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Chiral order in a two-dimensional 4'Y spin glass
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Ordering phenomena in the two-dimensional XY (plane-rotator) spin glass are studied by
Monte Carlo simulations, with particular attention to the behavior of the chirality, which is an

Ising-like multispin variable associated with a broken reflection symmetry. The chiral degrees of
freedom are found to order in a markedly different manner from the XYspins: Indeed, the chiral

susceptibility can be accurately mapped onto the spin-glass susceptibility of a pure Ising spin

glass.

I. INTRODUCTION

It was pointed out by Villain that the ground state of
certain frustrated vector spin systems could display a two-
fold, Ising-like degeneracy, in addition to a continuous
degeneracy associated with the original spin symmetries.
This twofold degree of freedom is called "chirality, " and
is closely related to a reflection symmetry of the system.
Villain analyzed the properties of an XYspin-glass model
in two dimensions, and suggested the importance of this
"chiral" degree of freedom for the spin-glass behavior. '

The detailed nature of a possible chiral ordering and its
relation to the usual spin ordering are still intriguing is-
sues. In this article, we report on the results of extensive
Monte Carlo simulations for the + J XY model on the
square lattice, the simplest spin-glass model which can
sustain a chiral degree of freedom. We introduce a chiral-
ity variable, define the corresponding "chiral susceptibili-
ty,

" and calculate it together with the conventional spin-
glass susceptibility. It is concluded that the conventional
spin-glass susceptibility diverges at zero temperature as a
power law, characterized by an exponent consistent with
the estimates of other authors. By contrast, the chiral
susceptibility turns out to exhibit a significantly diAerent
behavior: Indeed, it diverges in essentially the same way
as the spin-glass susceptibility of a pure Ising spin glass.

regular ferromagnets or collinear antiferromagnets, this
operation generates all possible ground states. In a frus-
trated system like our model this is no longer so. In fact,
if one makes a global spin refiection in a ground state with
respect to an arbitrary axis in the spin space, one can ob-
tain a distinct ground state which cannot be reached by
any rotation from the original state. Thus the full set of
ground states consists of at least two disconnected mani-
folds, which are characterized by opposite ehiralities.
This is illustrated for a single isolated frustrated plaquette
in Fig. 1: A global spin reAection of the state (a) with
respect to the x or y axis, yields the states (b) or (c), re-
spectively, which cannot be generated by a global rotation
from the state (a); on the other hand, the states (b) and
(c) can be connected by a global rotation (of 180 ).

Evidently, chiral order can be regarded as a manifesta-
tion of the breaking of a reflection symmetry, namely of
the Z2 symmetry relating the two equivalent but discon-
nected sets of ordered states with opposite chiralities. Re-
cent studies on regularly frustrated XY systems have
indeed revealed that the existence of chiral degrees of
freedom deeply influences the nature of the phase transi-
tion. Therefore, even in spin glasses, it is likely that the

(c)
/

II. CHIRALITY

Our model is the two-dimensional +J plane-rotator or
XY model on the square lattice with two-component,
fixed-length spins (s;) with orientations 8;. The Hamil-
tonian is

'Jtt =g J~Is; sI =g J;,cos(8; —81),
(,ij ) (ij &

where the sum runs over nearest-neighbor pairs (ij), while
the J;j are independent random variables taking the values
+J and —Jwith equal probability.

Consider, first, the global symmetry of the model. If all
spins in a ground state are rotated equally, one obtains
another ground state. In unfrustrated systems, such as

FIG. 1. Various spin configurations on frustrated plaquettes.
A bold line represents a ferromagnetic bond while a double line
represents an antiferromagnetic bond. The signs inside the pla-
quettes denote the sign of the local chirality.
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chirality plays a crucial role in the ordering phenomenon.
In order to provide a concrete definition of chirality,

consider an elementary plaquette a in the lattice consist-
ing of four spins. The local chirality, ~„at a plaquette a,
will be defined by the scalar

K, =2 ~ gsgn(JJ)sin(9; —9~),
&ij)a

(2)

where N is the total number of spins, ( ) denotes a
thermal average while [ ]J indicates a configurational
average over the bond distribution. This susceptibility
should diverge when chiral ordering takes place. The
spin-glass susceptibility may be defined in the usual way
as

where the summation runs over a directed contour of, say,
clockwise orientation, along the sides of the plaquette.
Note that x, is invariant under any global rotation of the
spins whereas it changes sign under any global reflection
0; 260 0;, where 00 specifies the axis of reflection. In
any ground state of an unfrustrated plaquette one has
x, =0, but in a ground state of an isolated frustrated pla-
quette, one has x = + 1 or K = —1. In the examples in
Fig. 1, the state (a) has a +1 chirality whereas the states
(b) and (c) have rc = —1. In the ground state of two adja-
cent frustrated plaquettes, the local chiralities have oppo-
site signs, as shown in Fig. 1(d). A lowest metastable ex-
cited state having both chiralities of the same sign is illus-
trated in Fig. 1(e); its energy lies [(7/J2) —4]J above the
ground state (d). Roughly speaking this implies that the
K, can be regarded, in this case, as Ising-like variables
coupled with an effective antiferromagnetic interaction
JI = [(7/2 J2) —2]J=0.47J.

The chiral susceptibility for a spin glass is naturally
defined by

(3)

total of t () 10 ) Monte Carlo steps per spin (MCS/S)
were generated in each run. The first to MCS/S were dis-
carded to ensure equilibration and the subsequent t —t,
MCS/S were used to evaluate the chiral and the spin-glass
susceptibilities via (3) and (4). At each temperature a to-
tal of from t =4X10 up to 3X 10 MCS/S were generat-
ed with 10 ~ to ~ 10 . The configurational average was
taken over 20 samples for each temperature and lattice
size. We could equilibrate the system for temperatures
T/J~0. 25 (in units with kg =1). The lowest tempera-
ture we could reach matches that attained by Jain and
Young but our overall sampling times were considerably
longer than theirs.

Figure 2 exhibits the temperature and size dependences
of the spin glass and the chiral susceptibilities, ZsG and X,
on a log-log plot. The data for LsG lie close to a straight
line, which suggests a simple power-law divergence at zero
temperature. The associated exponent is estimated as
y = 1.9 + 0.1, which is consistent with the estimate
y=1.80+ 0.05 of Jain and Young. On the other hand,
Z„ is much smaller and the data display a strong upward
curvature which cannot reasonably be fitted by a straight
line. Thus, even if the transition occurs at zero tempera-
ture, the effective exponent, y„' =d(lnZ„)/d[(lnT/J)], in-
creases with decreasing temperature, at least in the inves-
tigated temperature range, T~ 0.25J.

In contrast to a standard Ising spin, the magnitude of
the local chirality variable K„defined in (2), varies with
temperature to some extent: See Fig. 3(a). In order to al-
low for this short-range order effect in X and to make the
correspondence with Ising stains closer, we define a re-
duced chiral susceptibility Z„by dividing X„by the ap-
propriate power of the magnitude of the local chirality:

(5)

(4) 100
XsG spin g lass sUsceptibility

In principle, there are several ways in which the spin
and chiral components might order: They could both or-
der at the same temperature or they might order separate-
ly. In the present model, there are strong indications from
both Monte Carlo simulations and a numerical domain-
wall renormalization-group calculation that the standard
spin-glass ordering occurs only at zero temperature. In
particular, Jain and Young concluded from their simula-
tion that the spin-glass susceptibility diverged at zero tem-
perature as L~G~ T with exponent @=1.80+ 0.05. An
interesting question, therefore, is whether chiral ordering
occurs only at zero temperature, simultaneously with the
spin-glass ordering, or, instead, at a finite temperature. In
either case, the nature of the associated critical behavior is
also of interest.
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In order to answer these questions, we have performed
Monte Carlo simulations using the standard Metropolis
method. Systems with periodic boundary conditions of
sizes N=LxL with L =10, 14, and 20 were studied. A

FIG. 2. Temperature dependence of the spin-glass suscepti-
bility, Esp, and the chiral susceptibility, L„, on a log-log plot for
periodic L x L square lattices with L 10, 14, and 20.
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FIG. 3. (a) Variation of the rms single-plaquette chirality,

(r l'~, defined in Eq. (5). (b) Behavior of the reduced chiral
susceptibility Z„defined in Eq (5), for a 20&20 lattice (solid
dots) and of the difference susceptibility M, X,(T) —X,(~)
(open circles), compared with the spin-glass susceptibility Xz ob-
tained by Swendsen and Wang (Ref. 6) for a pure Ising spin
glass with rescaled coupling JI = —,J (crosses).

The results for the largest lattice size (I.=20) are shown
in Fig. 3(b). The data still cannot be fitted with a straight
line: The effective exponent y„' still increases markedly
as T decreases. In the high-temperature limit, X„ap-
proaches the value X,(~) = —,'. When T ~, however,
the system loses even short-range order and the physical
meaning of chirality becomes obscure. Thus, it is reason-
able to regard Z„(~) as a background and to examine
~„=Z,(T) —Z„(~) which is represented by the open cir-
cles in Fig. 3(b). It is interesting that both Z„and M„
yield almost the same effective exponent, namely
y„' =4.5, at the lowest temperatures studied. This value,
and the overall behavior of hX„ is, in fact, fairly insensitive
to the (x ) factor; without this factor we would estimate
y„' =5.0. Of course, it is possible that y„' increases fur-
ther at temperatures T & 0.25J where we could not equili-
brate the system because of the extremely slow relaxation
processes.

It should be noticed, however, that the behavior of the
chiral susceptibility found in Fig. 3 is quite similar to the
behavior of the spin-glass susceptibility observed in the
two-dimensional Ising spin glass. Thus, Swendsen and
Wang calculated the spin-glass susceptibility Xz of the
~ J Ising model on the square lattice, and also found that
the effective exponent y' increased as T fell. Further-
more, they estimated a limiting value y=5.3; this is
reasonably close to our own low-temperature estimate
y„' =4.5, although this might well increase further at

lower temperatures. To test the correspondence more
closely we have plotted Xi as obtained by Swendsen and
Wang for the Ising spin glass, after a rescaling of the
units of energy and temperature. The best fit to hX„ is ob-
tained by choosing JI, the bond energy of the ~ J Ising
spin glass, as JI = —,

' J: See the crosses in Fig. 3(b).
The close similarity between Zz and did„ is not entirely

unexpected, because chirality is essentially an Ising-like
variable. Indeed, Villain' showed that the chiral com-
ponent in the present model is equivalent to a site-diluted
Ising system with long-range, antiferromagnetic logarith-
mic Coulomb interactions, provided that the contribution
of spin waves and thermally excited vortices can be
neglected. When the effects of vortices are taken into ac-
count, the Coulombic interactions might be screened at
large distances. This suggests that, although the two
models are not completely equivalent, they share several
basic ingredients, in particular the same symmetry and lo-
cal frustration: This similarity seems to explain the ob-
served resemblance of the chiral susceptibility of our XY
spin-glass model to the spin-glass susceptibility of the pure
Ising spin glass. Indeed, in some regularly frustrated XY
models, a similar correspondence has also been observed.
For example, for the XYmodel on the so-called odd lattice
(in which bonds on every other row of a square lattice are
antiferromagnetic while all other bonds are ferromagnet-
ic), Monte Carlo simulations indicate that the chiral com-
ponents have two-dimensional Ising-like critical proper-
ties. The transition temperature for the odd lattice was
estimated as T, =0.45J. On comparison with the stan-
dard square-lattice Ising model this indicates an energy
rescaling Jq=0.40J. This is not so far from Jr=0.47J
which we obtained by direct study of the twinned frustrat-
ed plaquettes in Fig'. 1. In the full XY spin-glass model,
the corresponding relation deduced from the fit in Fig.
3(b), is JI =0.25J. From a theoretical perspective this re-
lation now seems very reasonable if one notes that the
density of frustrated plaquettes in the fully random model
is precisely one-half that in the fully frustrated odd lattice.

Although the preponderance of theory now suggest
that the pure Ising spin glass in two dimensions orders
only at T =0, the Monte Carlo data alone cannot rule out
a transition with T, &0. Thus Swendsen and Wang re-
ported that their data were consistent with T, =0.28JI.
Likewise, our data for X„ in the XYspin glass can be fitted
in the range 0.25J ~ T ~ 0.50J to C/[(T/T, ) —1]"with
T, =0.20J, y=1.0, and C=6.2. However, an exponen-
tial divergence at T=O of the form X„=Coexp[c~(J/
T) ] with cr=1.4, Co=1.4, and c~ =0.42 also provides a
good fit in the range 0.25J & T &0.8J. Thus while we
cannot rule out chiral ordering in the XY spin glass at
T, )0 the similarity to the pure Ising spin glass certainly
favors a transition only at T, =0.

IV. DISCUSSIONS

Even if chiral ordering occurs only at T=0 in two di-
mensions, as we conclude from our study, chiral ordering
at nonzero temperature might well occur in three dimen-
sions. Thus it is now well established that the three-
dimensional Ising spin glass with short-range interactions
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does have a nonzero transition temperature. Although
the close analogy which we have demonstrated in two di-
mensions between chiral and Ising spin variables is less
precise, in three dimensions, because of additional geome-
trical constraints on the chirality distribution, the basic
analogy as regards symmetry and frustration should still
hold. This suggests that chiral ordering should occur at
nonzero temperature. On the other hand, several calcula-
tions suggest that normal spin-glass ordering occurs only
at T 0 in three-dimensional LY spin glasses. If so, the
occurrence of chiral ordering at T) 0 would mean that
the ordered state was characterized by a broken reflection
symmetry but with rotational symmetry preserved. The
question of whether such an unusual phase really arises in

three dimensions remains most interesting.
Finally, consider the possibility of chiral ordering in a

Heisenberg spin glass. ' In this case, at least three spins
are necessary to define chirality in contrast to the XY
case. One possible definition of local chirality is

a. =det[sf S2 S31 Sl X S2' S3

A Heisenberg spin glass can sustain chirality provided the
spin directions in the ordered state are not confined to a
common two-dimensional plane in the three-dimensional
spin space. On the other hand, if the ordered-state spin

configuration is contained in a two-dimensional subspace,
there is no nontrivial, Ising-like chirality variable. A nu-
merical study by Henley' suggested that the Heisenberg
spin glass could sustain chirality. If this is so, essentially
similar chiral ordering phenomena should be expected
also in Heisenberg spin glasses, which might shed new

light on the nature of the experimentally observed spin-
glass transition.
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