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New form of pair interaction in superconductivity in pressure-sensitive systems
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An (electron) quasiparticle-phonon coupling proportional to the superconducting gap is con-
sidered. Eliashberg-type equations are derived and immediate consequences are discussed. These
considerations apply to specific, yet interesting systems.

This paper addresses the following questions: which
types of pair potential stabilizing or breaking up the
Cooper pair can possibly be conceived, and where can we
look for experimental evidence? A partial answer to these
questions may yield insight into interesting and diverse
systems such as the charge-density-wave (CD%) state of'
2H-NbSe2, or the heavy-fermion superconductor2 (HFS)
CeCu2Si2. Physically, the central observation will be a
high-pressure dependence of the superconducting gap pa-
rameter h„ indicating a great variation of 6 with lattice vi-
brations (phonons). This strong phonon-gap correlation
can be parametrized by a new type of pair interaction be-
tween quasiparticles, in addition to the existing (and in
most systems prevalent) Frohlich-type and Coulomb in-
teraction. While the stiff'ening of the lattice with increas-
ing pressure tends to reduce the superconducting transi-
tion temperature T, (it may however adversely increase
T, by increasing the quasiparticle density at the Fermi
surface), for some materials there is a significant increase
in T, when pressure is applied (see Fig. 1). The same be-
havior can be expected from the pressure dependence of
the gap function; it may be estimated by

J/T, /bp = (BT,/8/t ) (8/3/Sp) = (0.57/ktt ) (t16/Bp),

T (2H-NbSe ) T(CeCu Si )

(K)

Ap(x) is the Coulomb field (only the electrostatic part of
the vector potential has been kept), e is the electric
charge, and p =Zh are gap parameters times the quasi-
particle field renormalization constant Z. Due to the
specific form of Lf„„a rotation in r space along the r3
axis with angle 8=tan '(ttt2/tttt) can be performed such
that 42 and, therefore, g2 vanishes; 41 (41+62)'
and gi (gi +g2 ) ' =k (from now on, g3 will be denot-
ed by g). Hence, one is left with the standard Frohlich
and Coulomb interaction (grp+eAp)tptr3+, and with a
new type of coupling kp+~r&+. Since k ~h„ this coupling
vanishes for h, =0.

The Eliashberg theory of this model can be developed
without conceptual difhculties. As long as the ratio be-
tween the square root of the compound and quasiparticle
masses are small, Migdal's theorem can be applied even
for strong-coupling materials. From Dyson's equations
one obtains for the full quasiparticle propagator 6 and its

where the BCS estimate /t. (T =0)/ktsT, = 1.76 has been
used.

The phonon-quasiparticle interaction can be parame-
trized by a very general class of Yukawa potentials pro-
portional to tpt(x)h(x)tp(x)ate(x), where 0'=(tlr„tltt, )
is the quasiparticle field in the two-component Nambu no-
tation and s is the spin index. p stands for the phonon
field, and h, is a gap parameter yet to be calculated from
self-consistent perturbation theory (Eliashberg theory).
Its most general form is ttt(x) = z h(x), where the z s are
the Dirac matrices.

The complete model in Lagrangian form reads (argu-
ments x have been dropped)
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FIG. 1. Strong pressure dependence of the superconducting
transition temperature T, in the CDW state 20-NbSez and the
HFS CeCuzSiz, taken from references 1 and 2. For usual ma-
terials, with very few exceptions, —0.05 & bT, /hp & 0 K/kbar.
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self-energy Z in momentum representation (see Fig. 2).

G '(p) =Gp '(p) —Z(p) =Z(p)Gp '(p),
r

Z(p) =i J (k, z(+g ~, z3)G(p')

(2a)

x (k, z&+g~~ z3)D(q) 4
. (2b)

d4p'

(2x) '
Here, D stands for the phonon propagator, the index zero
denotes bare quantities, and Gp (which includes the gap
parameters) and Z have been parametrized in the form

Gp
' (p) =ppl— +a3(p) z3 —W(p) z)+iB, (3a)

Z p

Z(p) = [1 —Z(p)]p ~1+Z(p) [A3(p) z3+A(p) z~] (3b)

The evaluation of the system of Eqs. (2) is straightfor-
ward. Assuming

~ p ~

=
~

p'
~
=pF (the Coulomb interac-

tion has been omitted and enters in its standard form ),
the results in the imaginary-frequency (Matsubara) rep-
resentation are

FIG. 2. The perturbative approximation scheme for calcula-
tion of the full quasiparticle propagator in the modified Eliash-
berg theory.
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After analytic continuation to real frequencies, (4) reads

goo goo po
[1 —Z(pp)]pp= dpp dna+F(n)I(pp+i8, n, pp)ReJ —Oo VP po ~ po

goo goo &(po)
Z(pp)A(pp) =„dpp„dna-F(n)I(pp+i6, n,pp)Re, 2 2, , i2dp po ~ po

where

N(n)+1 —f(po) N(n)+f(po)
I(pp+i8, n, pp) = +

pp+i 6 —0, —
pp Pp+i 6+ A —

Pp

and

N(n) =(1 —e"'' )

f(p') =(1+e""' )

Furthermore, when 8(q, n) is the phonon spectral func-
tion and p(0) is the quasiparticle density of states at the
Fermi surface,

a F(n) =p(0)&" (
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The new type of pair interaction has been introduced pre-
viously to explain a resonance structure in the Raman
spectrum of CDW states. In this context, phonon polar-
ization and charge screening have been discussed. Some
immediate consequences of the Eliashberg equations (5)
shall be derived next.

An important observation concerns the sign of the cou-
pling parameter

~
k ~, as compared to

~ g ~

2: One can in-
troduce dimensionless quasiparticle-phonon coupling con-
stants, assuming pp, pp « Q,

a~F(n) . (6)

6T, 6Tc p

FIG. 3. Layers of negative and positive T, -pressure gradients,
yielding an attractive pair interaction.
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X is the usual quasiparticle-phonon coupling parameter of
the BCS theory, and tt, is defined analogously. Assuming
a square-well form of the gap function A(po) =48(po—po), one obtains an equation for T, in terms of the di-
mensionless coupling parameters:

po 1 +X+X
kg

Since k & 0, the eA'ect of the interaction is essentially to
reduce the critical temperature, very similar to the
Coulomb interaction. Hence, it can be inferred that the
resulting pair interaction is repulsive and pair breaking.
This can also be understood on more physical grounds,
since the gap and the phonon amplitude are dynamically
correlated: An increase of the gap function increases the
potential energy of the lattice and therefore requires ener-

gy (very much as decreasing the distance between the con-
stituents of the Cooper pair increases the potential energy
of the Coulomb field).

The repulsiveness of the interaction in homogeneous
three-dimensional systems would, however, be reversed
for specific structures with (alternate) layers of positive
and negative T,-pressure gradients, as sketched in Fig. 3.
When this gradient

~
ST,/Bp ~

is of the same magnitude in
both materials, the dimensionless coupling constant k in
Eq. (7) reverses its sign, yielding T, (X, —

A, ). For such
structures, the interaction becomes attractive and T, in-
creases.

In conclusion, it can be said that this pair interaction,
parametrized by a direct gap-phonon coupling, can be ap-
plied to all types of materials with strong T,-pressure
correlation, such as the two systems 2H-NbSe2 and
CeCu2Si2 mentioned above. It has the potential for im-
portant contributions to the dynamics of such systems.
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