. This can be described by a Hamiltonian of the form

H=Y [ublb,— V(b b+ 1+bl1b,-) A —=b)b)] ,

v=1
1)

where b, is a boson creation operator for a vacancy on the
site v, provided it is understood that only states with not
more than one vacancy per site are considered. We also
assume periodic boundary conditions for the system whose
length L is an even multiple of the lattice constant a. The
possible wave functions for NV vacancies are of the form

det(e™sFntrady )

in the region defined by x, <x,+;+a, xy <x;+L+a,
where the coordinates x, are even or odd multiples of a for
n even or odd. The condition for this wave function to
vanish on the boundaries of the region is

k;=2n(r;j+8)/(L+Na) , 3)

where r; is an integer and & is a constant determined by
the condition that the wave function is unchanged by the
cyclic permutation x, — x,+>. This condition gives

=Y 2ak;j+2k;(L+Na) =2zmn , 4)
J

where n is an integer. Solution of Egs. (3) and (4) gives

ij=(27r/L)Z(r,+%) (Sa)
J J
or

ij=(27r/L)er. (5b)
J J

7187 © 1987 The American Physical Society



RAPID COMMUNICATIONS

7188

Girardeau® has pointed out that such a solution displays
some sort of generalized Bose condensation. It does not
show essential features of superconductivity or super-
fluidity such as persistent currents, fluxoid quantization,
or quantization of circulation, because its excitation spec-
trum is essentially that of a noninteracting Fermi gas.
Equation (5) shows that there are two inequivalent sets of
states that cannot readily transform into one another. If
we take the r; to be the integers from —N/2 to N/2—1
then Eq. (5a) gives the ground state if the magnetic flux is
zero, but Eq. (5b) gives the ground state if the flux is
h/2e. Which of these two families of states lies lowest is
an oscillatory function of the enclosed flux with period
h/e.

Thermal excitations mix these families of states. The
center-of-mass momentum Y k; for the noninteracting
Fermi gas is in free motion, so it has a mean-square value
8NVa?*/kgT. This results in a variance of & equal to
NkgT/327%V, so thermal motion mixes these states when
the temperature 7T is of the order of ¥/Nkg. Thus the me-
tastability disappears at nonzero temperatures in the mac-
roscopic limit. It is, of course, to be expected that a one-
dimensional model should have its superconductivity des-
troyed by thermal fluctuations at any nonzero tempera-
ture.

FLUXOID QUANTIZATION FOR A
GENERAL LATTICE

In Ref. 2 it was shown that for a bipartite lattice there
is a topological constraint on the charge transport by sing-
ly charged vacancies that makes the quantum of fluxoid
h/2e. 1In fact, there is a more general argument of this
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FIG. 1. A section of a ring showing valence bonds between
pairs of atoms, with one positively charged vacancy. In (a) an
odd number of bonds crosses vertical gaps between atoms to the
left of the vacancy, while an even number crosses the gaps to the
right of the vacancy. The configuration shown in (b) can be ob-
tained from (a) by transporting the vacancy once around the
ring, and that configuration has an even number of bonds cross-
ing gaps to the left, and an odd number crossing gaps to the
right.

D. J. THOULESS 36

sort that can be applied to any lattice. For simplicity I
consider a uniform strip of triangular lattice, for which
each row transverse to the length of the strip has an even
number of 2K atoms, as shown in Fig. 1; the argument is
readily generalized to strips which contain many connect-
ed layers, or which have an odd number of atoms in each
cross section. The strip is connected to itself in the form
of a ring of length L. In the absence of vacancies each
atom is bonded to one other atom, so that each atom has
one bond ending at it. Each gap between two of the rows
of 2K atoms is crossed by a number of bonds which is ei-
ther even for each gap or odd, since an even number of
bonds ends on the row of atoms. If a row of atoms con-
tains a single vacancy, then this number changes from odd
on one side of the row to even on the other. The bonds can
rearrange locally by electrons tunneling through doubly
charged states of the atoms, but the parity of the number
of bonds in a gap cannot change.

Transport of a single vacancy right around the ring
changes the parity in every gap, as is shown in Figs. 1(a)
and 1(b). Therefore the Bose statistics of the vacancies
cannot lead to any superposition of states obtained from
one another by any transport of the vacancies an odd
number of times around the ring. The original con-
figuration can be reached by transport of a pair of vacan-
cies once around the ring, or by a single vacancy twice
around the ring. Therefore the effective charge that
determines the quantum of fluxoid quantization is 2e and
not e.

General, plausible, but not compelling arguments were
put forward by Yang’ to show that for fermions the
denominator of the quantum of flux should be an even
multiple of e. There are exceptions to this rule, and a
superfluid plasma of *He™* ions should have flux quanta
h/e according to Yang’s arguments.

CONCLUSIONS

Vacancies in a one-dimensional resonating-valence-
bond model behave very much like hard-core bosons, with
no persistent currents, and no flux quantization except in
the zero-temperature limit; this is just what should be ex-
pected for a one-dimensional model. In the low-tem-
perature limit energy is periodic in flux with period h/2e.
Low-lying states for odd and even multiples of flux 4/2e
are separated from one another. These two families of
states are mixed by nonzero temperatures of order
V/Nkg.

For the general lattice it can be shown that transport of
a single vacancy around a ring does not restore the
configuration to its original state, but it must be transport-
ed twice around the ring, so that the quantum of fluxoid is
h/2e.

The same conclusion could be drawn by considering the
wave function of the bonds rather than the wave function
of the vacancies. The one-dimensional model can be
solved by writing down a similar wave function for the
nonoverlapping valence-bond pairs, and transport of two
vacancies once or one vacancy twice around the ring is
equivalent to the transport of a single electron pair around
the ring.
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