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The transmission coefficient of an electron interacting with a one-dimensional chain of variable
length L is calculated using a variation of standard transfer-matrix techniques. The potential en-
ergy with which the electron interacts consists of a random potential and a fixed static electric
field. In this study, the random potential is modeled as a potential step on a lattice. Using the
zero-temperature Landauer formula, the dimensionless resistance and, hence, the localization
length are obtained. It is found that the presence of the electric field causes delocalization of the

electron for all applied fields F.

I. INTRODUCTION

Recently, there has been a great deal of theoretical and
experimental interest in understanding the conductance
of metal-oxide-semiconductor field-effect transistors
(MOSFET’s) at low temperatures"? and the transport
properties of multiple quantum wells.3"® This interest
stems from attempting to observe the spatial localization
of electrons in the device or the quantum well. In such a
device, the conduction channel is essentially one dimen-
sional and resembles a quantum wire or chain containing
random impurities. In the quantum-well case, the poten-
tials are fixed, but the spatial lengths of the well and bar-
rier layers vary. Previously, Landauer established a con-
nection between the dimensionless resistance and the
transmission coefficient of the chain.” Hence, the resis-
tance of the device is determined immediately upon com-
putation of the transmission coefficient of the chain. It is
the dependence of the transmission coefficient upon ap-
plied field that we explore here.

The problem of determining the transmission coefficient
of a chain of length L with random impurities has been
studied extensively.?"1° As a result of the random poten-
tials, the electronic wave function becomes spatially local-
ized. In the limit of weak localization, Landauer’s result
reduces to Ohm’s law; in the limit of strong localization, it
leads to an exponential dependence of the resistance upon
the length of the disordered region. However, in the pres-
ence of an applied electric field, such as that found in the
conduction channel of a MOSFET, the nature of the elec-
tronic states is not well understood. Previous calculations
of the transmission coefficients have been performed in
which the random potential is taken to be a & func-
tion.!'~13 Here we study the case in which the random po-
tential is taken to be a step of fixed width, but varying
strength. It is found that at small applied electric fields a
smooth transition between localized and delocalized states
occurs as one qualitatively expects.

Similiar calculations have been reported recently by
Cota, José, and Azbel.!* The model potential used in this
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communication is similar to that of Ref. 14, and our nu-
merical results confirm their predictions. However, these
authors use an approximation that we avoid: They em-
ployed a “ladder approximation” to the actual potential
that is accurate at low fields, but expected to be inaccu-
rate at high fields. This ladder approximation consists of
ignoring the continuous variation of the linear potential
term and adjusting the potential in each well (barrier) to
account for the mean potential drop in that region. This
leads to considerable algebraic simplification and allows
relatively easy numerical calculations using standard
transfer-matrix techniques. In the present work, we
sacrifice the algebraic simplicity gained by employing the
ladder approximation and, as a result, obtain exact ex-
pressions for the various quantities needed. As will be
seen later, the transmission coefficient must be evaluated
numerically in any event, and there is little additional nu-
merical cost if the exact expressions are retained. In con-
trast to the technique employed by Cota et al. which re-
quires numerous matrix multiplications, we have adapted
a recursive technique introduced by Azbel and Soven.?
The advantages of this method, as will be seen below, are
that it is numerically stable and that it is recursive in na-
ture. Rather than dealing with the amplitudes of left- and
right-going waves, this technique represents the amplitude
by a complex phase. It is then straightforward to show
that the real and imaginary parts of this complex phase
can be propagated from adjacent regions recursively. The
method, as originally applied by Azbel and Soven, was re-
stricted to regions of constant potential. In this work we
extend the method to regions in which the potential is a
linear function of the coordinate.

Our numerical results confirm and supplement the re-
sults of Cota eral. We also find that the localization
length is a universal function of an appropriate dimension-
less parameter apart from sudden jumps. Hence, we are
able to confirm that the jumps do not arise from the
“ladder approximation” nor the numerical difficulties as-
sociated with the transfer-matrix technique. In addition,
the numerical parameters we have chosen allow for parti-
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cles with energies greater than, less than, and approxi-
mately equal to the mean barrier height so that there is
significant tunneling between adjacent wells.

II. NUMERICAL GENERATION OF THE
TRANSMISSION COEFFICIENT

We now describe the technique used to calculate the
transmission coefficient and five further details of the po-
tential energy. We begin with the latter. A one-
dimensional disordered chain of length L is assumed to ex-
ist along the z axis. The disorder is represented, in this
case, by a random step potential of spatial extent b in the
unit cell of length @ and is given by

0, z<0,

V,—eFz, na<z<na+b ,
—eFz, na+b<z<m+1)a ,
—elU, L<z ,

V(z)= ¢9)

where the ¥, are chosen at random, F =U/L is the electric
|

BRIEF REPORTS 36

field associated with application of a voltage U to the
chain, the electron charge is —e, and we require b < a.
The case is representative of the conduction channel of a
MOSFET. Alternatively, one could fix the potentials in
each cell and vary the spatial lengths b and a to represent
a multiple-quantum-well structure. As noted previously,
the ladder approximation of Cota et al.'* consists of re-
placing the portion of the potential that arises from the
applied bias by a constant, which is different for each cell.
This implies that in each cell the solution of the
Schrddinger equation is given by plane waves.

The Schrodinger equation obtained at energy E, as a re-
sult of potentials with the structure of Eq. (1), can be
solved exactly in terms of Airy functions. To this end, we
introduce the auxiliary variables,

k3= 2meF

h 2
o=k l(V,—E)/eF—z] , 3)
Yn=—ke(E/eF+z) , 4)

so that the general solution to the Schrédinger equation is

Agexplikz) +Boexp(—ikz), z=<0 , (5a)
A,[Ai(E,) — i Bi(¢)14 B,IAI(G) +iBi(¢)], na <z <na+b , (5b)
(&) =1 [Ai() =i Bily,)] + Dy A () +i Bi(y), na+b<z<(n+1)a (5¢)
texp(ik'z) +t'exp(—ik'z), (n+1)a<z , (5d)

where Ai and Bi are the usual Airy functions !’ and k (k') corresponds to free particle motion at energy E (E +eU).

To determine the transmission coefficient, we employ continuity of the wave function and its first derivative at all inter-
faces. For simplicity, we ignore any effective-mass differences in the various regions. Our procedure parallels that of Az-
bel and Soven?® in that we seek relationships between A,+,(B,+1) and A4, and B,, and then introduce auxiliary variables
that allow for stable numerical propagations. Using the continuity of the wave function and its first derivative at
z=na+b and z =(n+1)a, we obtain the following relationships:

A,[AiI(¢2) — i Bi(¢) 1+ B, [AI(LH) +i Bi(¢)]1 =C,[Ai(y)) —i Bi(yD]1+ D, [Ai(y) +i Bi(y)] , (6a)
An[AI'(Z3) =i Bi' (¢ 1+ B, [AI' () +iBi' (¢ =C,[AI' () —i Bi'(y D1+ D, (AT () +i Bi'(y )] , (6b)

Ap+1[AIG + 1) —iBi(& + )]+ By [AI(L)+1) +i Bi(g) + 1)1 =C,[Ai(y2) —i Bi(y2)1+ D, [Ai(y2) +i Bi(y)] ,

(6¢)
Ane[AI' (G 41) =i Bi' (G4 D1+ By 1 [AV(Eh 1) +i BilGh+1)] =G, [AI'(y2) — i Bi'(yD1+ D, (A (¥D) +i Bi' (¥D]
(6d)
I
where the definitions of the arguments of the Airy func-  timately given by
tions occurring in Eqgs. (6) are
t N A; Ao
=k [(Vy—E)feF—2] (7a) | =Hmi|g | =M|p @)

2 = —_ — — =yl _
G =kel(Vu—E)/eF —na—bl=(—keb , (7b) Here the m; are the transfer matrices that correspond to

(70) the solution of Egs. (6) in each layer. Hence, evaluation

of the transmission coefficient requires the solution of two
simultaneous equations subject to the boundary conditions
Ao=1 and 1'=0. However, the evaluation of the matrix
M requires many matrix multiplications, which often lead
to numerical instability. Within the ladder approxima-

Yi=—k,(E/eF+na+b) ,

y2=—k,J(E/eF+(n+1)al . (7d)

Equations (6) can be recast into matrix form so that the
relationship between the coefficients Ag, B, and ¢,¢' is ul-
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tion, Cota et al. '* have taken this route to determine M
and the transmission coefficient.

While formally exact, the technique described above
often is not numerically tractable. To circumvent this nu-
merical difficulty, we use an alternative technique to ob-
tain the transmission coefficient. We begin by introducing
the auxiliary variables G, and ¢, in the manner of Azbel
and Soven:?

A, =exp(G,+i¢,) ,
B, =exp(G, —i¢,) .

(9a)
(9b)

The advantage of this transformation is that rather than
dealing with large (small) numbers such as the 4, and B,
which are characterized by a phase and an exponent, we
deal with the exponent and phase directly. Using Egs. (9)
in Egs. (6) after considerable algebra transforms the ma-
trix multiplication to a recursive relationship between the
exponents G,+; and G, and the phases ¢,+; and ¢,. This
is particularly advantageous when the energy of the parti-
cle is less than the barrier height and the barrier is wide.
In this situation, numerical instabilities easily occur in Eq.
(8), but in this technique they are completely avoided.

To obtain the transmission coefficient D(E)=(k'/
k)|t|? we propagate two independent solutions of the
Schrédinger equation. The first solution has 4g=Bo= +
and corresponds to propagating cos(kz); the second solu-
tion A9=—Bo=i/2 and corresponds to propagating
sin(kz). Let G(G') and ¢(¢') correspond to propagating
the cosine and sine solutions from z =0 to z =L. It is then
straightforward to show that the transmission coefficient
is given by

(k/k")

lity =12’

10)

where t; and t. correspond to the amplitudes of a left-
going wave arising from propagating the sine and a right-
going wave arising from propagating the cosine, respec-
tively. Note that Eq. (10) has the same structure as the
result given by Azbel and Soven?® in the absence of an ap-
plied field. We now write the transmission coefficient as
D =exp(—alL), where a is the inverse of the localization
length L.

III. NUMERICAL RESULTS

To investigate the role of an applied electric field F
upon the localization length, we have evaluated Eq. (9)
using a potential of the form given by Eq. (1) for fixed-
unit-cell length @ =3.0 A and potential extent b =2.0 A.
The random potential step ¥V, was chosen by using a
random-number generator such that V,=fV . with
Vmax=1.3eVand 0<f <1. The {f} were obtained using
a uniform random-number generator. Notice that in the
absence of any applied field, we employ energies such that
the electrons are randomly in a situation in which their lo-
cal wave vector corresponds to exponential growth or de-
cay. As noted previously, this condition often introduces
numerical instabilities into Eq. (7), but the technique em-
ployed in this work avoids this difficulty. Electrons with
three incident energies (E =1.100, 1.436, and 1.772 eV)
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and several electric fields ranging from 0 < F <4.2x10*
eV/cm were considered. The chains consisted of 100, 200,
400, 600, 800, 1000, 2000, and 4000 cells. For each pa-
rameter set, S0 random chains were generated and the
average transmission coefficient was extracted. We note
in passing that all the numerical calculations were per-
formed on a Cary Research Inc. XM-P. Figure 1 summa-
rizes the results of this calculation and demonstrates the
dependence of the inverse localization length as a function
of dimensionless variable x =eFL/E for the various pa-
rameters detailed above.

Figure 1 shows that the inverse localization length is a
monotonically decreasing function of applied field so that
the localization length is monotonically increasing. This
implies that the electronic wave function is merely spread-
ing out throughout the whole chain, which is qualitatively
expected as a result of applying a static electric field.
Furthermore, Fig. 1 suggests that the behavior of a(x) as
a function of x is universal, except for jumps that occur in
each curve. These jumps are attributed to tuning the
electron’s energy to the energy of a localized state allowed
by the parameters. !

In Fig. 2 we plot a(x)/a(0), where a(0) is obtained by
extrapolation from Fig. 1 and depends only upon the ener-
gy of the electron. From Fig. 2 we see that the behavior of
a(x)/a(0) is apart from numerical jumps and noise, a
universal function of x. As noted above, the jumps corre-
spond to tuning the electron into a localized state. In fact,
Cota etal.'* have suggested, based upon the analysis
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FIG. 1. Variation of the inverse localization length a in units
of A~! as a function of the dimensionless variable x =eFL/E.
The symbols ®, V, and + denote results obtained with energies
E =1.1, 1.436, and 1.772 eV, respectively.
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FIG. 2. Variation of a(x)/a(0) using the data shown in Fig.
1. The theoretical result a=(x)/a(0)=1/(1+x) is shown as
the broken line.

presented below, that at large x this ratio is a universal
function; our numerical calculations tend to confirm this
suggestion.

For any nonzero value of x, the electron continuously
gains energy from the electric field associated with the ap-
plied potential. Hence, for long chains the electron has lo-
cal energy £ > Viax. In this case, the electron has near-
unity probability of traversing the potential step. Letting
r, denote the probability of traversing the nth random

step, the transmission coefficient is then given by

N
D=I__I(l—r,,)=exp[—2r,-] an
U i

if multiple scattering is ignored. The presence of multiple
scattering is responsible for the localized states. Using the
Wentzel-Kramers-Brillouin (WKB) approximation, it can
be shown that

(va
i =0.125——— | 12)
" (E+eFai)?
which for large x leads to
InD ao
=Ny _ 13)
¢ L 1+x (

so that a(x)/a(0)=1/(1+x). This result is plotted in
Fig. 2 as the dashed line and yields semiquantitative
agreement with our results. The analysis presented above
cannot yield the discontinuous jumps seen in the numeri-
cal calculations because they are the result of multiple

scattering, an effect which is neglected in obtaining Eq.
(13).1

IV. CONCLUSIONS

The primary results of this paper are twofold and con-
sist of the results presented in Figs. 1 and 2. In these
figures, the dependence of the inverse localization length
upon applied electric field is explored, as well as the exten-
sion of the method of Azbel and Soven?® to other than con-
stant potentials. In fact, we have used this new formula-
tion to consider several problems in optics.!” With regard
to localization from the figures, we see two primary
effects: (1) The behavior of the localization length is a
universal function of the variable x =eFL/E and (2) there
is a smooth transition from localized to delocalized states
as expected. The results of this study confirm and validate
the earlier numerical results, predictions, and conclusions
of Cota et al.,' which are obtained using a different nu-
merical method and with additional approximations to the
potential.
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